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PREFACE

Performance Evaluation is often the critical part in evaluating the results of a research project.
Many of us are familiar with simulations, but it is often difficult to address questions like: Should
I eliminate the beginning of the simulation in order to wait until the system stabilizes ? I simulate
a random way point model but the average speed in my simulation is not as expected. What
happened ? The reviewers of my study complained that I did not provide confidence intervals.
What is that ? How do I get them ?

This book is the set of lecture notes for a course given at EPFL. With this book and some accompa-
nying practicals, you will be able to answer these and other questions, more generally, to evaluate
the performance of computer and communication systems and master the theoretical foundations
of performance evaluation and of the corresponding software packages.

In the past, many textbooks on performance evaluation have given the impression that this is a
complex field, with lots of baroque queuing theory excursions, which can be exercised only by
performance evaluation experts. It does not have to be so. In contrast, performance evaluation can
and should be performed by any computer engineering specialist who designs a system. When
a plumber installs pipes in our house, one expects her to properly size their diameters; the same
holds for computer engineers.

This book is not for the performance evaluation specialist. It is for every computer engineer
or scientist who is active in the development or operation of software or hardware systems. The
required background is an elementary course in probability and one in calculus.

The first objective of the book is to make performance evaluation usable by all computer engineers
and scientists. The foundations of performance evaluation are in statistics and queuing theory,
therefore, some mathematics is involved and the text cannot be overly simplified. However, it
turns out that much of the complications are not in the general theories, but in the exact solution
of specific models. For example, some textbooks on statistics (but none of the ones I cite in
the reference list) develop various solution techniques for specific models, the vast majority of
which are encapsulated in commercially or freely available software packages like Matlab, S-
PLUS, Excel, Scilab or R.

To avoid this pitfall, I focused first on the what before the how. Indeed, the most difficult question
in a performance analysis is often “what to do”; once you know what to do, it is less difficult to
find a way with your usual software tools or by shopping the web. For example, what do we do
when we fit a model to data using least square fitting (the answer is in Chapter 4) ? I also looked
for solution methods that are universal, i.e., that apply in all situations, simple or complex. For

xvii



xviii PREFACE

example, computing confidence or prediction intervals can be made simple and systematic is we
use the median and not the mean; if we have to use the mean, the use of likelihood ratio statistic
is quite universal and requires little intellectual sophistication about the model. I give a coverage
of queuing theory that focuses on universal laws and patterns rather than the solution of specific
queuing networks. During a performance analysis, one is often confronted with the dilemma:
should I use an approximate model for which exact solutions exist, or should I use approximate
solutions for a more exact model ? I took the second option as much as possible. A benefit is to
use methods that apply practically always, instead of dwelling on the meanders of explicit, exact
closed forms that apply only with unrealistic, restrictive assumptions.

Part I is a self-contained first course that addresses the first objective. It contains all the material
needed by an engineer who wishes to evaluate the performance of a computer or communication
system. Chapter 1 gives a methodology and serves as introduction to the rest of the book. Chap-
ter 2 describes how to quantify the accuracy of results. In Chapter 4 we present a general method
for fitting an explanatory model to data. Chapter 3 discusses simulation and its application to
performance evaluation. Chapter 5 describes performance patterns, i.e., facts that repeatedly ap-
pear in various situations, and whose knowledge considerably helps the performance evaluation.
Chapter 6 discusses patterns specific to queuing.

A second objective is to introduce the computer engineer to more specialized topics, that are not
more complex, but whose applicability is restricted to more specific areas. This is covered by
Part II. Chapter 7 describes the techniques of tests. Chapter 8 discusses the background needed
for load generation. Chapter 9 describes the techniques used for forecasting the load intensity.
Chapter 10 describes the concepts of long range dependence, a feature found in most traffic traces.
Last, Chapter 11 describes Palm calculus, which relates the different viewpoints resulting from
measurements done by different operators. This is generally considered too complicated for ap-
plied textbooks, but, here too, I found that it is possible to convey the main ideas and results in a
simple, accessible way.

A typical course for computer engineers would consist of Part I and, depending on the focus of the
students, a few selected topics from Part II. Sections marked with a � can be omitted or skimmed,
depending on the reader’s inclination. This applies to both Parts I and II. Text in small font size can be

skipped at first reading.

Performance evaluation is primarily an art, and involves using sophisticated tools such as mathe-
matical packages, measurement tools and simulation tools. See the web site of the EPFL lecture
on Performance Evaluation for some examples of practicals designed around this book.

The text is intended for self-study. It contains many inline questions; I invite the alert readers to
try and answer the questions as they read.

QUESTION 0.0.1. Where is the answer to an inline question ? 1

Every chapter contains a review section that summarizes the main points and also contains further
inline questions. The exercise section can be used as assignments in a lecture. The solutions are
available on request; if time permits, a solution manual will eventually be available. The Index
collects all terms and expressions that are highlighted in the text like this and also serves as a
notation list. An appendix gives background material on probability and calculus.

1In a footnote on the same page



PART I

A FIRST COURSE IN PERFORMANCE

EVALUATION

1





CHAPTER 1

METHODOLOGY

Contents
1.1 What is Performance Evaluation ? . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 How To Evaluate Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Performance Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Other Guidelines for a Successful Performance Evaluation . . . . . . . . . . 9

1.4.1 The Scientific Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.2 Dijkstra’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Check-List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.2 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 WHAT IS PERFORMANCE EVALUATION ?

In the context of this book, performance evaluation is about quantifying the service delivered
by a computer or communication system. For example, we might be interested in knowing the
response time experienced by a customer performing a reservation over the Internet; or we might
be interested in comparing two compilers for a multiprocessor machine.

The performance metric is a measurable quantity that precisely captures what we want to measure
– it can take many forms. There is no general definition of a performance metric: it is system
dependent, and its definition requires understanding the system and its users well. We will often
mention examples where the metric is throughput (number of tasks completed per time unit) or
response time (time elapsed between a start and an end events). For each performance metric,
we may be interested in average, 95-percentile, worst-case, etc. We discuss this point in detail in
Chapter 2.

3
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A particular feature of computer or communication systems is that their performance depends
dramatically on the workload (or simply load) they are subjected to. The load characterizes the
quantity and the nature of requests submitted to the system. Consider for example the problem of
quantifying the performance of a web server. We could characterize the load by a simple concept
such as the number of requests per second. This is called the intensity of the workload. In general,
the performance deteriorates when the intensity increases, but often the deterioration is sudden;
this is due to the non-linearity of queuing systems – an example of performance pattern that is
discussed in Section 1.3 and Chapter 6. The performance of a system depends not only on the
intensity of of the workload, but also its nature; for example, on a web server, all requests are
not equivalent: some web server softwares might perform well with get requests for frequently
used objects, and less well with requests that require database access, for some others it might
be different. This is addressed by using standardized mixes of web server requests. They are
generated by a benchmark, defined as a load generation process that intends to mimic a typical
user behaviour. In Chapter 8 we study how such a benchmark can be constructed.

EXAMPLE 1.1: QUIZ. Consider the following cases and answer the next question.

1. Design web server code that is efficient and fast.
2. Compare TCP-SACK versus TCP-new Reno for hand-held mobile devices.
3. Compare Windows 2000 Professional versus Linux.
4. Design a rate control for an internet audio application.
5. Compare various wireless MAC protocols.
6. Say how many servers a video on demand company needs to install.
7. Compare various compilers.
8. How many control processor blades should this Cisco router have ?
9. Compare various consensus algorithms.

10. Design bug-free code.
11. Design a server farm that will not crash when the load is high.
12. Design call center software that generates guaranteed revenue.
13. Size a hospital’s information system.
14. What capacity is needed on an international data link ?
15. How many new servers, if any, should I install next quarter for my business ap-

plication ?

QUESTION 1.1.1. Say which examples require a detailed identification of the intensity of the
workload. 1

If you score more than 12 correct answers, then proceed with this course. Else, go
back to the beginning of the lecture.

EXAMPLE 1.2: Consider the following performance evaluation results:

(A1) PC configuration 1 is 25% faster than PC configuration 2 when running Excel

1Examples 6, 8,13, 14, 15.
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(A2) For your video on demand application, the number of required servers is 35, and
the number of disk units is 68.

(A3) Using the new version of sendfile() increases the server throughput by 51%

QUESTION 1.1.2. What is the difference between Examples (A1) to (A3) ? 2

The goal of a performance evaluation study is usually either a comparison of design alternatives
i.e. quantify the improvement brought by a design option or system dimensioning, i.e. deter-
mining the size of all system components for a given planned utilization. Comparison of designs
requires a well-defined load model; however, the exact value of its intensity does not have to be
identified. In contrast, system dimensioning requires a detailed estimation of the load intensity.
Like any prediction exercise, this is very hazardous. For any performance evaluation, it is impor-
tant to know whether the results depend on a workload prediction or not. Forecasting techniques
are the object of Chapter 9.

The benefit of a performance evaluation study has to be weighted against its cost and the cost
of the system. In practice, detailed performance evaluations are done by product development
units (system design). During system operation, it is not economical (except for huge systems
such as public communication networks) to do so. Instead, manufacturers provide engineering
rules, which capture the relation between load intensity and performance. Example (A2) above is
probably best replaced by an engineering rule such as:

EXAMPLE 1.3: ENGINEERING RULE.

(E2) For your video on demand application, the number of required servers is given
by N1 = � R

59.3 + B
3.6� and the number of disk units by N2 = � R

19.0 + B
2.4�, where R

[resp. B] is the number of residential [resp. business] customers.

In this lecture, we study the techniques of performance evaluation that apply to all these cases.
However, how to implement a high performance system (for example: how to efficiently code a
real time application in Linux) or how to design bug-free systems are outside the scope.

QUESTION 1.1.3. Among the examples in Example 1.1 on page 4, say which ones fall within the
scope of this lecture ? 3

1.2 HOW TO EVALUATE PERFORMANCE

The first step is to clearly define the goal of the performance evaluation, as discussed in the previ-
ous section. Once the goal is identified, it remains to define a metric and a load model. All of this
requires knowing the system and its use.

2(A1), (A3) are about a comparison; (A2)is about dimensioning
3All except 1, 4, 10
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EXAMPLE 1.4: WINDOWS VERSUS LINUX. Assume you want to compare Windows
versus Linux. Chen and its co-authors did it in [Chen95-SOSP].

QUESTION 1.2.1. What metric and load model would you use ? 4

The performance evaluation can then proceed with a solution method, which usually falls in one
of the three cases below. Which method to use depends on the nature of the problem and the skills
or taste of the evaluation team.

• Measurement of the real system. Like in physics, it is hard to measure without disturbing
the system. Some special hardware devices (e.g.: optical splitters in network links) some-
times can prevent any disturbance. If, in contrast, measurements are taken by the system
itself, the impact has to be analyzed carefully. Measurements are not always possible (eg. if
the system does not exist yet). It sometimes requires a complex instrumentation.

• Discrete Event Simulation: a simplified model of the system and its load are implemented
in software. Time is simulated and typically flows orders of magnitude more slowly than real
time. The performance of interest is measured as on a real system, but measurement side-
effects are usually not present. It is often easier than a measurement study, but not always.
It is the most widespread method and is the object of Chapter 3.

• Analytical: A mathematical model of the system is analyzed numerically. This is viewed
by some as a special form of simulation. It is often much quicker than simulation, but
sometimes wild assumptions need to be made in order for the numerical procedures to be
applicable. Analytical methods are often used to gain insight during a development phase,
or also to learn fundamental facts about a system, which we call “patterns”. The chapters
in Part II make abundant use of analytical methods. We also show in Chapter 6 how some
performance analyses can be solved approximately in a very simple way, using bottleneck
analysis; see Section 6.5 for a example.

Further, one needs to establish a list of factors: these are elements in the system or the load that
affect the performance. Ignoring some hidden factors may invalidate the result of the performance
evaluation.

QUESTION 1.2.2. Consider again comparing Windows versus Linux. Can you imagine what fac-
tors might play an important role in the analysis ? What external factors have to be taken care of
during the evaluation ? 5

Knowing all factors is a tedious, but necessary task. This implies that you have to know your
system well, or be assisted by people who know it well.

4Chen et al used the metric: number of cycles, instructions, data read/write operations. The load was generated by
various benchmarks: “syscall” generates elementary operations (system calls); “memory read” generates references
to an array; an application benchmark runs a popular application (here: ghostview).

5From [Chen95-SOSP]: External factors are: background activity; multiple users; network activity. These were
reduced to a minimum by shutting the network down and allowing one single user. The different ways of handling
idle periods in Windows NT and NetBSD also need to be accounted for, because they affect the interpretation of
measurements. Cycle counts in idle periods of NetBSD have to be removed.
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1.3 PERFORMANCE PATTERNS

Last, performance evaluation is simpler if the evaluator is aware of known performance patterns.
Look at the top figure on the cover page: “We doubled the throughput, you’ll be twice as fast”.
Does it make sense ? Is it a reasonable promise ? The behaviour of queuing systems follow some
well known patterns. If we know them, we are likely to come more quickly to a conclusion. We
discuss this example in Section 6.5. The prominent pattern in queuing is bottlenecks. In most sys-
tems of interest, the overall performance is dictated by the behaviour of the weakest components,
called the bottlenecks.

EXAMPLE 1.5: BOTTLENECKS. You are asked to evaluate the performance of an
information system. An application server can be compiled with two options, A and
B. An experiments was done: ten test users (remote or local) measured the time to
complete a complex transaction on four days. On day 1, option A is used; on day 2,
option B is. The results are in Table 1.3. The expert concluded that the performance
for remote users is independent of the choice of an information system, but A has
higher performance for local users. Six months later, the same experiment is done,
but now the results are different, i.e., A is always better.

QUESTION 1.3.1. Can you think of an interpretation ? 6

remote local
A 123 43

189 38
99 49
167 37
177 44

B 107 62
179 69
199 56
103 47
178 71

remote local
A 141 75

175 71
192 62
187 73
125 58

B 201 90
178 83
193 102
182 78
186 92

Table 1.1: Data for Example 1.5 on page 7: measured performance of an information systems with two
compiler options A and B. Test users measured the time to complete a complex transaction. Left: results of
first tests. Right: results six months later.

The important thing about bottleneck is that they depend on all parameters of the system and the
load: a component may be a bottleneck in some conditions, not in others. Knowing bottlenecks
may considerably simplify the performance evaluation, as illustrated by the following example.
More details can be found in Section 6.3.3.

6We cannot know from this simple series of facts. In fact, further measurements showed that all remote users
access the information system via modem lines and an internet provider, which is the bottleneck in the first case. In
the second case, the bottleneck is the server itself.
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EXAMPLE 1.6: CPU MODEL. A detailed screening of a transaction system shows that
one transaction costs in average: 1’238’400 CPU instructions; 102.3 disk accesses; 4
packets sent on the network. The processor can handle 109 instructions per second;
the disk can support 104 accesses per second; the network can support 104 packets
per second. We would like to know how many transactions per second the system
can support.

QUESTION 1.3.2. Can you give a rough estimate ? If you want more accuracy, what would
you study in detail ? 7

Patterns are discussed in Chapter 5 and Chapter 6. The next example illustrates some of them.

EXAMPLE 1.7: PATTERNS. Consider the following scenarios.

1. The web server used for online booking at the “Fête des Vignerons” was so
popular that it collapsed under the load, and was unavailable for several hours.

2. Buffers were added to an operating system task, but the overall performance
was degraded (instead of improved, as expected).

3. When too many users are using the international link, the response time is poor
4. When too many users are present on the wireless LAN, no one gets useful work

done
5. A traffic volume increase of 20% caused traffic jams
6. A new road was opened in the city center but there was no improvement
7. New parking facilities were created but there was no improvement

and the following patterns

(a) non-linearity of response time with respect to load
(b) congestion collapse (useful work decreases as load increases)
(c) performance is determined by bottleneck

QUESTION 1.3.3. For each of the examples above, say which of the three patterns is present.
8

7The utilization per transaction is: CPU:0.12% – disk:1.02% –network:0.04%. The disk is the bottleneck; an upper
bound on the capacity is 99 tps. To obtain more details, a first step is to model queuing at disk access, to see at which
number of tps delays start becoming large. A global queuing model of CPU, disk access and network is probably not
necessary.

81b; 2: maybe b, maybe other (see Chapter 5); 3a; 4b; 5b; 6: maybe b, maybe other (see Chapter 5); 7c
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1.4 OTHER GUIDELINES FOR A SUCCESSFUL PERFORMANCE

EVALUATION

1.4.1 THE SCIENTIFIC METHOD

The scientific method applies to any technical work, not only to performance evaluation. However,
in the author’s experience, lack of scientific method is one prominent cause for failed performance
studies. In short, the scientific method simply requires that you do not believe in a conclusion
unless it is thoroughly tested.

EXAMPLE 1.8: JOE’S KIOSK. Joe’s e-kiosk sells online videos to customers equipped
with wireless PDAs. Before deployment, performance evaluation tests are performed,
as shown on Figure 1.1(a).

QUESTION 1.4.1. What do you conclude about the throughput ? 9

Joe concludes that the bottleneck is the wireless LAN and decides to buy and install
2 more base stations. After installation, the results are on Figure 1.1(b).

QUESTION 1.4.2. How do you interpret this ? 10

Joe scratches his head and decides to go more carefully about conclusions. Mea-
surements are taken on the wireless LAN; the number of collisions is less than 0.1%,
and the utilization is below 5%. This confirms that the wireless LAN is not a bottle-
neck. Joe makes the hypothesis that the bottleneck may be on the server side. After
doubling the amount of real memory allocated to the server process, the results are
as shown on Figure 1.1(c).

QUESTION 1.4.3. What do you think ? 11

First, a common pitfall is to draw conclusions from an experiment that was not explicitly designed
to validate these conclusion. The risk is that hidden factors might interfere, as illustrated by the pre-
vious example. Indeed, Joe concluded from the first experiment that the LAN performance would
be improved by added a base station; this may have been suggested by the result of Figure 1.1(a),
but this is not sufficient. It is necessary to perform other experiments, designed to validate this
potential conclusion, before making a final statement.

EXAMPLE 1.9: IS ATM UBR BETTER THAN ATM ABR ?. In [Manthorpe00], the
authors evaluate whether the ATM-UBR protocol is better than ATM-ABR (both are al-
ternative methods used to manage switches used in communication networks). They
use a typical scientific method, by posing each potential conclusion as a hypothesis
and designing experiments to try and invalidate them:

9It reaches a maximum at around 8 tps.
10There is no improvement. The conclusion that the wireless LAN was a bottleneck was wrong.
11The bottleneck is now removed, which confirms that the real memory was the limiting factor.
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(a) Question 1.4.1
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(b) Question 1.4.2
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(c) Question 1.4.3

Figure 1.1: Performance results for Joe’s server. X-axis: offered load; Y-axis: achieved throughput, both
in transactions per second.

ABSTRACT. We compare the performance of ABR and UBR for providing
high-speed network interconnection services for TCP traffic. We test the
hypothesis that UBR with adequate buffering in the ATM switches results
in better overall goodput for TCP traffic than explicit rate ABR for LAN in-
terconnection. This is shown to be true in a wide selection of scenarios.
Four phenomena that may lead to bad ABR performance are identified and
we test whether each of these has a significant impact on TCP goodput.
This reveals that the extra delay incurred in the ABR end-systems and the
overhead of RM cells account for the difference in performance. We test
whether it is better to use ABR to push congestion to the end-systems
in a parking-lot scenario or whether we can allow congestion to occur in
the network. Finally, we test whether the presence of a “multiplexing loop”
causes performance degradation for ABR and UBR. We find our original
hypothesis to be true in all cases. We observe, however, that ABR is able
to improve performance when the buffering inside the ABR part of the net-
work is small compared to that available at the ABR end-systems. We also
see that ABR allows the network to control fairness between end-systems.

Second, give the accuracy of your quantitative results. Consider the measured data in Table 1.3.
There is a lot of variability in them; saying that the average response time is better with B than
A is not sufficient; it is necessary to give uncertainty margins, or confidence intervals. This is the
objects of the techniques discussed in Chapter 2.

Last, make the results of your performance evaluation easily reproducible. This implies that all
assumptions are made explicit and documented.
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1.4.2 DIJKSTRA’S PRINCIPLE

Like the scientific method, it is a common sense principle that applies to any technical activity. It
is known under several equivalent forms, all of which can be summarized by: Remove what can
be removed.

• (Occam:) if two models explain some observations equally well, the simplest one is prefer-
able

• (Dijkstra:) It is when you cannot remove a single piece that your design is complete.
• (Common Sense:) Use the adequate level of sophistication.

For example, using a detailed simulation to answer Question 1.3.2 would violate this principle.

1.5 REVIEW

1.5.1 CHECK-LIST

PERFORMANCE EVALUATION CHECKLIST

PE1 Define your goal. For example: dimension the system, find the overload behaviour; evaluate
alternatives. Do you need a performance evaluation study ? Aren’t the results obvious ? Are
they too dependent on the input factors, which are arbitrary ?

PE2 Identify the factors. What are all the factors ? are there external factors which need to be
controlled ?

PE3 Define your metrics. For example: response time, server occupancy, number of transactions
per hour, Joule per Megabyte.

PE4 Define offered load. How is it expressed: transactions per second, number of users, number
of visits per hour ? Is it measured on a real system ? artificial load generated by a simulator,
by a synthetic load generator ? load model in a theoretical model ?

PE5 Know your bottlenecks. The performance often depends only on a small number of factors,
often those whose utilization (= load/capacity) is high. Make sure what you are evaluating
is one of them.

PE6 Know your system well. Know the system you are evaluating and list all factors. Use
evaluation tools that you know well.

GENERAL PURPOSE CHECKLIST

S1 Scientific Method
do {Define hypothesis; design experiments; validate } until validation is OK

S2 Quantify the accuracy of your results.
S3 Make your findings reproducible; define your assumptions.
D1 Remove what can be removed.
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1.5.2 REVIEW QUESTIONS

QUESTION 1.5.1. Consider examples 11 and 12 in Example 1.1 on page 4. Which performance
pattern do they correspond to ? 12

QUESTION 1.5.2. Consider slides 298 and 299 in Nitin Vaidya’s tutorial at Mobicom 2000 [Vaidya00-
Mobicom1]. The author studies the performance of TCP on a mobile ad-hoc network, as a function
of speed (of mobile). What can you conclude from these two slides ? 13

QUESTION 1.5.3. Consider slides 300–305 in Nitin Vaidya’s tutorial at Mobicom 2000 [Vaidya00-
Mobicom2]. What can you conclude from these six slides ? 14

QUESTION 1.5.4. What further measurements could be done to confirm the conclusion drawn in
Question 1.3.1. 15

1.6 EXERCISES

EXERCISE 1.1. Read [Singh02-Sigmetrics] and answer the following questions.

1. is the goal of the evaluation well defined ? What is it ?
2. are the factors identified ? What are they ?
3. what performance indices are chosen ?
4. how is the workload generated ?
5. are there implicit assumptions that should have been formulated ?
6. are the experiments or results reproducible ?
7. what conclusions can be drawn from the study ?
8. is the approach scientific ? do you believe the conclusions ? why ?
9. what techniques are used for the evaluation ?

10. is the level of sophistication adequate ?
11. was a performance analysis justified (aren’t the results obvious or too dependent on input

factors, which are arbitrary) ?
12. is there any part that can be removed ?
13. are the graphics OK ?
14. what aspects of the evaluation do you like or dislike?

EXERCISE 1.2. Same question with [Tan02-Sigmetrics]

12Absence of congestion collapse.
13That mobility decreases throughput.
14That the previous conclusion was premature.
15Pose as assumption that the performance is a function of proportion of remote users and total load. Make mea-

surements where these two factors take different values and analyze the dependency (for example, using a linear
regression, see Part ??).



CHAPTER 2

CONFIDENCE INTERVALS

In most measurements or simulations, we obtain data with some variability. The goal of this
chapter is to review the techniques used to summarize such data into a small set of useful numbers,
and to quantify the accuracy of the summarized data. Unfortunately, there are several competing
summarization results, some of which are in widespread use due to historical more than scientific
reasons. We first review these results, then we discuss their use in our setting. We use standard
definitions of probability theory recalled in appendix.
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2.1 SUMMARIZING PERFORMANCE DATA

WHAT IS SUMMARIZATION ? Assume you have obtained a large set of results for the value of
a performance metric. This can be fully described by the distribution of the data, and illustrated
by a histogram. The histogram displays on the y-axis the ratio of data that fall in the bin on the x
axis. Summarizing means compressing it into one or a few numbers that represent both its average
and variability. In practice of communication and information systems, this is done by either one
of the following two:

Median and Quantile. A median is a value that falls in the middle of the distribution, i.e. 50%
of the data is below and 50% above. A p%-quantile leaves p% of the observation below and
100 − p% above. The median gives some information about the average, while extreme quantiles
give information about the dispersion. A commonly use plot is the Box Plot. It shows the median,
the 25% and 75% quantiles (called “quartiles”) and the “outliers”, defined as data points that are a
fixed fraction away from the quartiles. It also shows variability by the following heuristic. It plots
a line that extends to the most extreme value up to 1.5 times the inter-quartile distance (distance 3
on Figure 2.1).
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The sample median of a data set is defined as follows. Assume there are n data points x1, ..., xn. Sort the points
in increasing order and obtain x(1) ≤ ... ≤ x(n). If n is odd, the median is x( n+1

2 ), else 1
2 (x( n

2 ) + x( n
2 +1)). More

generally, the sample q- quantile is defined as
x(k′)+x(k”)

2 with k′ = �qn + (1− q)� and k′ = �qn + (1− q)�. �x� is
the largest integer ≤ x and �x� is the smallest integer ≥ x

Mean and Standard Deviation. The mean m of a data set x1, ..., xn is m = 1
n

∑n
i=1 xi. It

gives some information about the average. The standard deviation s of a data set is defined by
s2 = 1

n

∑n
i=1 (xi −m)2 or s2 = 1

n−1

∑n
i=1 (xi −m)2 (either conventions are used – see Section 2.2

for an explanation). It gives information about the variability. The use of standard deviation is
rooted in the belief that data roughly follows a normal distribution, with some mean μ and some
variance σ2. The normal distribution is characterized by histogram with Bell shape (see appendix).
It is very frequently encountered because of the central limit theorem that says that an average of
many things tends to be normal (but see some exceptions in Chapter 8). If such a hypothesis is
true, and if we had m ≈ μ and σ ≈ s, then with 95% probability, the data sample would lie in
the interval m ± 1.96s (see the normal distribution table in appendix). This justifies the use of
mean-variance plots like in Figure 2.1 that use as a measure of variability the interval m± 1.96s
(distance 3 on Figure 2.1). This is also called a prediction interval since it predicts a likely range
for a future sample (Section 2.5).

EXAMPLE 2.1: COMPARISON OF TWO OPTIONS. An operating system vendor claims
that the new version of the database management code significantly improves the
performance. We measured the execution times of a series of commonly used pro-
grams with both options. The data are displayed in Figure 2.1. The raw displays and
histograms show that both options have the same range, but it seems (graphically)
that the new system more often provides a smaller execution time. The box plots are
more suggestive; they show that the average and the range are about half for the new
system.

In Section 2.7 we discuss the differences between these two modes of summarization.

Comparing Data Sets is easily done with their empirical cumulative distribution functions
(ECDFs). The ECDF of a data set x1, ..., xn is the function f defined by

f(x) =
1

n

n∑
i=1

1{xi≤x} (2.1)

so that f(x) is the proportion of data samples that do not exceed x. On Figure 2.2 we see that the
new data set clearly outperforms the old one.

2.2 CONFIDENCE INTERVALS FOR MEDIAN AND OTHER QUAN-
TILES

2.2.1 WHAT IS A CONFIDENCE INTERVAL ?

For any number that we display, we should give some statement about its accuracy: this is a sci-
entific principle (Chapter 1). Confidence intervals quantify the uncertainty about a summarized
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Figure 2.1: Data for Example 2.1 on page 15. Top : measured execution time, in ms, for 100 transactions
with the old (left) and new (right) code, followed by histograms. Bottom left: Box Plot, showing median
(1), confidence interval for the median (2) and variability (3) for both old and new code. Bottom right: Box
Plots overlaid with: mean (1), confidence interval for the mean (2) prediction interval for a sample (3), using
formulas for the normal case.
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Figure 2.2: Data of Example 2.1 on page 15. Empirical distribution functions for the old code (right curve)
and the new one (left curve). The new outperforms the old, the improvement is significant at the tail of the
distribution.
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Figure 2.3: Data for Example 2.2 on page 17: reduction in run time (in ms). Right: Box plot with mean and
confidence interval for mean.

data due to the randomness of the measurements.

EXAMPLE 2.2: COMPARISON OF TWO OPTIONS, CONTINUED. We wish to quantify
the improvement due to the new system. To this end, we measure the reduction in
run time for the same sequence of tasks as on Figure 2.1 (both data sets on Fig-
ure 2.1 come from the same transaction sequences – statisticians say that this is a
paired experiment). The differences are displayed in Figure 2.3, with Box-Cox and
mean/standard deviation diagrams. For example, the mean of the reduction in run
time is 26.1 ± 10.2.The uncertainty margin is called the confidence interval for the
mean. It is obtained by the method explained in this section. Here, the mean reduc-
tion is non negligible, but the uncertainty about it is large.

Figure 2.1 and Figure 2.3 show confidence intervals for the mean (horizontal lines) and for the
median (notches in Box plot). Note that the confidence interval is not the same as a measure of
variability, though it is related, as we discuss in Section 2.7: on Figure 2.1 the confidence interval
for the mean is considerably smaller than the variability interval given by m ± 1.96s. There is
a confidence interval for each of the summarized data given earlier: median, quantile, mean and
standard deviation.

2.2.2 ASSUMPTION ON INDEPENDENCE

We assume that the collected data comes from a set of independent and identically distributed
(iid) samples. We discuss this assumption in this section.

WHAT DOES IID MEAN ?

Iid is a property of a stochastic model, not of the data. When we say, by an abuse of language,
that the collected data set is iid, we mean that we can do as if the collected data x1, ..., xn is a
sample (i.e. a simulation output) for a sequence of random variables X1, ..., Xn, where X1, ..., Xn

are independent and all have the same (maybe unknown) distribution with cdf F ().
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To generate such as sample, we draw a random number from the distribution F (), using a random
number generator (see Section 3.6). Independence means that the random numbers generated at
every step i are discarded and not re-used in the future steps i + 1, .... Another way to think of
independence is with conditional probabilities: for any set of real numbers A

P(Xi ∈ A | X1 = x1, ..., Xi−1 = xi−1) = P(Xi ∈ A) (2.2)

i.e. if we know the distribution F (x), observing X1, ..., Xi−1 does not give more information
about what could happen to Xi.

Note the importance of the “if” statement in the last sentence: if we remove it, the sentence is no
longer true. To understand why, consider a sample x1, ..., xn for which we assume to know that
it is generated from a sequence of iid random variables X1, ..., Xn with normal distribution but
with unknown parameter (μ, σ2). If we observe for example that the average of x1, ..., xn−1 is 100
and all values are between 0 and 200, then we can think that it is very likely that xn is also in the
interval [0, 200] and that it is unlikely that xn exceeds 1000. Though the sequence is iid, we did
gain information about the next element of the sequence having observed the past. There is no
contradiction: if we know that the parameters of the random generator are μ = 100 and σ2 = 10
then observing x1, ..., xn−1 gives us no information about xn.

QUESTION 2.2.1. Give an example of identically distributed but dependent random variables. 1

HOW DO I KNOW IN PRACTICE IF THE IID ASSUMPTION IS VALID ?

If your performance data comes from a designed experiment, i.e. a set of simulation or tests that
is entirely under your control, then it is up to you to design things in such a way that the collected
data are iid. This is done as follows.

Every experiment has a number of factors, i.e., parameters that are likely to influence the outcome.
Most of the factors are not really interesting, but you have to account for them in order to avoid
hidden factor errors (see Section 4.6 for details). The experiment generates iid data if the values
of the factors are chosen in an iid way, i.e., according to a random procedure that is the same for
every measured point, and is memoriless. Consider Example 2.1 on page 15, where the run time
for a number of transactions was measured. One factor is the choice of the transaction. The data is
made iid if, for every measurement, we choose one transactions randomly with replacement in a
list of transactions.

A special case of designed experiment is simulation. Here, the method is to generate replications
without resetting the random number generator, as explained in Section 3.3.

Else (i.e. your data does not come from a designed experiment but from measurements on a
running system) there is little chance that the complete sequence of measured data is iid. A simple
fix is to randomize the measurements, in such a way that from one measurement point to the
other there is little dependence. For example, assume you are measuring the response time of an
operational web server by data mining the log file. The response time to consecutive requests is
highly correlated at the time scale of the minute (due to protocols like TCP); one common solution
is to choose requests at random, for example by selecting one request in average every two minutes.
If you are in doubt, you can verify the iid-ness by the methods discussed in Section 2.4.4.

1Here is a simple one: assume X1,X3,X5, ... are iid with cdf F () and let X2 = X1, X4 = X3 etc. The distribution
of Xi is F () but the distribution of X2 conditional to X1 = x1 is a dirac at x1, thus depends on x1. The random choices
taken for X1 influence (here deterministically) the value of X2.
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DO WE NEED THE IID ASSUMPTION ?

The iid assumption is not mandatory, it is just a convenient one, which makes the computation of
confidence intervals easy (using the methods described in the rest of this chapter). It is possible
to obtain confidence intervals even when the data does not appear to be iid, but this is an order of
magnitude more complicated. In Section 2.9, we study such an example.

2.2.3 CONFIDENCE INTERVAL FOR MEDIAN AND OTHER QUANTILES

We explain now how these confidence intervals are computed, which also serves as an illustration
of the general method for computing confidence intervals. The confidence interval for the median
is shown by notches on Box plots (Figure 2.1, (3) on Box plot). We start with the median and then
extend it to other quantiles.

Recall that we interpret the data x1, ..., xn as a sample for a sequence of iid random variables
X1, ..., Xn, with common cdf F (). The distribution F () is non-random but is unknown. It has a
well defined median m, defined by P(Xi ≤ m) = 0.5. We can never know m exactly, but we
estimate it by m̂(x1, ..., xn), equal to the sample median defined in Section 2.11.1 (in Section 2.8
we discuss the choice of an estimator in more detail). Note that the value of the estimated median
depends on the data, so it is random: for different measurements, we obtain different estimated
medians. The goal of a confidence interval is to bound this uncertainty. It is defined relative to a
confidence level γ; typically γ = 0.95 or 0.99:

DEFINITION 2.2.1. A confidence interval at level γ for the fixed but unknown parameter m is an
interval (u(X1, ..., Xn), v(X1, .., Xn)) such that

P (u(X1, ..., Xn) < m < v(X1, ..., Xn)) ≥ γ (2.3)

In other words, the interval is constructed from the data, such that with at least 95% probability (for
γ = 0.95) the true value of m falls in it. Note that it is the confidence interval that is random,
not the unknown parameter m.

A confidence interval for the median or a quantile is obtained thanks to the following theorem.

THEOREM 2.2.1. Let X1, ..., Xn be n iid random variables whose common distribution has a
density. Let X(1) ≤ X(2) ≤ ... ≤ X(n) be the order statistic, i.e. the set of values of Xi sorted
in increasing order. For 0 < p < 1 let mp be a p-quantile of the common distribution of the Xis.
A confidence interval for mp is [X(j), X(k)] where j and k satisfy Bn,p(k − 1) − Bn,p(j − 1) ≥ γ
(Bn,p is the cdf of the binomial distribution). See the tables in Section 14.2 for practical values.
For large n, the binomial cdf can be approximated by a normal distribution, as shown in the tables.

Note. The assumption that the distribution has a density is for simplicity of exposition. In practice it
holds when the values of Xi are real numbers. Else, typically, Xi takes integer values; the distribution
quantiles are defined as follows. The cdf F () is defined for integer arguments only; we can extend it
to real arguments by linear interpolation: F (x) = (x − n)F (n + 1) + (n + 1 − x)F (n) where n is
the integer part of x. This extension is continuous and a p- quantile is defined as a value of x such that
F (x) = p. In such cases the results are essentially the same.
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Proof. The distribution of the Xis has a density, so the cdf is continuous (it has no jump) and the
true (unknown) quantile mp satisfies P(Xi < mp) = p. Let Zi = 1 if Xi < mp, 0 otherwise and
N =

∑n
i=1 Zi, i.e. N is the number of times that Xi is below mp. We have the event equalities

{X(j) < mp} = {N ≥ j}
{X(k) ≥ mp} = {N ≤ k − 1}

thus
P
(
X(j) < mp ≤ X(k)

)
= P(j ≤ N ≤ k − 1) = P(N ≤ k − 1) − P(N ≤ j − 1)

Now Zi are iid Bernoulli(p) random variables thus N is Binomial(n, p). Further, Xi has a density and
thus (X(j),X(k)) as well (Chapter 12) and P

(
X(j) < mp ≤ X(k)

)
= P

(
X(j) < mp < X(k)

)
. For

large n, we approximate the binomial cdf by Nμ,σ2 with μ = np and σ2 = np(1 − p).

The values in Section 14.2 are chosen such that j and k are as symmetric as possible around n+1
2 .

�

For n = 10, the theorem and the table in Section 14.2 say that a 95%-confidence interval for the
median is

[
X(2), X(9)

]
. The table also says that in fact this confidence interval is at the level 0.979.

Due to the discrete nature of the solution, it is not possible here to obtain exactly a confidence level
of 95%. Also recall that the estimated median is

X(5)+X(6)

2
.

For n = 31 the table gives the interval
[
X(10), X(22)

]
. Note that this is not the only interval that

can be obtained from the theorem. Indeed, we have:

j k P
(
X(j) < m0.5 < X(k)

)
9 21 0.959
10 22 0.971
11 23 0.959

Thus we have several possible confidence intervals. The table simply picked one for which the
indices are closest to being symmetrical around the estimated median, i.e. the indices j and k are
equally spaced around n+1

2
, which is used for estimating the median. In some cases, like n = 32,

we do not find such an interval exactly; we have for instance:

j k P
(
X(j) < m0.5 < X(k)

)
10 22 0.965
11 23 0.965

Here, the table arbitrarily picked the former.

Note that for small values of n, no confidence interval is possible at levels 0.95% or 0.99%. This is
because the probability that the true quantile is outside any of the observed data is still large. For
larger values of n, the confidence interval becomes much smaller.

EXAMPLE 2.3: Figure 2.1 shows the confidence intervals for the medians computed
with this method.
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2.3 CONFIDENCE INTERVAL FOR THE MEAN AND STANDARD

DEVIATION

Estimating the mean with confidence interval is more complicated than for the median. Like before
we assume that the collected data is iid. Here the normal distribution plays a special role, due to
the central limit theorem which says that an average of many things that are not heavy tailed tends
to be normally distributed (see Chapter 12 for the central limit theorem and Chapter 8 for the
definition of heavy tail). Specifically, there are two special cases of interest:

• Normal, IID: the common distribution is normal. Simple formulae are available (Sec-
tion 2.3.1 but we need to verify normality (Section 2.4).

• Large Sample, IID: if the data is not normal but the sample size is large (n ≥ 30 or more,
depending on how much the distribution deviates from a normal one) then a normal asymp-
totic with simple formulas can be used (Section 2.3.2). Verification can be done as explained
in Section 2.4.

• General IID: else the bootstrap estimate can be used. However, it tends to understimate the
confidence intervals.

2.3.1 NORMAL IID CASE

We assume the common cdf of all Xis is normal Nμ,σ2 , where the parameters μ and σ2 are fixed
but unknown. The problem becomes now to estimate the mean μ and the standard deviation σ2.
The solution is provided by the following theorem.

THEOREM 2.3.1. Let X1, ..., Xn be a sequence of iid random variables with common distribution
Nμ,σ2 . Define

μ̂n =
1

n

n∑
i=1

Xi (2.4)

σ̂2
n =

1

n− 1

n∑
i=1

(Xi − μ̂n)2 (2.5)

Then

• The distribution of
√
n μ̂n−μ

σ̂n
is Student’s tn−1; a confidence interval for the mean at level

1 − α is

μ̂n ± η
σ̂n√
n

(2.6)

where η is the
(
1 − α

2

)
quantile of the student distribution tn−1.

• The distribution of (n− 1) σ̂2
n

σ2 is χ2
n−1. A confidence interval at level 1 − α for the standard

deviation is

[σ̂n

√
ζ

n− 1
, σ̂n

√
ξ

n− 1
] (2.7)

where ζ and ξ are quantiles of χ2
n−1: χ2

n−1(ζ) = α
2

and χ2
n−1(ξ) = 1 − α

2
.
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The distributions: χ2 and Student’s t are defined in Chapter 12. For instance, with n = 100
and confidence level 0.95, we find from the tables in Section 14.1: η = 1.98, ζ = 73.4, and
ξ = 128.4. This gives the confidence intervals for mean and standard deviation (we drop the
index n): [μ̂− 0.198σ̂, μ̂+ 0.198σ̂] and [0.86σ̂, 1.14σ̂]. Note that the amplitudes of the confidence
intervals decrease roughly like 1√

n
.

Proof. 1. The random variable μ̂n is normal N
μ, σ2

n

. The random variable σ̂2
n has expectation σ2 and a

distribution equal to σ2χ2
n−1. This follows from Section 12.5.

2. The second bullet follows immediately.

3. Further, the general theory in Section 12.5 shows that σ̂2
n is independent of μ̂n. This, together with

the definition of the student t, shows the first bullet.

�

Comment 1. μ̂n and σ̂n are estimators of the mean and standard deviation. The choice of μ̂n

(which is the sample mean) appears to be fairly natural for estimating the distribution mean. In
contrast, a natural estimator for the variance would be the mean square error s2

n = 1
n

∑n
i=1 (Xi − μ̂n)2,

which differs from the definition in Equation (2.5) by the factor 1
n

instead of 1
n−1

; this is required
for the statements in the theorem to hold exactly (see in the proof). We discuss a general theory
of estimators in Section 2.8. In practice, it is not required to have an extreme accuracy for the
estimator of σ2 (since it is a second order parameter); thus using 1

n−1
or 1

n
makes little difference.

sn is often called the sample standard deviation.

Comment 2. The confidence intervals in the theorem are not the only possible ones. Any interval
of the form [μ̂n − η1

σ̂n√
n
, μ̂n + η2

σ̂n√
n
] where tn−1(−η1) = α1, tn−1(η2) = 1 − α2 and α1 + α2 = α

is also a confidence interval; for example, with n = 100, η1 = 2.37 and η2 = 1.77 correspond to
α1 = 0.01 and α2 = 0.04. In practice, as in the theorem, we take α1 = α2 = α

2
.

Comment 3. The random variables
√
n μ̂n−μ

σ̂n
and (n−1) σ̂2

n

σ2 are constructed from the data, but their
distribution is free of the parameters μ and σ. They are called pivots. The trick to find confidence
intervals is to obtain a pivot.

EXAMPLE 2.4: FILE TRANSFER TIMES. Figure 2.4 shows the file transfer times ob-
tained in 100 independent simulation runs, displayed in natural and log scales. The
last panel shows 95%-confidence intervals for the mean of the data and the mean of
the log of the data, computed with Theorem 2.3.1 (assuming the data is normal) and
with the bootstrap method (explained in Section 2.3.3) for verification. The normal
assumption is valid in log scale, but not in natural scale.

QUESTION 2.3.1. Does the confidence interval for the mean depend on the estimator of the vari-
ance ? Conversely ? 2

2Yes; No
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Figure 2.4: File transfer times for 100 independent simulation runs, with confidence intervals computed
with (1) Theorem 2.3.1 (assuming the data is normal) and with (2) the bootstrap method Section 2.3.3)

2.3.2 GENERAL CASE, n LARGE

When the data sample is large, we can use the following asymptotic result for the mean; there is
no simple result for the variance.

THEOREM 2.3.2. Let X1, ..., Xn be n iid random variables with a common distribution that has a
mean μ and a variance σ2. Define μ̂n and s2

n by

μ̂n =
1

n

n∑
i=1

Xi (2.8)

s2
n =

1

n

n∑
i=1

(Xi − μ̂n)2 (2.9)

The distribution of
√

(n) μ̂n−μ
s2
n

tends to the normal distribution N0,1 when n → +∞. An approxi-
mate confidence interval for the mean at level 1 − α is

μ̂n ± η
sn√
n

(2.10)

where η is the
(
1 − α

2

)
quantile of the normal distribution N0,1.

Proof. By the central limit theorem,
√

(n) μ̂n−μ
σ2 converges in distribution to N0,1. Now

s2
n =

1
n

n∑
i=1

X2
i − μ̂2

n

and by the strong law of large numbers, 1
n

∑n
i=1 X2

i converges almost surely to E(X2
1 ) = σ2 − μ2 and

μ̂2
n to μ2; thus s2

n converges almost surely to σ2. The rest follows from Theorem 12.2.1.

�

For instance, with n = 100 and confidence level 0.95, we find from the table in Section 14.1:
η = 1.96. This gives the confidence intervals for the mean (we drop the index n): [μ̂− 0.196s, μ̂+
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0.196s]. If it happens that Xi has a normal distribution, we can compare this approximate result
to the exact one, given after Theorem 2.3.1: 1.98 is replaced by 1.96 and s by σ̂; the difference is
of the order of 2%, which is negligible since the amplitude of the confidence interval is a second
order quantity. For n as low as 30, the difference is still negligible (ca 7%). In general, there
is “continuity” effect: if the distribution of Xi is not far from normal, the approximation in the
theorem is good for small values of n

Comment 1. The same theorem holds if we replace sn by σ̂2
n, see the discussion after Theo-

rem 2.3.1.

Comment 2. There is no simple result for a confidence interval for the standard deviation. Such
an interval would require an estimate of the fourth moment, which is usually not done.

EXAMPLE 2.5: Figure 2.5 shows confidence intervals for the Example 2.1 on page 15
computed with the asymptotic result in Theorem 2.3.2.

2.3.3 THE BOOTSTRAP METHOD

is a simple, yet efficient method, that can be applied when the data is not normal, all transforma-
tions to make it normal also fail (Section 2.6.1), and we are not sure whether the sample size is
large enough to justify using the asymptotic results in Section 2.3.2.

The bootstrap method is general and can be used for any estimator. Consider a sample �x =
(x1, ..., xn) obtained from n iid realizations of one random variable. We want to find a confidence
interval for some statistic t(�x). For the mean we have t(�x) = 1

n

∑n
i=1 xi. The bootstrap method

uses the sample �x = (x1, ..., xn) as an approximation of the true, unknown distribution. It works
as follows.

Fix some number R (defined later) and create R bootstrap replicates �Xr, r = 1, ..., R. Each
bootstrap replicate �Xr = (Xr

1 , ..., X
r
n) is a random vector of size n, like the original data. All Xr

i

are independent copies of the same random variable, obtained by drawing from the set {x1, ..., xn}
(with replacement). Thus, in the case where all xk are distinct, for any fixed r, i, k, we have
P(Xr

i = xk) = 1
n

.

Now for each r, compute T r = t(�xr). It is the value of the statistic obtained at the rth “replayed”
experiment. The percentile bootstrap estimate at level 1 − α is an approximate confidence
interval for the statistic t (for example the mean), defined as(

T((R+1) α
2 )
, T((R+1)(1−α

2
))

)
(2.11)

where (T(r))r=1,...,R is the order statistic of (T r)r=1,...,R.

The value of R needs to be chosen such that there are sufficiently many points outside the interval.
A good value is R = 50

α
− 1. For example, with α = 0.05, take R = 999 and the confidence

interval is
(
T(25), T(975)

)
.

In essence, we have used the sample data to obtain an empirical estimate of the distribution of the
statistic t.
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Figure 2.5: Confidence intervals for both compiler options of Example 2.1 on page 15 computed with three
different methods: assuming data would be normal (Theorem 2.3.1) (left); assuming n is large enough for
the asymptotic result in Theorem 2.3.2 to hold (center) and with the bootstrap method (right).

In general, the percentile estimate is an approximation that tends to be slightly too small (see
Figure 2.5 for an example). For a theoretical justification of the bootstrap method, and other
applications, see [DavisonHinkley97-book].

EXAMPLE 2.6: COMPARISON OF TWO OPTIONS. (Example 2.1 on page 15 continued).
The data sets are not normal, as shown in Section 2.4 but we may think that n is large
and apply Theorem 2.3.2. The confidence intervals of mean execution times for old
and new compiler options obtained by the three methods are shown on Figure 2.5.
Though the normal assumption is not valid, the result obtained with it correct as it
does not differ significantly from the asymptotic result.

2.4 VERIFYING ASSUMPTIONS

The methods in the previous section make some assumptions that need to be verified, as we explain
now. In this chapter we stay with simple methods, based on visual inspection of qq-plots (defined
in the next section). More formal, automated methods use tests, as described in Section 9.7.1 on
Page 217.



26 CHAPTER 2. CONFIDENCE INTERVALS

2.4.1 QQPLOTS

A probability plot, also called qq-plot, compares two samples Xi, Yi, i = 1, ..., n in order to
determine whether they come from the same distribution. Call X(i) the order statistic, obtained
by sorting Xi in increasing order. Thus X(1) ≤ X(2) ≤ .... The qq-plot displays the points
(X(i), Y(i)). If the points are approximately along a straight line, then the distributions of Xi and
Yi can be assumed to be the same, modulo a change of scale and location.

Most often, we use qqplots to check the distribution of Yi against a probability distribution F .
To do so, we plot (xi, Y(i), where xi is an estimation of the expected value of E(Y(i)), assuming
the marginal of Yi is F . The exact value of E(Y(i)) is hard to obtain. Assume that F is strictly
increasing; a simple approximation is

xi := F−1

(
i

n+ 1

)

This is justified as follows. Let Ui = F (Yi). The distribution of Ui is uniform on [0, 1]. Further,
U(i) = F (X(i)) for all i. It can be shown [Davisson-02] that

E
(
U(i)

)
=

i

n+ 1
,

which has a simple interpretation if we think that the order statistic of Ui has to be placed evenly
on [0, 1]. Also, as n is large, U(i) converges to its expectation. Thus we can approximate as follows

E(Y(i)) = E(F−1(U(i))) ≈ F−1(E(U(i))) = xi

which is done in the qqplots shown by statistical packages.

2.4.2 VERIFYING THE NORMAL ASSUMPTION

is best done by visual inspection of a normal qq-plot. More formal methods based on tests are
described in Section 9.7.1 on Page 217, but they do not necessarily provide a better diagnostic than
visual inspection (but they can be used in an automated way). See Figure 2.6 for an example.

2.4.3 VERIFYING THE ASYMPTOTIC REGIME

When n is large, we can use the asymptotic result in Theorem 2.8.1: the distribution of the sample
mean is asymptotically normal, even if x1, ..., xn is not. The problem is to know whether n is large
or not. Ideally, we would like to test whether the distribution of t is normal, but we cannot do it
since we have only one value.

The bootstrap method can be used to solve this problem. The method consists in examining the
R bootstrap replicates T r as in Section 2.3.3; if they appear to be normal, it is an indication that
the distribution of t is normal. For example, Figure 8.4 shows that the asymptotic regime is indeed
reached for the data sets in Example 2.1 on page 15.

EXAMPLE 2.7: FILE TRANSFER TIMES. (Continuation of Example 2.4 on page 22).
Figure 2.8 shows the qq-plots of the bootstrap replicates used for estimating the mean
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(b) (new code)
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(c) (normal sample)

Figure 2.6: Normal qqplots of data in Figure 2.1 and of an artificially generated sample from the normal
distribution with the same number of points. For both data sets the small values are smaller (lighter left
tail).They do not appear to come from a normal distribution.
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Figure 2.7: Bootstrap replicates of the estimators of the mean for both compiler options of (Example 2.1 on
page 15 (qqplots). They appear to be normally distributed, thus the normal asymptotic regime is reached
and the use of Theorem 2.3.2 to compute confidence intervals for the mean is valid.
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Figure 2.8: QQplots of bootstrap replicates of the estimator of the mean for the file transfer data in Fig-
ure 2.4. The bootstrap replicates of the data are not normally distributed, but those of the log of the data
are.

of the data and of the log of the data. For the original data, the bootstrap replicates do
not appear to be normal, thus the asymptotic result in Theorem 2.3.2 does not apply.
It is the opposite for the log of the data.

QUESTION 2.4.1. Compare this finding to the confidence intervals found in Figure 2.4. 3

2.4.4 VERIFYING THE IID ASSUMPTION

In many cases, the IID assumption can be verified by screening the method by which the data is
produced, as discussed in Section 2.2.2. If there is some doubt, the following methods can be used:

1. (Visual Inspection of ACF Plot): If the data appears to be stationary (no trend, no seasonal
component), then we can plot the sample autocorrelation coefficients, which are an estimate
of the true autocorrelation coefficients ρk (defined in Equation (2.25). If the data is iid,
then ρk = 0 for k ≥ 1, and the sample autocorrelation coefficients fall within the values
±1.96/

√
n (where n is the sample size) with 95% probability. An autocorrelation plot dis-

plays these bounds as well. A visual inspection can determine if this assumption is valid.
For example, on Figure 2.17 we see that there some autocorrelation in the first six diagrams
but not in the last two.

2. (Visual Inspection of Lag-Plot): We can also plot the value of the data at time t versus at
time t + h, for different values of h (lag plots). If the data is iid, the lag plots do not show
any trend. On Figure 2.15 we see that there is a negative trend at lag 1.

3. (Turning Point Test): A test provides an automated answer, but is sometimes less sure than a
visual inspection. A test usually has a null hypothesis and returns a so called “p-value” (see
Chapter 7 for an explanation). If the p-value is smaller than α = 1 − γ, then the test rejects

3The figure shows the confidence intervals with the normal assumption and the bootstrap percentile estimates.
With n = 100, the normal assumption (Theorem 2.3.1) and the asymptotic regime (Theorem 2.3.2) give practically
the same result. Thus we expect the confidence intervals obtained with either the normal assumption or the asymptotic
regime to be wrong for the data, and correct for the log of the data, consistent with Figure 2.4.
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the null hypothesis at the confidence level γ. The turning point test, defined in Section 9.7.1
on Page 217, computes the number of times that the data goes from increasing to decreasing.
This value should be close to 2/3 if the data is iid. See Section 2.9.3 for an example.

2.5 PREDICTION INTERVAL

The confidence intervals studied before quantify the accuracy of a mean or median; this is useful
for diagnostic purposes, for example we can assert from the confidence intervals on Figure 2.3 that
the new option does reduce the run time, because the confidence intervals for the mean (or the
median) are in the positive numbers.

Sometimes we are interested in a different viewpoint and would like to characterize the variability
of the data: for example we would like to summarize what can be expected for an arbitrary future
(non observed) transaction. Clearly, this run time is random. A prediction interval at level γ
is an interval that we can compute by observing a realization of X1, ..., Xn and such that, with
probability γ, a future transaction will have a run time in this interval. Intuitively, if the common
cdf of allXis would be known, then a prediction interval would simply be an inter-quantile interval,
for example [mα/2,m1−α/2], with α = 1 − γ. For example, if the distribution is normal with
known parameters, a prediction interval at level 0.95 would be μ± 1.96σ. However, there is some
additional uncertainty, due to the fact that we do not know the distribution, or its parameters a
priori, and we need to estimate it. The prediction interval capture both uncertainties. Formally, the
definition is as follows.

DEFINITION 2.5.1. LetX1, ..., Xn, Xn+1 be a sequence of random variables. A prediction interval
at level γ is an interval of the form [u(X1, ..., Xn), v(X1, ..., Xn)] such that

P (u(X1, ..., Xn) ≤ Xn+1 ≤ v(X1, ..., Xn)) ≥ γ (2.12)

Note that the definition does not assume that Xi is iid, however we focus in this chapter on the
iid case (but see Section 2.9 for a discussion of the more general case). The trick is now to find
functions u and v that are pivots, i.e. their distribution is known even if the common distribution
of the Xis is not (or is not entirely known).

There is one general result, which applies in practice to sample sizes that are not too small (n ≥
39), which we give next.

2.5.1 PREDICTION FOR AN IID SAMPLE BASED ON ORDER STATISTIC

THEOREM 2.5.1 (General Case). Let X1, ..., Xn, Xn+1 be an iid sequence and assume that the
common distribution has a density. Let Xn

(1), ..., X
n
(n) be the order statistic of X1, ..., Xn. For

1 ≤ j ≤ k ≤ n:

P
(
Xn

(j) ≤ Xn+1 ≤ Xn
(k)

)
=
k − j

n+ 1
(2.13)

thus for α ≥ 2
n+1

, [Xn
(�(n+1) α

2
�), X

n
(�(n+1)(1−α

2 )�)
] is a prediction interval at level at least γ = 1−α.

For example, with n = 999, a prediction interval at level 0.95 (α = 0.05) is [X(25), X(975)]. This
theorem is similar to the bootstrap result in Section 2.3.3, but is exact and much simpler.
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Proof. transform Xi into Ui = F (Xi) which is iid uniform. For uniform RVs, use the fact that
E(U(j)) = j

n+1 (Chapter 12). Then

P

(
Un

(j) ≤ Un+1 ≤ Un
(k)|Un

(1) = u(1), ..., U
n
(n) = u(n)

)
= P

(
u(j) ≤ Un+1 ≤ u(k)

)
= u(k) − u(j)

The former is since Un+1 is independent of (U1, ..., Un) and the latter since Un+1 has a uniform distri-
bution on [0, 1]. Thus

P

(
Un

(j) ≤ Un+1 ≤ Un
(k)

)
= E

(
Un

(k) − Un
(j)

)
=

k − j

n + 1

�

QUESTION 2.5.1. We have obtained n simulation results and use the prediction interval [m,M ]
wherem is the smallest result andM the largest. For which values of n is this a prediction interval
at level at least 95% ? 4

For very small n, this result gives poor prediction intervals with values of γ that maybe far from
100%. For example, with n = 10, the best prediction we can do is [xmin, xmax], at level γ = 81%.
If we can assume that the data is normal, we have a stronger result, shown next.

2.5.2 PREDICTION FOR AN IID SAMPLE, NORMAL CASE

THEOREM 2.5.2 (Normal iid Case). Let X1, ..., Xn, Xn+1 be an iid sequence with common distri-
butionNμ,σ2 . Let μ̂n and σ̂2

n be as in Theorem 2.3.1. The distribution of
√

n
n+1

Xn+1−μ̂n

σ̂n
is Student’s

tn−1; a prediction interval at level 1 − α is

μ̂n ± η

√
1 +

1

n
σ̂n (2.14)

where η is the
(
1 − α

2

)
quantile of the student distribution tn−1.

For large n, an approximate prediction interval is

μ̂n ± η′σ̂n (2.15)

where η′ is the
(
1 − α

2

)
quantile of the normal distribution N0,1.

For example, for n = 100 and α = 0.05 we obtain the prediction interval (we drop the index n):
[μ̂− 1.99σ̂, μ̂ + 1.99σ̂]. Compare to the confidence interval for the mean given by Theorem 2.3.1
where the width of the interval is ≈ 10 =

√
n times smaller. For a large n, the prediction interval is

approximately equal to μ̂n ± ησ̂n, which is the interval we would have if we ignore the uncertainty
due to the fact that the parameters μ and σ are estimated from the data. For n as small as 26, the
difference between the two is 7% and can be neglected in most cases.

4The interval is [X(1),X(n)] thus the level is n−1
n+1 . It is ≥ 0.95 for n ≥ 39. We need at least 39 samples to provide

a 95% prediction interval.
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Proof. First note that Xn+1 is independent of μ̂n, σ̂n. Thus Xn+1 − μ̂n is normal with mean 0 and
variance

var(Xn+1) + var(μ̂n) = σ2 +
1
n

σ2

Further, σ̂n/σ2 has a χ2
n−1 distribution and is independent of Xn+1 − μ̂n. By definition of Student’s t,

the theorem follows.

�

The normal case is also convenient in that it requires the knowledge of only two statistics, the mean
μ̂n and the mean of squares (from which σ̂n is derived).

Comment There is no “large n” result, like there is in Theorem 2.3.2: a prediction interval depends
on the original distribution of the Xis, unlike confidence intervals for the mean that depend only
on first and second moments due to the central limit theorem.

2.6 RESCALING

2.6.1 BOX-COX TRANSFORMATION

If we want to use Theorem 2.5.2, we need to make sure that the normal assumption holds (using for
example a normal qqplot). If it does not, an alternative is to rescale the data, using a tranformation.
In our context, a commonly used method is the Box-Cox transformation which often gives good
results. It has one shape parameter s and is given by

bs(x) =

{
xs−1

s
, s �= 0

lnx , s = 0
(2.16)

Commonly used parameters are s = 0 (log tranformation), s = −1 (inverse), s = 0.5 and s = 2.

EXAMPLE 2.8: FILE TRANSFER TIMES. (Continuation of Example 2.4 on page 22).
Figure 2.9 shows the qq-plots of the file transfer times and their logs. It shows that the
data is not normal but the log of the data is. The last panel shows 95%-prediction in-
tervals. The left interval is obtained with the method of quantiles (Theorem 2.5.1); the
middle one by (wrongly) assuming that the distribution is normal and applying Theo-
rem 2.5.1 – it differs largely. The right interval is obtained with a log transformation.
First, a prediction interval [u(Y1, ..., Yn), v(Y1, ...Yn)] is computed for the transformed
data Yi = ln(Xi); the prediction interval is mapped back to the original scale to obtain
the prediction interval [exp(u(ln(X1, ..., ln(Xn))), exp(v(ln(X1, ..., ln(Xn)))]. We leave
it to the alert reader to verify that this reverse mapping is indeed valid. The left and
right intervals are in good agreement, but the middle one is obviously wrong.

The prediction intervals also show the central values (with small circles). For the first

one, it is the median. For the second one, the mean. For the last one, exp
(�n

i=1 Yi

n

)
,

i.e. the back transformed of the mean of the transformed data.

QUESTION 2.6.1. The prediction intervals are not all symmetric around the central values.
Explain why. 5
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(b) (QQ-plot of log of data)
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Figure 2.9: File transfer times for 100 independent simulation runs, with prediction intervals computed with
the three methods discussed in Example 2.10 on page 34: (1) based on order statistics (2) based on mean
and standard deviation (3) based on mean and standard deviation after re-scaling.

This example shows that it is is important to verify the normality assumption before applying
formulae based on mean and standard deviation. If a Box Cox transformation is used, the optimal
value of the exponent s can be done by visual inspection of qq-plots, or using the formal method
described in Section 2.8.

2.6.2 HARMONIC, GEOMETRIC AND OTHER MEANS

The previous section illustrated that it may be more meaningful to rescale the data, for example
with a Box-Cox transformation. Assume we transform a data set x1, ..., xn by an invertible (thus
strictly monotonic) mapping b() into y1, ...yn, i.e. yi = b(xi) and xi = b−1(yi) for i = 1, ..., n.
We called transformed sample mean the quantity b−1( 1

n

∑n
i=1 yi), i.e. the back-transform of the

mean of the transformed data. Similarly, the transformed distribution mean of the distribution of
a random variable X is b−1(E(b(X)). When b() is a Box-Cox transformation with index s = −1, 0
or 2 we obtain the classical following definitions, valid for a positive data set xi, i = 1..., n or a
random variable X:

Transformation Transformed Sample Mean Transformed Distribution Mean
Harmonic b(x) = 1/x 1

1
n

�n
i=1

1
xi

1
E( 1

X
)

Geometric b(x) = ln(x) (
∏n

i=1 xi)
1
n eE(ln X)

Quadratic b(x) = x2
√

1
n

∑n
i=1 x

2
i

√
E(X2)

5First interval: the distribution of the data is obviously not symmetric, so the median has no reason to be in the
middle of the extreme quantiles. Second interval: by nature, it is strictly symmetric. Third interval: it is the exponential
of a symmetric interval; exponential is not an affine transformation, so we should not expect the transformed interval
to be symmetric.
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THEOREM 2.6.1. A confidence interval for a transformed mean is obtained by the inverse trans-
formation of a confidence interval for the mean of the transformed data.

For example, a confidence interval for the geometric mean is the exponential of a confidence inter-
val for the mean of the logarithms of the data.

Proof. Let m′ be the distribution mean of b(X). By definition of a confidence interval, we have
P(u(Y1, ..., Yn) < m′ < v(Y1, ..., Yn)) ≥ γ where the confidence interval is [u, v]. If b() is in-
creasing (like the Box-Cox transformation with s ≥ 0) then so is b−1() and this is equivalent to
P
(
b−1(u(Y1, ..., Yn)) < b−1(m′) < b−1(v(Y1, ..., Yn))

) ≥ γ. Now b−1(m′) is the transformed mean,
which shows the statement in this case. If b() is decreasing (like the Box-Cox transformation with
s < 0) then the result is similar with inversion of u and v.

�

EXAMPLE 2.9: The right panel on Figure 2.4 shows confidence intervals for the
geometric mean of the file transfer data.

We have seen in Example 2.10 on page 34 that a prediction interval for the original data can
be obtained by reverse-transforming a prediction interval for the transformed data. In contrast,
the results above show that this is not true for confidence intervals for the means. By reverse-
transforming a confidence interval for the mean of the transformed data, we obtain a confidence
interval for another type of mean (harmonic, etc.).

2.7 WHICH SUMMARIZATION TO USE ?

In the previous sections we have seen various summarization methods. In this section we discuss
the use of these different methods.

The methods differ in their objectives: confidence interval for central value versus prediction
intervals. The former quantify the accuracy of the estimated central value, the latter reflects how
variable the data is. Both aspects are related (the more variable the data is, the less accurate the
estimated central value is) but they are not the same.

The methods differ in the techniques used, and overlap to a large extend. They fall in two cat-
egories: methods based on the order statistic (Theorems 2.2.1 and 2.5.1) or based on mean and
standard deviation (Theorems 2.3.1, 2.3.2, 2.5.2). The two methods differ in their robustness
versus compactness.

2.7.1 ROBUSTNESS: OUTLIERS

Methods based on the order statistic are more robust to outliers. An outlier is a value that signifi-
cantly differs from the average. The median and the prediction interval based on order statistic are
not affected by a few outliers, contrary to the mean and the prediction interval based on mean and
standard deviation, as illustrated by the following example.
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Figure 2.10: File transfer times for 100 independent simulation runs with outlier removed. Confidence
intervals are without (left) and with (right) outlier, and with method (1) median (2) mean and (3) geometric
mean. Prediction intervals are without (left) and with (right) outlier, computed with the three alternative
methods discussed in Example 2.10 on page 34: (1) order statistics (2) based on mean and standard
deviation (3) based on mean and standard deviation after re-scaling.

EXAMPLE 2.10: FILE TRANSFER WITH ONE OUTLIER. In fact in the data of Exam-
ple 2.10 on page 34 there is one very large value, 5 times larger than the next largest
value. One might be tempted to remove it, on the basis that such a large value might
be due to measurement error. A qqplot of the data without this “outlier” is shown on
Figure 2.10, compare to the corresponding qq-plot with the outlier in Figure 2.9 (b).
The prediction intervals based on order statistics are not affected, but the one based
on mean and standard deviation is completely different.

The outlier is less of an outlier on the re-scaled data (with the log transformation). The
qqplot of the rescaled data is not affected very much, neither is the prediction interval
based on mean and standard deviation of the rescaled data. Similarly, the confidence
intervals for median and geometric mean are not affected, whereas that for the mean
is.



2.8. � PARAMETRIC ESTIMATION THEORY 35

In this example, we should not remove the outlier. In Section 8 we will see that such large values
are normal and common in some cases. However, care should be taken to screen the data collec-
tion procedure for true outliers, namely values that are wrong because of measurement errors or
problems.

The example illustrates the following facts:

• Outliers may affect the prediction and confidence intervals based on mean and standard
deviation.

• This may go away if the data is properly rescaled. An outlier in some scale may not be an
outlier in some other scale.

• In contrast, confidence intervals for the median and prediction intervals based on order sta-
tistics are more robust to outliers. They are not affected by re-scaling.

2.7.2 COMPACTNESS

Assume we wish to obtain both a central value with confidence interval and a prediction interval for
a given data set. If we use methods based on order statistics, we will obtain a confidence interval
for the median, and, say, a prediction interval at level 95%. Variability and accuracy are given by
different sample quantiles, and cannot be deduced from one another. Furthermore, if we later are
interested in 99% prediction intervals rather than 95%, we need to recompute new estimates of the
quantiles.

In contrast, if we use methods based on mean and standard deviation, we obtain both confidence
intervals and prediction intervals at any level with just 2 parameters (the sample mean and the
sample standard deviation). In particular, the sample standard deviation gives indication on both
accuracy of the estimator and variability of the data. However, as we saw earlier, these estimators
are meaningful only in a scale where the data is roughly normal.

Also, mean and standard deviation are less complex to compute than estimators based on order sta-
tistics, which require sorting the data. In particular, mean and standard deviation can be computed
incrementally online, by keeping only 2 counters (sum of values and sum of squares). This reason
is less valid today than some years ago, since there are sorting algorithms with complexity n ln(n)
but it may still be valid in some cases.

2.8 � PARAMETRIC ESTIMATION THEORY

The confidence intervals seen in the previous section are special cases of parametric estimation
theory, which we shortly describe in this section. It can be skipped at first reading. The results
of this section are used to compute confidence intervals in some cases where the simple methods
described earlier do not apply.

2.8.1 THE PARAMETRIC ESTIMATION FRAMEWORK.

Consider a data set xi, i = 1..., n, that we view as the realization of a stochastic system (in
other words, the output of a simulator). The framework of parametric estimation theory consists
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in assuming that θ is fixed, but unknown. We usually assume that the model has a density of
probability, and that the density of probability that the output is x1, ..., xn depends on the parameter
θ; we denote it with f(x1, ..., xn|θ). It is also called the likelihood of the observed data. An
estimator of θ is any function T () of the observed data. A good estimator is one such that, in
average, T (X1, ..., Xn) is “close” to the true value θ.

EXAMPLE 2.11: IID NORMAL DATA. Assume we can believe that our data is iid and
normal with mean μ and variance σ2.

QUESTION 2.8.1. What is the likelihood ? 6

Here θ = (μ, σ) and an estimator of θ is θ̂ = (μ̂n, σ̂n) given by Theorem 2.3.1. Another,
slightly different estimator is θ̂1 = (μ̂n, sn) given by Theorem 2.3.2.

An estimator provides a random result: for every realization of the data set, a different estimation
is produced. The “goodness” of an estimator is captured by the following definitions. Here X is
the random data set, T (X) is the estimator and Eθ means the expectation when the unknown but
fixed parameter value is θ.

• Unbiased estimator: Eθ (T (X)) = θ. For example, the estimator σ̂2
n of variance of a

normal iid sample given by Theorem 2.3.1 is unbiased.
• Consistent family of estimators: Pθ(|T (X) − θ|) > ε) → 0 when the sample size n goes

to ∞. For example, the estimator (μ̂n, σ̂
2
n) of Theorem 2.3.1 is consistent. This follows from

the weak law of large numbers.

2.8.2 MAXIMUM LIKELIHOOD ESTIMATOR (MLE)

A commonly used method for deriving estimators is that of Maximum Likelihood. The maximum
likelihood estimator is the value of θ that maximizes the likelihood f(x1, ..., xn|θ). This definition
makes sense if the maximum exists and is unique, which is often true in practice. A formal set of
conditions is the regularity condition in Definition 2.8.1.

EXAMPLE 2.12: MLE FOR IID NORMAL DATA. Consider a sample (x1, ..., xn) obtained
from a normal iid random vector (X1, ..., Xn). The likelihood is

1(√
2πσ
)n exp

(
−1

2

n∑
i=1

(xi − μ)2

σ2

)
(2.17)

We want to maximize (2.17), where x1, ..., xn are given and μ, v = σ2 are the variables.
For a given σ, the maximum is reached when μ = μ̂n = 1

n

∑n
i=1 xi. Let μ have this

6 1

(
√

2πσ)n exp
(
− 1

2

∑n
i=1

(xi−μ)2

σ2

)
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value and find the value of σ that maximizes the resulting expression, or to simplify,
the log of it. We thus have to maximize

−n ln(σ) − 1
2σ2

Sx,x + ct (2.18)

where ct is a constant with respect to σ and Sx,x :=
∑n

i=1(x − μ̂n)2. This is a sim-
ple maximization problem in one variable σ, which can be solved by computing the
derivative. We find that there is a maximum for σ2 = Sx,x

n . The maximum likelihood
estimator of (μ, σ2) is thus precisely the estimator in Theorem 2.3.2.

We say that an estimation method invariant by re-parametrization if the following holds. Assume
the method produces some estimator T (X) for θ. Assume we re-parametrize the problem by
considering that the parameter is φ(θ), where φ is some invertible mapping. For example, a normal
iid sample can be parametrized by θ = (μ, σ2) or by φ(θ) = (μ, σ).

QUESTION 2.8.2. What is the mapping φ in this case ? 7

The method is said invariant by re-parametrization if the estimator of φ(θ) is φ(T (X)). This
means that the method always gives the same estimator, no matter how we decide to parametrize
the model.

The maximum likelihood method is invariant by re-parametrization. This is because the property
of being a amximum is invariant by re-parametrization. It is an important property in our context,
since the model is usually not given a priori, but has to be invented by the performance analyst.

A method that provides an unbiased estimator cannot be invariant by re-parametrization, in general.
For example, (μ̂n, σ̂

2
n) of Theorem 2.3.1 is an unbiased estimator of (μ, σ2), but (μ̂n, σ̂n) is a biased

estimator of (μ, σ) (because usually E(S)2 �= E(S2) except if S is non-random). Thus, the property
of being unbiased is incompatible with invariance by re-parametrization, and may thus be seen as
an inadequate requirement for an estimator.

In Section 2.8.4, we give a result that shows that MLE for an iid sample with finite variance
is asymptotically unbiased, i.e. the bias tends to 0 as the sample size increases. Further, it is
consistent. Before that, we need to talk about efficiency.

2.8.3 EFFICIENCY AND FISHER INFORMATION

The efficiency of an estı̂mator T (X) of the parameter θ is defined as the expected square error
Eθ(‖T (X) − θ‖2) (here we assume that θ takes values in some space Θ where the norm is defined).
The efficiency that can be reached by an estimator is captured by the concept of Fisher information,
that we define now.

Assume first to simplify that θ ∈ R. The observed information is defined by

J(θ) = −∂
2l(θ)

∂θ2

where l(θ) is the log-likelihood, defined by

l(θ) = ln lik(θ) = ln f(x1, ..., xn|θ)
7φ(x, y) = (x,

√
y) defined for x ∈ R and y ≥ 0.
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The Fisher information, or expected information is defined by

I(θ) = Eθ(J(θ)) = Eθ

(
−∂

2l(θ)

∂θ2

)

For an iid model X1, ..., Xn, l(θ) =
∑

i ln f1(xi|θ) and thus I(θ) = nI1(θ), where I1(θ) is the
Fisher information for a one point sample X1.

In general, the parameter θ is multi-dimensional, i.e., varies in an open subset Θ of R
k. Then J

and I are symmetric matrices defined by

[J(θ)]i,j = − ∂2l(θ)

∂θi∂θj

and

[I(θ)]i,j = −Eθ

(
∂2l(θ)

∂θi∂θj

)

The Cramer-Rao theorem says that the efficiency of any unbiased estimator is lower bounded by
1

I(θ)
. Further, under the conditions in Definition 2.8.1, the MLE for an iid sample is asymptotically

maximally efficient, i.e. E (‖T (X) − θ‖) /I(θ) tends to 1 as the sample size goes to infinity.

The Cramer-Rao lower bound justifies the name of “information”. The variance of the MLE is of
the order of the Fisher information: the higher the information, the more the sample tells us about
the unknown parameter θ. The Fisher information is not the same as entropy, used in information
theory. There are some (complicated) relations – see [CoverThomas91-book] chapter 16.

In the next section we give a more accurate result, that can be used to give approximate confidence
intervals for large sample sizes.

2.8.4 ASYMPTOTIC CONFIDENCE INTERVALS

Here we need to assume some regularity conditions. Assume the sample comes from an iid se-
quence and further, that the following regularity conditions are met.

DEFINITION 2.8.1. Regularity Conditions for Maximum Likelihood Asymptotics, [Davison02-
book]

1. The set Θ of values of θ is compact (closed and bounded) and the true value θ0 is not on the
boundary.

2. (identifiability) for different values of θ, the densities f(x|θ) are different.
3. (regularity of derivatives) There exist a neighborhood B of θ0 and a constant K such that

for θ ∈ B and for all i, j, k, n : 1
n
Eθ(|∂3lX(θ)/∂θi∂θj∂θk|) ≤ K

4. For θ ∈ B the Fisher information has full rank
5. For θ ∈ B the interchanges of integration and derivation in

∫ ∂f(x|θ)
∂θi

dx = ∂
∂θi

∫
f(x|θ)dx

and
∫ ∂2f(x|θ)

∂θi∂θj
dx = ∂

∂θi

∫ ∂f(x|θ)
∂θj

dx are valid

The following theorem is proven in [Davison02-book].
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THEOREM 2.8.1. Under the conditions in Definition 2.8.1, the MLE exists, converges almost surely
to the true value. Further I(θ)

1
2 (θ̂ − θ) converges in distribution towards a standard normal

distribution, as n goes to infinity. It follows that, asymptotically:

1. the distribution of θ̂ − θ can be approximated by N
(
0, I(θ̂)−1

)
or N

(
0, J(θ̂)−1

)
2. the distribution of 2

(
l(θ̂) − l(θ)

)
can be approximated by χ2

k (where k is the dimension of

Θ).

The quantity 2
(
l(θ̂) − l(θ)

)
is called the likelihood ratio statistic.

Note. In the examples seen in this part of the course, the regulariy conditions are always satisfied, as
long as : the true value θ lies within the interior of its domain, the derivatives of l(θ) are smooth (for
example, if the density f(x|θ) has derivatives at all orders) and the matrices J(θ) and I(θ) have full
rank.

If the regularity conditions hold, then we have an equivalent definition of Fisher information:

[I(θ)]i,j := −Eθ

(
∂2l(θ)
∂θi∂θj

)
= Eθ

(
∂l(θ)
∂θi

∂l(θ)
∂θj

)

this follows from differentiating with respect to θ the identity
∫

f(
xθ)d
x = 1.

Item 2 is more approximate than item 1, but does not require to compute the second derivative of the
likelihood.

Theorem 2.8.1 also holds for non-iid cases, as long as the Fisher information goes to infinity with the
sample size.

QUESTION 2.8.3. Theorem 2.8.1 provides two asymptotic pivots. What are they ? 8

EXAMPLE 2.13: FISHER INFORMATION OF NORMAL IID MODEL. Assume (Xi)i=1...n is
iid normal with mean μ and variance σ2. The observed information matrix is computed
from the likelihood function; we obtain:

J =
(

n
σ2

2n
σ3 (μ̂n − μ)

2n
σ3 (μ̂n − μ) −n

σ2 + 3
σ4

(
Sxx + n(μ̂n − μ)2

) )

and the expected information matrix (Fisher’s information) is

I =
(

n
σ2 0
0 2n

σ2

)

The following corollary is used in practice. It follows immediately from the theorem.

COROLLARY 2.8.1 (Asymptotic Confidence Intervals). When n is large, approximate confidence
intervals can be obtained as follows:

1. For the ith coordinate of θ, the interval is: θ̂i ± η

√[
I(θ̂)−1

]
i,i

or θ̂± η

√[
J(θ̂)−1

]
i,i

, where

N0,1(η) = 1+γ
2

(for example, with γ = 0.95, η = 1.96).

8I(θ)
1
2 (θ̂ − θ) and 2

(
l(θ̂) − l(θ)

)
.
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2. If θ is in R: the interval can be defined implicitly as {θ : l(θ̂) − ξ
2
≤ l(θ) ≤ l(θ̂)}, where

χ2
1(ξ) = γ. For example, with γ = 0.95, ξ = 3.84.

EXAMPLE 2.14: ESTIMATE A PROBABILITY (THE OPINION POLL). We have de-
veloped a simulation scheme for wireless networks and simulated it. We run n in-
dependent, identically distributed simulations; each simulation run produces a binary
output (success or failure of synchronization). We want to estimate the probability
of success. The model is an iid sequence Xi, i = 1, ..., n, with P(Xi = 1) = p and
P(Xi = 0) = 1 − p. The parameter is p, and we want to estimate it. This is the
same as estimating a confidence interval for the output of a binary opinion poll. We
will compare the use of the second item of Corollary 2.8.1 to a direct method and to
Theorem 2.3.2.

1. Likelihood Ratio Statistic (Corollary 2.8.1). The likelihood of the sample x1, ..., xn

is pk(1 − p)n−k where k =
∑n

i=1 xi, and the log-likelihood is

l(p) = k ln(p) + (n − k) ln(1 − p)

It is maximum for p̂ = k
n (in other words, the MLE of p is the frequency of success).

If n is large, we can use the second item of Corollary 2.8.1 and plot l(p). A 95%
confidence interval is the set of p defined by l(p) ≥ l(p̂) − 1.92. Figure 2.11 shows
examples for various values of n. The resulting confidence intervals are shown on
Table 2.1.

2. Direct Evaluation. We can compare to a direct evaluation. Let T =
∑n

i=1 Xi. The
distribution of T is binomial. For n ≥ 30 it is well approximated around its mean by the
normal distribution with mean np and variance np(1− p). Thus, a good approximation
for the distribution of

1√
np(1 − p)

(T − np)

is the standard normal distribution N0,1. Thus, with probability γ, we have approxi-
mately ∣∣∣∣∣ T − np√

np(1 − p)

∣∣∣∣∣ ≤ η (2.19)

with N0,1(η) = 1+γ
2 . We are given a sample with T = k. A γ- confidence set is the set

of values of p that satisfies Equation (2.19) where we take T = k.

The function p → k−np√
np(1−p)

is plotted on Figure 2.12. We see that is is a decreasing

function of p. Thus the set defined implicitly by Equation (2.14) is an interval, and can
simply be obtained numerically. The results are in Table 2.1.

3. Normal Approximation (Theorem 2.3.2). The estimator of the mean is μ̂n = T
n

and the estimator of the variance is

Sn =
1
n

n∑
i=1

X2
i − μ̂2

n = μ̂n(1 − μ̂n)

since X2
i = Xi. Thus an approximate confidence interval is given by∣∣∣∣∣ T − np√

nμ̂n(1 − μ̂n)

∣∣∣∣∣ ≤ η
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(c) n = 270, k = 108
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(d) n = 810, k = 324

Figure 2.11: Log-likelihood as a function of the unknown parameter p (probability of success) in an experi-
ment with n trials that produced k successes (Example 2.14 on page 40), and the resulting 95% confidence
intervals for p on the x-axis. The MLE is p̂ = 0.4 for all cases.

n Likelihood Ratio Statistic Direct Normal Approximation

30 0.238 – 0.578 0.246 – 0.577 0.225 – 0.575
90 0.303 – 0.503 0.305 – 0.503 0.299 – 0.501

270 0.343 – 0.459 0.343 – 0.459 0.342 – 0.458
810 0.367 – 0.434 0.367 – 0.434 0.366 – 0.434

Table 2.1: Comparison of 95% confidence intervals for p for Example 2.14 on page 40, for various values
of n and k = 0.4n.
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Figure 2.12: Computation of confidence interval by the Direct method in Example 2.14 on page 40.
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The results are in Table 2.1. Compare with the direct method: the normal approxima-
tion replaces the fixed, but unknown value p by its estimator μ̂n, thus we expect it to
give good values for large n.

Conclusion. We see that all three methods coincide within 1% or less, for sample
sizes as small as n = 30. The first method (likelihood ratio statistic) is simpler and
more systematic, since all it requires is more general, as it applies to cases with more
than one parameter, as we see in Section 2.8.5.

EXAMPLE 2.15: LAZY NORMAL IID. Assume our data comes from an iid normal
model Xi, i = 1, ...n. We compare the exact confidence interval for the mean (from
Theorem 2.3.1) to the approximate ones given by the corollary.

The MLE of (μ, σ) is (μ̂n, sn). The exact confidence interval is

μ̂n ± η′
σ̂n√
n

with σ̂2
n = Sx,x/(n − 1) and tn−1(η′) = 1+γ

2 .

Now we compute the approximate confidence interval obtained from the Fisher infor-
mation. We have

I(μ, σ)−1 =

(
σ2

n 0
0 σ2

2n

)

thus the distribution of (μ − μ̂n, σ − sn) is approximately normal with 0 mean and

covariance matrix

(
σ2

n 0
0 σ2

2n

)
. It follows that μ − μ̂n is approximately N(0, s2

n
n ), and

an approximate confidence interval is

μ̂n ± η
sn√
n

with sn = sx,x/n and N0,1(η) = 1+γ
2 .

Thus the use of Fisher information gives the same asymptotic interval for the mean as
Theorem 2.3.2. This is quite general: the use of Fisher information is the generaliza-
tion of the large sample asymptotic of Theorem 2.3.2.

We can also compare the approximate confidence interval for σ. The exact interval is
given by Theorem 2.3.1: with probability γ we have

ξ2

n − 1
≤ σ̂n

2

σ2
≤ ξ1

n − 1

with χ2
n−1(ξ2) = 1−γ

2 and χ2
n−1(ξ1) = 1+γ

2 . Thus an exact confidence interval for σ is

σ̂n

[√
n − 1

ξ1
,

√
n − 1

ξ2

]
(2.20)

With Fisher information, we have that σ − sn is approximately N
0, σ2

2n

Thus with proba-

bility γ

|σ − sn| ≤ η
σ√
2n
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n 30 60 120
Exact 0.7964 − 1.3443 0.8476 − 1.2197 0.8875 − 1.1454
Fisher 0.7847 − 1.3162 0.8411 − 1.2077 0.8840 − 1.1401

Table 2.2: Confidence Interval for σ for an iid, normal sample of n data points by exact method and
asymptotic result with Fisher information (Corollary 2.8.1). The values are the confidence bounds for the
ratio σ

σ̂n
where σ is the true value and σ̂n the estimated standard deviation as in Theorem 2.3.1.

with N0,1(η) = 1+γ
2 .

Divide by σ and obtain, after some algebra, that with probability γ:

1
1 + η√

2n

≤ σ

sn
≤ 1

1 − η√
2n

Taking into account that sn =
√

n−1
n σ̂n, we obtain the approximate confidence interval

for σ

σ̂n

[√
n − 1

n

1
1 + η√

2n

,

√
n − 1

n

1
1 − η√

2n

,

]
(2.21)

For n = 30, 60, 120 and γ = 0.95, the confidence intervals are as shown in Table 2.2;
the difference is negligible already for n = 30.

QUESTION 2.8.4. Which of the following are random variables: θ̂, θ, l(θ), l(θ̂), J(θ), I(θ), J(θ̂),
I(θ̂) ? 9

2.8.5 CONFIDENCE INTERVAL IN PRESENCE OF NUISANCE PARAMETERS

In many cases, the parameter has the form θ = (μ, ν), and we are interested only in μ (for example,
for a normal model: the mean) while the remaining element ν, that still need to be estimated, is
considered a nuisance (for example: the variance). In such cases, we can use the following theorem
to find confidence intervals.

9In the classical, non Bayesian framework: θ̂, l(θ), l(θ̂), J(θ), J(θ̂), I(θ̂) are RVs. θ and I(θ) are non-random but
unknown.
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THEOREM 2.8.2 ([Davison02-book]). Under the conditions in Definition 2.8.1, assume that Θ =
M × N , where M,N are open subsets of R

p,Rq. Thus the parameter is θ = (μ, ν) with μ ∈ M
and ν ∈ N (p is the “dimension”, or number of degrees of freedom, of μ).
For any μ, let ν̂μ be the solution to

l(μ, ν̂μ) = max
ν

l(μ, ν)

and define the profile log likelihood pl by

pl(μ) := max
ν

l(μ, ν) = l(μ, ν̂μ)

Let (μ̂, ν̂) be the MLE. If (μ, ν) is the true value of the parameter, the distribution of
2 (pl(μ̂) − pl(μ)) tends to χ2

p.
An approximate confidence region for μ at level γ is

{μ ∈M : pl(μ) ≥ pl(μ̂) − 1

2
ξ}

where χ2
p(ξ) = γ.

The theorem essentially says that we can find an approximate confidence interval for the parame-
ter of interest μ by computing the profile log-likelihood for all values of μ around the estimated
value. The estimated value is the one that maximizes the profile log-likelihood. The profile log
likelihood is obtained by fixing the parameter of interest μ to some arbitrary value and compute
the MLE for the other parameters. A confidence interval is obtained implicitly as the set of values
of μ for which the profile log likelihood is close to the maximum. In practice, all of this is done
numerically.

EXAMPLE 2.16: LAZY NORMAL IID REVISITED. Consider the log of the data in
Figure 2.4, which appears to be normal. The model is Yi ∼ iidNμ,σ2 where Yi is the
log of the data. Assume we would like to compute a confidence interval for μ but are
too lazy to apply the exact student statistic in Theorem 2.3.1.

For any μ, we estimate the nuisance parameter σ, by maximizing the log-likelihood:

l(μ, σ) = −1
2

(
n lnσ2 +

1
σ2

∑
i

(Yi − μ)2
)

It comes

σ̂2
μ =

1
n

∑
i

(Yi − μ)2 =
1
n

SY Y + (Ȳ − μ)2

and thus
pl(μ) := l(μ, σ̂μ) = −n

2
(ln σ̂2

μ + 1)

On Figure 2.13 we plot pl(μ). We find μ̂ = 1.510 as the point that maximizes pl(μ).
A 95%-confidence interval is obtained as the set {pl(μ) ≥ pl(μ̂) − 1

23.84}. We obtain
the interval [1.106, 1.915]. Compare to the exact confidence interval obtained with
Theorem 2.3.1, which is equal to [1.103, 1.918]: the difference is negligible.
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QUESTION 2.8.5. Find an analytical expression of the confidence interval obtained with the
profile log likelihood for this example and compare with the exact interval. 10
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Figure 2.13: Profile log-likelihood for parameter μ of the log of the data in Figure 2.4. The confidence
interval for μ is obtained by application of Theorem 2.8.2.

EXAMPLE 2.17: RE-SCALING. Consider the data in Figure 2.4, which does not
appear to be normal in natural scale, and for which we would like to do a Box-Cox
transformation. We would like a confidence interval for the exponent of the transfor-
mation.

The transformed data is Yi = bs(Xi), and the model now assumes that Yi is iid ∼
Nμ,σ2 . We take the unknown parameter to be θ = (μ, σ, s). The distribution of Xi,
under θ is:

fXi(x|θ) = b′s(x)fYi (bs(x)|μ, σ) = xs−1h(bs(x)|μ, σ2)

where h(x|μ, σ2) is the density of the normal distribution with mean μ and variance σ2.

10The profile log likelihood method gives a confidence interval defined by

(μ̂ − μ)2
SY Y

n

≤ e
η
n − 1 ≈ η

n

Let t := μ̂−μ�
SY Y

n(n−1)

be the student statistic. The asymptotic confidence interval can be rewritten as

t2 ≤ (n − 1)(e
η
n − 1) ≈ η(n − 1)

n

An exact confidence interval is
t2 ≤ ξ2

where ξ = tn−1(1 − α/2). For large n, ξ2 ≈ η and n−1
n ≈ 1 so the two intervals are equivalent.
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The log-likelihood is

l(μ, σ, s) = C − n lnσ +
∑

i

(
(s − 1) lnxi − (bs(xi) − μ)2

2σ2

)

where C is some constant (independent of the parameter). For a fixed s it is maxi-
mized by the MLE for a Gaussian sample

μ̂s =
1
n

∑
i

bs(xi)

σ̂2
s =

1
n

∑
i

(bs(xi) − μ̂)2

We can use a numerical estimation to find the value of s that maximizes l(μ̂s, σ̂s, s);
see Figure 2.14 for a plot. The estimated value is ŝ = 0.0041, which gives μ̂ = 1.5236
and σ̂ = 2.0563.

We now give a confidence interval for s, using the asymptotic result in Theorem 2.8.2.
A 95% confidence interval is readily obtained from Figure 2.14, which gives the interval
[−0.0782, 0.0841].

QUESTION 2.8.6. Does the confidence interval justify the log transformation ? 11

Alternatively, by Theorem 2.8.1, we can approximate the distribution of θ̂ − θ by a
centered normal distribution with covariance matrix J(θ̂)−1. After some algebra, we
compute the Fisher information matrix. We compute the second derivative of the log-
likelihood, and estimate the Fisher information by the observed information (i.e. the
value of the second derivative at θ = θ̂). We find:

J =

⎛
⎝ 23.7 0 −77.1

0 47.3 −146.9
77.1 −146.9 1291.1

⎞
⎠

and

J−1 =

⎛
⎝ 0.0605 0.0173 0.0056

0.0173 0.0377 0.0053
0.0056 0.0053 0.0017

⎞
⎠

The last term of the matrix is an estimate of the variance of ŝ−s. The 0.95 confidence
interval obtained from a normal approximation is ŝ± 1.96

√
0.0017 = [−0.0770, 0.0852].

2.9 NON INDEPENDENT SAMPLES

Often there is an a priori reason to believe that a data set was generated in an iid way: this is the
case for independent simulation runs, or for a controlled experiment where all factors have been
randomized. However, this is not always the case, for example for measurements collected during
system operation. If there is suspicion that the data might not be iid, then the confidence intervals
used in this chapter cannot be used. There is no simple rule for what to do in such a context. We
first explain what the problem is by quantifying the bias, then we study two examples.

11Yes, since 0 is in the interval.
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Figure 2.14: Profile log-likelihood for Example 2.17 on page 46, as a function of the Box-Cox exponent s.
The maximum likelihood estimator of s is the value that maximizes the profile log likelihood: a confidence
interval for s is the set of s for which the profile log likelihood is below the horizontal dashed line.

2.9.1 NON-IID BIAS

Assume we would like to estimate the mean μ of a sampleX1, ..., Xn, whose variance σ2 is known.

If the data would be iid, we would use the statistic T =
√
n μ̄n−μ

σ
, the distribution of which is

asymptotically centered normal with variance = 1 (with μ̄n = 1/n
∑n

t=1Xt). A 95%-confidence
interval for the mean μ would be

Iiid = μ̄n ± 1.96σ/
√
n (2.22)

Now assume the sample is not iid; the variance v of T is given by (Section 12.5.1)

v =
1

nσ2

∑
(i,j)∈{1,...,n}2

Ωi,j (2.23)

where Ω is the covariance matrix of the sample, defined by

Ωi,j = E (XiXj) − E (Xi) E (Xj) (2.24)

Note that Ωi,i = σ2. Further, in the iid case, Ωi,j = 0 for i �= j, thus v = 1 as expected. Otherwise,
v is not equal to 1.

Assume further that Ωi,j depends only on the difference |i − j| (for example because the process
Xi is “second order stationary”, see Chapter 9). It is usual to define the correlation ρk by:

ρk =
Ωi,i+k

σ2
(2.25)

The correlation ρk is number between -1 and 1. When it is positive, Xi andXi+k tend to be similar,
when it is negative, Xi+k tends to be small when Xi is large; it is 0 for all k > 0 when the process
is iid.

By the change of variable (i, j) → (i, k), with k = |i− j| in Equation (2.23), we obtain

v = 1 + 2
n−1∑
k=1

(1 − k

n
)ρk (2.26)
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Thus v > 1 if the data is positively correlated (ρk > 0), and vice-versa.

The central limit theorem still holds, provided that
∑

k∈N
|ρk| < +∞, in which case the distribution

of T is asymptotically N(0, v) for large sample size.

A correct confidence interval is thus

I = μ̄n ± 1.96vσ/
√
n (2.27)

Compare this equation to Equation (2.22): the term v is the non iid bias for the confidence interval
of the mean. If the process is positively correlated, the correct confidence interval is larger than
obtained with the incorrect iid assumption, and vice-versa.

2.9.2 � EXAMPLE. JOE’S BALANCE DATA.

Joe’s shop sells online access to visitors who download electronic content. At the end of day t− 1,
Joe’s employee counts the amount of cash ct−1 present in the cash register and puts it into the safe.
In the morning of day t, the cash amount ct−1 is returned to the cash register. The total amount of
service sold (according to bookkeeping data) during day t is st. During the day, some amount of
money rt is sent to the bank. At the end of day t, we should have ct = ct−1 + st − rt. However,
there are always small errors in counting the coins, in bookkeeping and in returning change. Joe
computes the balance Yt = ct− ct−1−st +rt and would like to know whether there is a systematic
source of errors (i.e. Joe’s employee is losing money, maybe because he is not honest, or because
some customers are not paying for what they take).

The data for Yt is shown on Figure 2.15. The sample mean is −13.95, which is negative. However,
we need a confidence interval for μ before risking any conclusion.

CONFIDENCE INTERVAL FOR BALANCE ASSUMING IID MODEL. If we would assume that
the errors Yt are iid, then a confidence interval would be given by Theorem 2.3.2. In fact, the qqplot
indicates that the data looks normal so we can use the student statistic in Theorem 2.3.1: the sample
standard deviation is S = 141.6, so the 95%-confidence interval is −13.95± ηS/

√
n ≈ [−43, 15],

where n is the sample size and η = 1.986. Thus, with the iid model, we cannot conclude that there
is a fraud.

However, we need to verify the iid assumption before giving an interpretation. The data appears
to be stationary (no trend or seasonal behaviour) thus we can use the ACF diagram. Figure 2.15
shows that there is a strong correlation at lag 1. This is confirmed by the lag plot. Thus, we can
conclude that the iid assumption does not hold for this data set.

CONFIDENCE INTERVAL WITH MOVING AVERAGE MODEL. To go further, we need a
valid model. Assume that the coin counting and bookkeeping processes have random, independent
errors:

Ct = ct + εt (2.28)

St − rt = st − rt + ε′t (2.29)

where upper case if for reported (observed) values and lower case for the true (non observed)
values. Also assume that there is an external flow of money μ + εt” every day (a negative μ is a
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Figure 2.15: Daily balance at Joe’s wireless access shop over 93 days. The lag plots show x(t) versus
x(t + h) where x(t) is the time series in (a). The data appears to have some correlation at lag 1 and is thus
clearly not iid.
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Figure 2.16: Profile Log Likelihood for the Moving Average model of Joe’s balance data. The horizontal
line is at a value η/2 = 1.92 below the maximum, with χ2

1(η) = 0.95; it gives an approximate confidence
interval for the mean of the data on the x axis.

loss of money). Assume that all εs are iid and independent of each other. Then we have

Yt := Ct − Ct−1 = ct − ct−1 − st + rt + εt − εt−1 − ε′t

and
ct = ct−1 − st + rt + μ+ εt”

It follows that
Yt = μ+ εt” + εt − εt−1 − ε′t

The auto-covariance of Yt at lag h ≥ 2 is 0 because all εs are independent of each other. Thus the
model is compatible with the lag and auto-correlation plots in Figure ??.

In Chapter 9, we study such processes. It is easy to see that Yt − μ is stationary, gaussian and with
0 mean. Such processes that, in addition, have the property that the autocorrelation is 0 except at
lags 0 and 1 are said to be moving average processes of order 1 (in short, MA(1)). Thus, Yt − μ is
an MA(1) process.

The general method of maximum likelihood estimation in Section 2.8 applies, as we see now.
We are interested in obtaining a confidence interval for μ. We use the MLE asymptotic in Theo-
rem 2.8.2 on Page 45.

Note. In Theorem 2.8.2, we saw that it applies to an iid model, which is not the case here; however, we
can easily map our model to an iid one, as follows. The model can be written as Yt = εt +αεt−1 where
εt is iid N0,σ2 , with the convention that Y1 = ε1. The random vector 
Yn = (Y1, ..., Yn)T is derived
from the random vector 
En = (ε1, ..., εn)T by 
Yn = HE + 
μ where 
μ = (μ, ..., μ)T ) and

Hn =

⎛
⎜⎜⎜⎜⎝

1 0 0 ... 0
α 1 0 ... 0
0 α 1 ... 0

...
0 0 ... α 1

⎞
⎟⎟⎟⎟⎠

Let θ = (μ, σ, α) be the parameter of the model. Note that Hn is invertible and we also have 
En =
H−1

n (
Yn − 
μ). Thus we could imagine that we observe εt instead of Yt. The log-likelihood of this
derived model is the log of the density f�En

(ε|θ). By the formula of change of variable, we have

f�En
(ε|θ) = |det(Hn)| f�Yn

(y|θ)
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Now det(Hn) = 1 thus the log-likelihood of the derived model is the same as for the original model.
Thus we can apply Theorem 2.8.2.

Here, it is plausible that the sample size is large enough. For any fixed μ, we compute the profile
log-likelihood. It is obtained by fitting an MA(1) process to Wt := Yt − μ. Good statistical
packages give not only the MLE fit, but also the log-likelihood of the fitted model, which is exactly
the profile log-likelihood pl(μ). The MLE μ̂ is the value of μ that maximizes pl(μ), and −2(pl(μ̂)−
pl(μ)) is approximately χ2

1. Figure 2.16 shows a plot of pl(μ). It follows that μ̂ = −13.2 and an
approximate 95%-confidence interval is [−14.1,−12.2]. Contrary to the iid model, this suggests
that there is a loss of money, in average 13=C per day.

2.9.3 SUB-SAMPLING

If the data appears not ii, a solution may be to sub-sample, i.e. randomly select a very small fraction
of the measured data, and verify that the iid assumption can be made for the selected data. The
hope is that correlation disappears between data samples that are far apart. We verify that the sub
sampled data is iid by the methods discussed in Section 2.4.4.

Sub-sampling means keeping only a fraction p of the data. A simple way would be to keep every
pn data sample, where n is the total number of points, but this is not recommended as such a
strict periodic sampling may introduce unwanted anomalies (called aliasing). A better method is
to decide independently for each data point, with probability p, whether it is sub-sampled or not.

EXAMPLE 2.18: CPU DATA. Execution times for n = 7632 consecutive requests are
measured and displayed on the upper left panel of Figure 2.17. The data appears
stationary and roughly normal so the auto-correlation function can be used to test
independence. The plot on the lower left panel of the figure shows a strong correla-
tion. The sub-sampled data is obtained as follows. For every index i = 1...n, decide
with probability p = 1/2 whether the point is kept. This gives the second plot on
the figure. Then repeat the process. This gives sub-sampled data with p = 1/2 to
1/27 = 1/128. The figure shows that the data looses correlation when the sampling
probability is p = 1/64. The turning point test for the subsampled data with p = 1/64
has a p-value of 0.52648, thus at confidence level 0.95 we accept the null hypothesis,
namely, the data is iid. The sub-sampled data has 114 points, and the confidence in-
terval obtained from this for the mean of the sub-sampled data is [65.5, 71.7], using the
normal asymptotic formula of Theorem 2.3.1. Compare with the confidence interval
that would be obtained if we would (wrongly) assume the data to be iid : [69.2, 69.9].
The iid assumption grossly underestimates the confidence interval because the data
is positively correlated.

EXAMPLE 2.19: ETHERNET BYTE COUNT. The number of bytes transferred over
an Ethernet local area network is shown on Figure 2.18 Figure 10.3 on Page 251.
There are 360000 data points before sub-sampling. The data has correlation at all
time scales, and sub-sampling cannot remove it: after sampling only one out of 1000
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Figure 2.17: Execution times for n = 7632 requests (top left) and autocorrelation function (bottom left).
and for the data sub-sampled with probability p = 1/2 to 1/27 = 1/128. The data is correlated, but the
sub-sampled data appears to be non-correlated for p ≥ 1/64.

data points in average, there is still correlation. This is an example of long range
dependent data. Estimating the mean of such a data set requires fitting it to a long
range dependent model such as fractional arima (Chapter 10).

In summary, sub-sampling works well if the data has short range dependence.

2.10 OTHER ASPECTS OF CONFIDENCE/PREDICTION INTER-
VALS

2.10.1 INTERSECTION OF CONFIDENCE/PREDICTION INTERVALS

In some cases we have several confidence or prediction intervals for the same quantity of interest.
For example, we can have a prediction interval I based on mean and standard deviation or I ′

based on order statistics. A natural deduction is to consider that the intersection I ∩ I ′ is a better
confidence interval. This is almost true:

THEOREM 2.10.1. If the random intervals I , I ′ are some confidence intervals at level γ = 1 − α,
γ′ = 1 − α′ then the intersection I ∩ I ′ is a confidence interval at level at least 1 − α − α′. The
same holds for prediction intervals.

Proof. We do the proof for a confidence interval for some quantity θ, the proof is the same for a
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Figure 2.18: Ethernet Byte Counts of Figure 10.3 on Page 251, sub-sampled with probabilities 10−1 to
10−3 (top: data plots; bottom: auto-correlation). Sub-sampling does not remove the dependence.

prediction interval. By definition P(θ ∈/I) ≤ α and P(θ ∈/I ′) ≤ α′. Thus

P(θ ∈/I ∩ I ′) = P ((θ ∈/I) or (θ ∈/I ′)) ≤ P (θ ∈/I) + P (θ ∈/I ′)) ≤ α + α′

�

EXAMPLE 2.20: FILE TRANSFER TIMES. (Continuation of Example 2.10 on page 34).
We can compute two prediction intervals at level 0.975, using the order statistic method
and the mean and standard deviation after rescaling (the prediction obtained with-
out rescaling is not valid since the data is not normal). We obtain [0.0394, 336.9] and
[0.0464, 392.7]. We can conclude that a prediction interval at level 0.95 is [0.0464, 336.9],
which is better than the two.

Compare this interval to the prediction intervals at level 95% for each of the two meth-
ods; they are [0.0624, 205.6] and [0.0828, 219.9]. Both are better.

Thus, for example if we combine two confidence intervals at level 97.5% we obtain a confidence
interval at level 95%. As the example shows, this may be less good than an original confidence
interval at level 95%.

QUESTION 2.10.1. We estimate the mean of an iid data set by two different methods and obtain 2
confidence intervals at level 95%: I1 = [2.01, 3.87], I2 = [2.45, 2.47]. Since the second interval is
smaller, we discard the first and keep only the second. Is this a correct 95% confidence interval ?
12

12No, by doing so we keep the interval I = I1 ∩ I2, which is a 90% confidence interval, not a 95% confidence
interval.



2.11. REVIEW 55

2.10.2 THE MEANING OF CONFIDENCE

When we say that an interval I is a confidence interval at level 0.95 for some parameter θ, we
mean the following. If we could repeat the experiment many times, in about 95% of the cases, the
interval I would indeed contain the true value θ.

QUESTION 2.10.2. Assume 1000 students independently perform a simulation of an M/M/1 queue
with load factor ρ = 0.9 and find a 95% confidence interval for the result. The true result, unknown
to these (unsophisticated) students is 9. The students are unsophisticated but conscientious, and all
did correct simulations. How many of the 1000 students do you expect to find a wrong confidence
interval, namely one that does not contain the true value ? 13

2.11 REVIEW

2.11.1 SUMMARY

1. A confidence interval is used to quantify the accuracy of a parameter estimated from the
data.

2. For computing the central value of a data set, you can use either mean or median. Unless
you have special reasons (see below) for not doing so, the median is a preferred choice as it
is more robust. You should compute not only the median but also a confidence interval for
it, using Table 14.1 on Page 338.

3. A prediction interval reflects the variability of the data. For small data sets (n < 38) it is
not meaningful. For larger data sets, it can be obtained by Theorem 2.5.1.

4. A confidence interval for the mean characterizes both the variability of the data and the
accuracy of the measured average. In contrast, a confidence interval for the median does
not reflect well the variability of the data, therefore if we use the median we need both a
confidence interval for the median and some measure of variability (the quantiles, as on a
Box Plot). Mean and standard deviation give an accurate idea of the variability of the data,
but only if the data is roughly normal. If it is not, it should be re-scaled using for example a
Box-Cox transformation. Normality can be verified with a qq-plot.

5. The standard deviation gives an accurate idea of the accuracy of the mean if the data is
normal, but also if the data set is large. The latter can be verified with a bootstrap method.

6. The geometric [resp. harmonic] mean is meaningful if the data is roughly normal in log
[resp. 1/x] scale. A confidence interval for the geometric [resp. harmonic] mean is obtained
as the exponential [resp. inverse] of the mean in log [resp. 1/x] scale.

7. All estimators in this chapter are valid only if the data points are independent (non cor-
related). This assumption must be verified, either by designing the experiments in a ran-
domized way, (as is the case with independent simulation runs), or by formal correlation
analysis as seen in the examples of Section 2.9. If the data set is correlated but very large,
sub-sampling a small number of samples may be a solution.

Assume that we have obtained the outputs x1, ..., xn from n independent replications. We want a
confidence interval for the median and for the mean.

13Approximately 50 students should find a wrong interval.
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CONFIDENCE INTERVAL FOR THE MEDIAN A confidence interval for the median is [x(j), x(k)],
where x(j) is the jth value in ascending order. The values of j and k are taken from Table 14.1 on
Page 338.

COMPUTING CONFIDENCE INTERVAL FOR THE MEAN

1. Test whether x1, ..., xn roughly fits a normal distribution (visual test on qqplot).
2. If yes, apply the student t-statistic to obtain a confidence interval for the mean. The confi-

dence interval is
x̄± η

s√
n

(2.30)

with s =
√

1
n−1

∑n
i=1 (xi − x̄)2 and tn−1(η) = 1+α

2
. Here, tn−1 is the student cdf with n− 1

degrees of freedom and α is the confidence level (a typical value is α = 0.95).
We are frequently in this case because each output xi is often itself an average of many
entities, and tends to be normally distributed.

3. Else (i.e. the sample (x1, ...xn) does not appear to be normal), by the law of large numbers,
x̄ might still be normal, if n is large. The confidence interval is

x̄± η
s√
n

with N0,1(η) = 1+α
2

. If n ≥ 24, the value of η is within 5% of that obtained by Equa-
tion (2.30).
Test whether n is large enough by the bootstrap method (Section 2.3.3). Do a qq-plot of the
R bootstrap estimates T r; if they appear to be normal, n is large enough.

4. Else (i.e. the sample (x1, ...xn) does not appear to be normal and n is not large enough), use
the bootstrap percentile estimate (Section 2.3.3).

2.11.2 REVIEW QUESTIONS

QUESTION 2.11.1. Compare (1) the confidence interval for the median of a sample of n data
values, at level 95% and (2) a prediction interval at level at least 95%, for n = 9, 39, 99. 14

QUESTION 2.11.2. Call L = min{X1, X2} and U = max{X1, X2}. We do an experiment and
find L = 7.4, U = 8.0. Say which of the following statements is correct: (1) the probability of the
event {L ≤ θ ≤ U} is 0.5 (2) the probability of the event {7.4 ≤ θ ≤ 8.0} is 0.5 15

QUESTION 2.11.3. How do we expect a 90% confidence interval to compare to a 95% one ? Check
this on the tables in Section 14.2. 16

14From the tables in Chapter 14 and Theorem 2.5.1 we obtain: (confidence interval for median, prediction interval):
n = 9: [x(2), x(9)], impossible; n = 39: [x(13), x(27)], [x(1), x(39)]; n = 99: [x(39), x(61)], [x(2), x(97)]. The
confidence interval is always smaller than the prediction interval.

15In the classical (non-Bayesian) framework, (1) is correct and (2) is wrong. There is nothing random in the event
{7.4 ≤ θ ≤ 8.0}, since θ is a fixed (though unknown) parameter. The probability of this event is either 0 or 1, here it
happens to be 1. Be careful with the ambiguity of a statement such as “the probability that θ lies between L and U is
0.5”. In case of doubt, come back to a probability space. The probability of an event can be interpreted as the ideal
proportion of simulations that would produce the event.

16It should be smaller. If we take more risk we can accept a smaller interval. We can check that the values of j [resp.
k] in the tables confidence intervals at level γ = 0.95 are larger [resp. smaller] than at confidence level γ = 0.99.
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QUESTION 2.11.4. A data set has 70 points. Give the formulae for confidence intervals at level
0.95 for the median and the mean 17

QUESTION 2.11.5. A data set has 70 points. Give formulae for a prediction intervals at level 95%
18

QUESTION 2.11.6. A data set x1, ...xn is such that yi = lnxi looks normal. We obtain a confidence
interval [�, u] for the mean of yi. Can we obtain a confidence interval for the mean of xi by a
transformation of [�, u] ? 19

QUESTION 2.11.7. Assume a set of measurements is corrupted by an error term that is normal,
but positively correlated. If we would compute a confidence interval for the mean using the IID
hypothesis, would the confidence interval be too small or too large ? 20

2.12 EXERCISES

EXERCISE 2.1. X1, ..., Xn are drawn from a distribution N(μ, σ2) with unknown parameters. We
want to estimate μwith confidence level equal to 0.95. Let X̄ = 1

n

∑
iXi and S = 1

n−1

∑
i

(
Xi − X̄

)2
.

1. Using the t-statistic, what is the confidence interval, as a function of X̄ and S ?
2. Assume we do the following approximation. We estimate σ by S, and do as though it was

the true value. What confidence interval does this give ? Do a numerical comparison for
n = 5, 10, 20, 40, 80, 160.

EXERCISE 2.2. Consider the example in Section ?? on Page ??, item 3. For large n, what is the
value of the confidence interval obtained by application of Theorem 2.8.1 item 2 ?

EXERCISE 2.3. Find confidence intervals for the M/D/1 simulation of H1.

EXERCISE 2.4. Getting Started with the S language: language basics, plots, arrays and functions.

1. Read the tutorial on S by Diego Kuonen, Sections 3, 4, 6 and 8. Additional documentation
for those who would like to go further is

(a) S-PLUS user guide Chapter 9 (Command Line Window)
(b) S-PLUS programmer’s guide Chapter 5,“Writing Functions”, Section “Organizing

Computations”

17Median: from the table in Section 14.2 [x(27), x(44)]. Mean: from Theorem 2.3.2: μ̂ ± 0.2343S where μ̂ is the
sample mean and S the sample standard deviation. The latter is assuming the normal approximation holds, and should
be verified by either a qqplot or the bootstrap.

18From Theorem 2.5.1: [mini xi,maxi xi].
19No, we know that [e�, eu] is a confidence interval for the geometric mean, not the mean of xi. In fact xi comes

from a log-normal distribution, whose mean is eμ+ σ2
2 where μ is the mean of the distribution of yi, and σ2 its variance.

20By an analog reasoning as in Section 2.9: too small. We underestimate the error. This phenomenon is known in
physics under the term personal equation: if the errors are linked to the experimenter, they are positively correlated.
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(c) S-PLUS programmer ’s guide, Chapter 8 “Traditional Graphics”, Section “Frequently
Used Plot Options”

2. Analyze the following program. Write and run it.
# generates one qqplot of a normal sample
# with n elements
oneNormalSample<- function(n,...){

qqnorm(rnorm(n),main=paste("Random Normal ",n," Samples"),...);
abline(1)
}

nbRows <- 3
par(mfrow=c(nbRows,nbRows))
indexArray <- c(0:(nbRowsˆ2-1))
lapply(10*2ˆindexArray,oneNormalSample)

3. Replace the last two lines by a for loop and run your new program.

EXERCISE 2.5. Write a program in Matlab that generates a sample of n iid standard normal
variables, and display the corresponding histogram. Repeat the operation 9 times, for n =
10, 20, 40, 80... and display the results on 3 × 3 panel.

EXERCISE 2.6. Plots and Distributions

1. Plot the densities of the following distributions: Normal(m, s), Student(n), Exponential(m).
2. Write a program which generates a sample of n = 500 RVs having a distribution in one of

the above. Do it for all the distributions given above. Display the corresponding standard
normal QQ-plots.

3. How do you interpret an S-shape in a normal QQ-plot ? A U-shape ?

EXERCISE 2.7. Exploratory Data Analysis.

1. Import the data of Table 1.3 by copying the 2 files indicated in a complementary document.
There is one file for the first period (days 1 and 2) and one for the second period (days 181
and 182)

2. Do a visual display of the data: 4 plots on one page for each of the two data sets, showing
the 5 values per plot.

3. (Factor Analysis and Box-Plot) Fix one factor (A/B, remote/local, period), and one value of
it. Plot a box plot while varying values of other factors (box plot should have 4 values on x
axis). Change the value of the fixed factor and redo the box plot. Repeat the same for other
2 factors.

4. Fix one value of factors A/B and period. Calculate means for remote and local. Do the
same calculation for other values of factors A/B and first/second measurement. Do box plot
with remote/local means on y axis and values of factors A/B and first/second measurement
on x axis. Do you find that distance is an important factor for the system performance?
Do the same plot by taking factor A/B on y axis. Do you find it important for the system
performance?
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5. Do you confirm the conclusions that were drawn in Chapter 2 ?

EXERCISE 2.8. Compute a confidence interval.

1. Import the values of achieved throughput that were used to build Figure 1.1(b) by copying
the file indicated in a complementary document (this constitutes the set of y-value of Fig-
ure 1.1(b), in the order that they were measured, whereas Figure 1.1(b), not necessarily in
the order shown on Figure 1.1(b)).

2. Plot the data.
3. Assume the data is the realization of a sequence of iid normal random variables. Find

a confidence interval for the mean. Verify the validity of your model with visual tests of
residues versus data and qqplot.

USEFUL S-PLUS COMMANDS

• dnorm, dt, dgamma, dexp ...: densities of normal, student, gamma, exponential
distributions

• rnorm, rt ...: random samples of these distributions
• pnorm, pt, ...: cumulative distribution function
• qnorm, qt, ...: quantile function (inverse of cumulative distribution function)
• qqplot: QQplot
• plot.design, plot.factor, interaction.plot exploratory data analysis
• boxplot: Box-Plot (showing mean, quantiles and extreme values)

USEFUL MATLAB COMMANDS

• normpdf, gammapdf, chi2pdf ...: densities of normal, gamma distributions
• randn, chi2rnd, gammarnd: random samples of these distributions
• normcdf, gammacdf, ...: cumulative distribution function
• norminv, chi2inv ...: quantile function (inverse of cumulative distribution func-

tion)
• qqplot: QQ-plot
• boxplot: Box-Plot (showing mean, quantiles and extreme values).
• normfit: confidence interval using t-statistic
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3.1 WHAT IS A SIMULATION ?

A simulation is an experiment in the computer (biologists say “in silico”) where the real environ-
ment is replaced by the execution of a program.

61
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EXAMPLE 3.1: MOBILE SENSORS. You want to build an algorithm A for a system of
n wireless sensors, carried by mobile users, which send information to a central data-
base. A simulation of the algorithm consists in implementing the essential features
of the program in computer, with one instance of A per simulated sensor. The main
difference between a simulation and a real implementation is that the real, physical
world (here: the radio channel, the measurements done by sensors) is replaced by
events in the execution of a program.

3.1.1 SIMULATED TIME AND REAL TIME

In a simulation the flow of time is controlled by the computer. A first task of your simulation
program is to simulate parallelism: several parallel actions can take place in the real system; in
your program, you serialize them. Serializing is done by maintaining a simulated time, which
is the time at which an event in the real system is supposed to take place. Every action is then
decomposed into instantaneous events (for example, the beginning of a transmission), and we
assume that it is impossible that two instantaneous events take place exactly at the same time.

Assume for example that every sensor in Example 3.1 on page 62 should send a message whenever
there is a sudden change in its reading, and at most every 10 minutes. It may happen in your
simulation program that two or more sensors decide to send a message simultaneously, say within
a window of 10 μs; your program may take much more than 10 μs of real time to execute these
events. In contrast, if no event happens in the system during 5 minutes, your simulation program
may jump to the next event and take just of few ms to execute 5 mn of simulated time. The real
time depends on the performance of your computer (processor speed, amount of memory) and of
your simulation program.

3.1.2 SIMULATION TYPES

There are many different types of simulations. We use the following classification.

DETERMINISTIC / STOCHASTIC. A deterministic simulation has no random components. It is
used when we want to verify a system where the environment is entirely known, maybe to verify
the feasibility of a schedule, or to test the feasibility of an implementation.

In most cases however, this is not sufficient. The environment of the system is better modelled
with a random component, which makes the output of the simulation also random.

TERMINATING / NON-TERMINATING. A terminating simulation ends when specific condi-
tions occurs. For example, if we would like to evaluate the execution time of one sequence of
operations in a well defined environment, we can run the sequence in the simulator and count the
simulated time. A terminating simulation is typically used when

• we are interested in the lifetime of some system
• or when the inputs are time dependent
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EXAMPLE 3.2: JOE’S COMPUTER SHOP. We are interested in evaluating the time it
takes to serve n customers who request a file together at time 0. We run a simulation
program that terminates at time T1 when all users have their request satisfied. This is
a terminating simulation; its output is the time T1.

ASYMPTOTICALLY STATIONARY / NON-STATIONARY. This applies to a non-terminating,
stochastic simulation only. Stationarity is a property of the stochastic model being simulated.
For an in-depth discussion of stationarity, see Chapter 11.

A stationary simulation is such that you gain no information about its age by analyzing it. For
example, if you run a stationary simulation and take a snapshot of the state of the system at times
10 and 10’000 seconds, there is no way to tell which of the two snapshots is at time 10 or 10’000
seconds.

In practice, a non terminating simulation is rarely exactly stationary, but can be asymptotically
stationary. This means that after some simulated time, the simulation becomes stationary.

More precisely, a simulation program with time independent inputs can always be thought of as
the simulation of a Markov chain. A Markov chain is a generic stochastic process such that, in
order to simulate the future after time t, the only information we need is the state of the system
at time t. This is usually what happens in a simulation program. The theory of Markov chains
(see Chapter 11) says that the simulation will either converge to some stationary behaviour, or will
diverge. If we want to measure the performance of the system under study, it is most likely that we
are interested in its stationary behaviour.

EXAMPLE 3.3: INFORMATION SERVER. An information server is modelled as a queue.
The simulation program starts with an empty queue. Assume the arrival rate of re-
quests is smaller than the server can handle. Due to the fluctuations in the arrival
process, we expect some requests to be held in the queue, from time to time. After
some simulated time, the queue starts to oscillate between busy periods and idle pe-
riods. At the beginning of the simulation, the behaviour is not typical of the stationary
regime, but after a short time it becomes so (Figure 3.1 (a)).

If in contrast the model is unstable, the simulation output may show a non converging
behaviour (Figure 3.1 (b)).

In practice, there are two main reasons for non asymptotic stationarity.

1. unstable models: In a queuing system where the input rate is larger than the service capacity,
the buffer occupancy grows unbounded. The longer the simulation is run, the larger the mean
queue length is. Instead of growing unbounded, an unstable system may sometimes ”freeze”,
like in the unstable random waypoint (Chapter 11).

2. models with seasonal or growth components, or more generally, time dependent inputs; for
example: internet traffic grows month after month and is more intense at some times of the
day. Simulations that incorporate such aspects are terminating simulations, for which the
simulation duration is pre-defined.
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Figure 3.1: Simulation of the information server in Example 3.3 on page 63, with exponential service and
interarrival times. The graphs show the number of requests in the queue as a function of time, for two values
of the utilization factor.

In most cases, when you perform a non-terminating simulation, you should make sure that your
simulation is asymptotically stationary. Otherwise, the output of your simulation depends on the
length of the simulation. It is not always easy, though, to know in advance whether a given simu-
lation model is asymptotically stationary. Chapter 11 gives some examples.

QUESTION 3.1.1. Among the following sequences Xn

1. Xn, n ≥ 1 is iid
2. Xn n ≥ 1 is drawn as follows. X1 is sampled from a given distribution F (). To obtain Xn,
n ≥ 2 we first flip a coin (and obtain 0 with probability 1 − p, 1 with probability p). If the
coin returns 0 we let Xn = Xn−1; else we let Xn = a new sample from the distribution F ().

3. Xn =
∑n

i=1 Zi, n ≥ 1, where Zn, n ≥ 1 is an iid sequence

say which ones are stationary. 1

3.2 SIMULATION TECHNIQUES

There are many ways to implement a simulation program. We mention the two mostly used tech-
niques in our context.

11. yes 2. yes: (X1,X2) has the same joint distribution as, for example (X10,X11). In general
(Xn,Xn+1, ...,Xn+k) has the same distribution for all n. This is an example of non-iid, but stationary sequence.
3. No, in general. For example, if the common distribution F () has a finite variance σ2, the variance of Xn is nσ2,
and grows with n, which is contradictory with stationarity.
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3.2.1 DISCRETE EVENT SIMULATION

Many computer and communication systems are often simulated using discrete event simulation
for example with the ns2 simulator [ns2 home page]. It works as follows. The core of the method
is to use a global time currentTime and an event scheduler. Events are objects that represent
different transitions; all event have an associated firing time. The event scheduler is a list of
events, sorted by increasing firing times. The simulation program picks the first event in the event
scheduler, advances currentTime to the firing time of this event, and executes the event. The
execution of an event may schedule new events with firing times ≥currentTime, and may change
or delete events that were previously listed in the event scheduler. The global simulation time
currentTime cannot be modified by an event. Thus, the simulation time jumps from one event
firing time to the next – hence the name of discrete event simulation. In addition to simulating the
logic of the system being modelled, events have to update the counters used for statistics.

EXAMPLE 3.4: DISCRETE EVENT SIMULATION OF A SIMPLE SERVER. A server
receives requests and serves them one by one in order of arrival. The times between
request arrivals and the service times are independent of each other. The distribution
of the time between arrivals has cdf F () and the service time has cdf G(). The model is
in fact a GI/GI/1 queue, which stands for general independent inter-arrival and service
times. An outline of the program is given below. The program computes the mean
response time and the mean queue length.

CLASSES AND OBJECTS We describe this example using an object oriented terminology,
close to that of the Java programming language. All you need to know about object oriented
programming to understand this example is as follows. An object is a variable and a class is a
type. For example arrival23 is the name of the variable that contains all information about
the 23rd arrival, it is of the class Arrival. Classes can be nested, for example the class
Arrival is a sub-class of Event. A method is a function whose definition depends on the
class of the object. For example, the method execute is defined for all objects of the class
Event, and is inherited by all subclasses such as Arrival. When the method execute is
applied to the object arrival23, the actions that implement the simulation of an arrival are
executed (for example, the counter of the number of requests in the system is incremented).

Global Variables and Classes

• currentTime is the global simulated time; it can be modified only by the main
program.

• eventScheduler is the list of events, in order of increasing time.

• An event is an object of the class Event. It has an attribute firingTime which
is the time at which it is to be executed. An event can be executed (i.e. the
Event class has a method called execute), as described later.

There are three Event subclasses: an event of the class Arrival represents
the actions that occur when a request arrives; Service is when a request enters
service; Departure is when a request leaves the system. The event classes
are described in detail later.
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Figure 3.2: (a) Events and their dependencies for Example 3.4 on page 65. An arrow indicates that an
event may schedule another one. (b) A possible realization of the simulation and (c) the corresponding
sequence of event execution. The arrows indicate that the execution of the event resulted in one or several
new events being inserted into the scheduler.

• The object buffer is the FIFO queue of Requests. The queue length (in num-
ber of requests) is buffer.length. The number of requests served so far is
contained in the global variable nbRequests. The class Request is used to
describe the requests arriving at the server. At a given point in time, there is
one object of the class Request for every request present in the system being
modelled. An object of the class Request has an arrival time attribute.

• Statistics Counters: queueLengthCtr is
∫ t
0 q(s)ds where q(s) is the value of

buffer.length at time s and t is the current time. At the end of the simulation,
the mean queue length is queueLengthCtr/T where T is the simulation finish
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time.

The counter responseTimeCtr holds
∑m

m=1 Rm where Rm is the response
time for the mth request and n is the value of nbRequests at the current time.
At the end of the simulation, the mean response time is responseTimeCtr/N
where N is the value of nbRequests.

Event Classes. For each of the three event classes, we describe now the actions
taken when an event of this class is “executed”.

• Arrival: Execute Event’s Actions. Create a new object of class Request, with
arrival time equal to currentTime. Queue it at the tail of buffer.

Schedule Follow-Up Events. If buffer was empty before the insertion, create
a new event of class Service, with the same firingTime as this event, and
insert it into eventScheduler.

Draw a random number Δ from the distribution F (). Create a new event of class
Arrival, with firingTime equal to this event firingTime+Δ, and insert it
into eventScheduler.

• Service: Schedule Follow-Up Events. Draw a random number Δ from the
distribution G(). Create a new event of class Departure, with firingTime
equal to this event’s firingTime+Δ, and insert it into eventScheduler.

• Departure: Update Event Based Counters. Let c be the request at the head
of buffer. Increment responseTimeCtr by d − a, where d is this event’s
firingTime and a is the arrival time of the request c. Increment nbRequests
by 1.

Execute Event’s Actions. Remove the request c from buffer and delete it.

Schedule Follow-Up Events. If buffer is not empty after the removal, cre-
ate a new event of class Service, with firingTime equal to this event’s
firingTime, and insert it into eventScheduler.

Main Program

• Bootstrapping. Create a new event of class Arrival with firingTime equal
to 0 and insert it into eventScheduler.

• Execute Events. While the simulation stopping condition is not fulfilled, do the
following.

– Increment Time Based Counters. Let e be the first event in
eventScheduler. Increment queueLengthCtr by q(tnew − told) where
q =buffer.length, tnew=e.firingTime and told =currentTime.

– Execute e.

– Set currentTime to e.firingTime

– Delete e

• Termination. Compute the final statistics:
meanQueueLength=queueLengthCtr/currentTime
meanResponseTime=responseTimeCtr/nbRequests

Figure 3.2 illustrates the program.
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QUESTION 3.2.1. Is the mean queue length an event-based or a time-based statistic ? The mean
response time ? 2

QUESTION 3.2.2. Can consecutive events have the same firing time ? 3

QUESTION 3.2.3. What are the generic actions that are executed when an event is executed ? 4

QUESTION 3.2.4. Is the model in Example 3.4 on page 65 stationary ? 5

3.2.2 STOCHASTIC RECURRENCE

This is another simulation method that applies to some classes of models. It is usually much more
efficient than discrete event simulation, but applies only to relatively simple models.

We assume here that the system to be simulated can be put in the form of a stochastic recurrence,
i.e. a recurrence of the form: {

X0 = x0

Xn+1 = f(Xn, Zn)
(3.1)

whereXn is the state of the system at the nth transition (For any realization,Xn is in some possibly
complicated state space X ), x0 is a fixed, given state in X , Zn is some stochastic process that can
be simulated (for example a sequence of iid random variables, or a Markov chain), and f is a
deterministic mapping.

The simulated time Tn at which the nth transition occurs is assumed to be included in the state
variable Xn.

EXAMPLE 3.5: RANDOM WAYPOINT.

The random waypoint is a model for a mobile point, and can be used to simulate the
mobility pattern in Example 3.1 on page 62. It is defined as follows. The state variable
is Xn = (Mn, Tn) where Mn is the position of the mobile at the nth transition (the nth
“waypoint”) and Tn is the time at which this destination is reached. The point Mn is
chosen at random, uniformly in a given convex area A. The speed at which the mobile
travels to the next waypoint is also chosen at random uniformly in [vmin, vmax].

The random waypoint model can be cast as a stochastic recurrence by letting Zn =
(Mn+1, Vn+1), where Mn+1, Vn+1 are independent i.i.d. sequences, such that Mn+1

is uniformly distributed in A and Vn+1 in [vmin, vmax]. We have then the stochastic
recurrence

Xn+1 := (Mn+1, Tn+1) = (Mn+1, Tn +
‖Mn+1 − Mn‖

Vn
)

See Figure 3.3 for an illustration.

2Mean queue length: time based. Mean response time: event based.
3Yes. In Example 3.4 on page 65, a Departure event when the queue is not empty is followed by a Service

event with the same firing time.
41. Update Event Based Counters 2. Execute Event’s Actions 3. Schedule Follow-Up Events.
5It depends on the parameters. Let a [resp. b] be the mean of F () [resp. G()]. The utilization factor of the queue

is ρ = b
a . If ρ < 1 the system is stable and thus asymptotically stationary, else not (see Chapter 6).
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Figure 3.3: Simulation of the random waypoint model.

Once a system is cast as a stochastic recurrence, it can be simply simulated as a direct implemen-
tation of Equation (3.1), for example in Matlab.
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QUESTION 3.2.5. Is the random waypoint model asymptotically stationary ? 6

STOCHASTIC RECURRENCE VERSUS DISCRETE EVENT SIMULATION It is always possi-
ble to express a stochastic simulation as a stochastic recurrence, but both representations may
have very different memory and CPU requirements. Which representation is best depends on the
problem at hand.

EXAMPLE 3.6: SIMPLE SERVER AS A STOCHASTIC RECURRENCE. (Continuation of
Example 3.4 on page 65). Consider implementing the simple server in Example 3.4
on page 65 as a stochastic recurrence. To simplify, assume we are interested only in
the mean queue length and not the mean response time. This can be implemented
as a stochastic recurrence as follows.

Let Xn represent the state of the simulator just after an arrival or a departure, as
follows:

Xn = (tn, bn, qn, an, dn)

with tn = the simulated time at which this transition occurs, bn =buffer.length,
qn = queueLengthCtr (both just after the transition), an = the time interval from this
transition to the next arrival and dn= the time interval from this transition to the next
departure.

Let Zn be a couple of two random numbers, drawn independently of anything else,
with distribution uniform in (0, 1).

The initial state is

t0 = 0, b0 = 0, q0 = 0, a0 = F−1(u), d0 = ∞

where u is a sample of the uniform distribution on (0, 1). The reason for the formula
a0 = F−1(u) is explained in Section 3.6: a0 is a sample of the distribution with cdf F ().

The recurrence is defined by f((t, b, q, a, d), (z1, z2)) = (t′, b′, q′, a′, d′) with

if a < d // this transition is an arrival

Δ = a

t′ = t + a

b′ = b + 1
q′ = q + bΔ
a′ = F−1(z1)
if b == 0 then d′ = G−1(z2) else d′ = d − Δ

else // this transition is a departure

Δ = d

t′ = t + d

b′ = b − 1

6For vmin > 0 it is asymptotically stationary. For vmin = 0 it is not: the model “freezes” (the number of waypoints
per time unit tends to 0). See Chapter 11 for a justification).
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q′ = q + bΔ
a′ = a − Δ
if b′ > 0 then d′ = G−1(z1) else d′ = ∞

3.3 COMPUTING THE ACCURACY OF STOCHASTIC SIMULA-
TIONS

A simulation program is expected to output some quantities of interest. For example, for a simula-
tion of the algorithm A it may be the average number of lost messages. The output of a stochastic
simulation is random: two different simulation runs produce different outputs. Therefore, it is not
sufficient to give one simulation result; in addition, we need to give the accuracy of our results.

3.3.1 INDEPENDENT REPLICATIONS

A simple and very efficient method to obtain confidence intervals is to use replication. Perform n
independent replications of the simulation, each producing an output x1, ..., xn. Be careful to have
truly random seeds for the random number generators, for example by accessing computer time
(Section 3.5).

3.3.2 COMPUTING CONFIDENCE INTERVALS

You have to choose whether you want a confidence interval for the median or for the mean. The
former is straightforward to compute, thus should be preferred in general.

Methods for computing confidence intervals for median and mean are summarized in Section 2.11.1.

EXAMPLE: APPLICATION TO EXAMPLE 3.2 ON PAGE 63. Figure 3.4 shows the time to
transfer all files as a function of the number of customers. The simulation outputs
do not appear to be normal, therefore we test whether n is large, by looking at the
qqplot of the the bootstrap replicates. We find that it looks normal, so we can use the
student statistic. By curiosity, we also compute the bootstrap percentile estimate and
find that both confidence intervals are very close, the bootstrap percentile estimate
being slightly smaller.

There are other methods of obtaining confidence intervals, but they involve specific assumptions
on the model; see [LawKelton-2000].
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Figure 3.4: Time to serve n files in Joe’s computer shop (Example 3.2 on page 63): (a) results of 30 inde-
pendent replications, versus number of customers (b) 95%confidence intervals for the mean obtained with
the normal approximation (left), with the bootstrap percentile estimate (middle); 95% confidence interval
for the median (right). (c) qqplot of simulation outputs, showing deviation from normality (d) qq-plots of the
bootstrap replicates, showing normality.

3.3.3 NON-TERMINATING SIMULATIONS

Non-terminating simulations should be asymptotically stationary (Section 3.1.2). When you sim-
ulate such a model, you should be careful to do transient removal. This involves determining:

• when to start measuring the output (this is the time at which we consider that the simulation
has converged to its stationary regime

• when to stop the simulation

Unfortunately, there is no simple, bullet proof method to determine these two numbers. In theory,
convergence to the stationary regime is governed by the value of the second eigenvalue modulus
of the transition matrix of the markov chain that represents your simulation. In all but very special



3.4. MONTE CARLO SIMULATION 73

cases, it is impossible to estimate this value. A practical method for removing transients is to look
at the data produced by the simulation, and visually determine a time after which the simulation
output does not seem to exhibit a clear trend behaviour. For example, in Figure ?? (a), the mea-
surements could safely start at time t = 1. This is the same stationarity test as with time series
(Chapter 9).

Determining when to stop a simulation is more tricky. The simulation should be large enough for
transients to be removable. After that, you need to estimate whether running the simulation for a
long time reduces the variance of the quantities that you are measuring. In practice, this is hard to
predict a priori. A rule of thumb is to run the simulation long enough so that the output variable
looks gaussian across several replications, but not longer than necessary.

3.4 MONTE CARLO SIMULATION

Monte Carlo simulation is a method for computing probabilities, expectations, or, in general,
integrals when direct evaluations is impossible or too complex. It simply consists in estimating the
expectation as the mean of a number of independent replications.

Formally, assume we are given a model for generating a data sequence �X . The sequence may be

iid or not. Assume we want to compute β = E

(
ϕ( �X)

)
. Note that this covers the case where we

want to compute a probability: if ϕ(�x) = 1{�x∈A} for some set A, then β = P( �X ∈ A).

Monte-Carlo simulation consists in generating R iid replicates �Xr, r = 1, ..., R. The Monte-Carlo
estimate of β is

β̂ =
1

R

R∑
r=1

ϕ( �Xr) (3.2)

A confidence interval for β can then be computed using the methods in Chapter 2 for a confidence
interval for the mean. By adjusting R, the number of replications, we can control the accuracy of
the method, i.e. the width of the confidence interval.

EXAMPLE 3.7: p-VALUE OF A TEST. Let X1, ..., Xn be a sequence of iid random
variables that take values in the discrete set {1, 2, ..., I}. Let qi = P(Xk = i). Let
Ni =

∑n
k=1 1{Xk=i} (number of observation that are equal to i). Assume we want to

compute

p = P

(
k∑

i=1

Ni ln
Ni

nqi
> a

)
(3.3)

where a > 0 is given. This computation arises in the theory of goodness of fit tests,
when we want to test whether Xi does indeed come from the model defined above.
For large values of the sample size n we can approximate β by a χ2 distribution (see
Section 7.5), but for small values there is no analytic result.

We use Monte-Carlo simulation to compute p. We generate R iid replicates Xr
1 , ..., Xr

n

of the sequence (r = 1, ..., R). This can be done by using the inversion method
described in this chapter. For each replicate r, let

N r
i =

n∑
k=1

1{Xr
k=i} (3.4)
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R p̂ margin

30 0.2667 0.1582
60 0.2500 0.1096
120 0.2333 0.0757
240 0.1917 0.0498
480 0.1979 0.0356
960 0.2010 0.0254

1920 0.1865 0.0174
3840 0.1893 0.0124
7680 0.1931 0.0088

Table 3.1: Computation of p in Example 3.7 on page 74 by Monte Carlo simulation. The parameters of the
model are I = 4, q1 = 9/16, q2 = q3 = 3/16, q4 = 1/16, n = 100 and a = 2.4. The table shows the estimate
p̂ of p with its 95% confidence margin versus the number of Monte-Carlo replicates R. With 7680 replicates
the relative accuracy (margin/p̂) is below 5%.

The Monte Carlo estimate of p is

p̂ =
1
R

R∑
r=1

1{�k
i=1 Ni ln

Ni
nqi

>a} (3.5)

We compute a confidence interval by using a normal approximation, as explained in
Example 2.14 on page 40. The sample variance is estimated by

σ̂ =

√
p̂(1 − p̂)

R
(3.6)

and a confidence interval at level 0.95 is p̂±1.96σ̂. Assume we want a relative accuracy
at least equal to some fixed value ε (for example ε = 0.05). This is achieved if

1.96σ̂

p̂
≤ ε (3.7)

which is equivalent to

R ≥ 3.92
ε2

(
1
p̂
− 1
)

(3.8)

We can test for every value of R whether Equation (3.8) is verified and stop the sim-
ulation when this happens. Table 3.1 shows some results; we see that p is equal to
0.19 with an accuracy of 5%; the number of Monte Carlo replicates is proportional to
the relative accuracy to the power −2.

3.5 RANDOM NUMBER GENERATORS

The simulation of any random process uses a basic function (such as rand in Matlab) that is
assumed to return independent uniform random variables. Arbitrary distributions can be derived
from there, as explained in Section 3.6.
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In fact, rand is a pseudo-random number generator. It produces a sequence of numbers that
appear to be random, but is in fact perfectly deterministic, and depends only on one initialization
value of its internal stated, called the seed. There are several methods to implement pseudo
random number generators; they are all based on chaotic sequences, i.e. iterative processes where
a small difference in the seed produces very different outputs.

Simple random number generators are based on linear congruences of the type xn = axn−1 mod
m. Here the internal state after n calls to rand is the last output xn; the seed is x0. Like for any
iterative algroithm, the sequence is periodic, but for appropriate choices of a and m, the period
may be very large.

EXAMPLE 3.8: LINEAR CONGRUENCE. A widespread generator (for example the
default in ns2) has a = 16′807 and m = 231 − 1. The sequence is xn = san mod m

m
where s is the seed. m is a prime number, and the smallest exponent h such that
ah = 1 mod m is m − 1. It follows that for any value of the seed s, the period of xn is
exactly m − 1.Figure 3.5 shows that the sequence xn indeed looks random.

The period of a random number generator should be much smaller than the number of times it is
called in a simulation. The generator in Example 3.8 on page 75 has a period of ca. 2× 109, which
may be too small for very large simulations. There are other generators with much longer periods,
for example the “Mersenne Twister” [Matsumoto-98] with a period of 219937 − 1. They use other
chaotic sequences and combinations of them.

Perfect pseudo-random number generators do not exist; only truly random generators can be per-
fect. Such generators exist: for example, quantum mechanics generator is based on the fact that
the state of a photon is believed to be truly random. For a general discussion of generators in the
framework of simulation, see [Hechenleitner-02]. Figure 3.6 illustrates a potential problem when
the random number generator does not have a long enough period.

USING A RANDOM NUMBER GENERATOR IN PARALLEL STREAMS For some (obsolete)
generators as in Example 3.8 on page 75, choosing small seed values in parallel streams may
introduce a strong correlation (whereas we would like the streams to be independent).

EXAMPLE 3.9: PARALLEL STREAMS WITH INCORRECT SEEDS. Assume we need to
generate two parallel streams of random numbers. This is very frequent in discrete
event simulations; we may want to have one stream for the arrival process, and a
second one for the service process. Assume we use the linear congruential generator
of Example 3.8 on page 75, and generate two streams xn and x′

n with seeds s = 1
and s′ = 2. Figure 3.7 shows the results: we see that the two streams are strongly
correlated. In contrast, taking s′ = the last value xN of the first stream does not have
this problem.

More modern generators as mentioned above do not have this problem either.
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Figure 3.5: 1000 successive numbers for the generator in Example 3.8 on page 75. (a) QQplot against the
uniform distribution in (0, 1), showing a perfect match. (b) autocorrelation function, showing no significant
correlation at any lag (c) lag plots at various lags, showing independence.
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(a) Linear Congruence with a = 16′807 and
m = 231 − 1
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(b) L’Ecuyer”’s generator[LecuyerSimConf-01]

Figure 3.6: Simulation outputs for the throughput of TCP connections over a wireless ad-hoc network.
The wireless LAN protocol uses random numbers for its operation. This simulation consumes a very large
number of calls to rand. The simulation results obtained with both generators are different: Lecuyer’s
generator produces consistently smaller confidence intervals.

SEEDING THE RANDOM NUMBER GENERATOR A safe way to make sure that replications are
reasonably independent is to use the internal state of the generator at the end of the 1st replication as
seed for the second replication and so one. This way, if the generator has a long enough sequence,
the different replications have non overlapping sequences.

In practice, though, we often want independent replications to be run in parallel, so this mode of
operation is not possible. A common practice is to take as seed a truly random number, for example
derived from the computer clock.

3.6 HOW TO SAMPLE FROM A DISTRIBUTION

In this section we discuss methods to produce a sample X for a random variable that has a known
distribution. We assume that we have a random number generator, that provides us with indepen-
dent samples of the uniform distribution on (0, 1). We focus on two methods of general applica-
bility: inversion and rejection sampling.

3.6.1 BY INVERSION OF CDF

This applies to real or integer valued random variable, when the cdf is easy to invert.

THEOREM 3.6.1. Let F be the cdf of a random variable X with values in R. Define the pseudo-
inverse, F−1 of F by

F−1(p) = sup{x : F (x) ≤ p}
Let U be a sample of a random variable with uniform distribution on (0, 1); F−1(U) is a sample
of X .
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Figure 3.7: xn versus x′
n for two streams generated with the linear congruential in Example 3.8 on page 75.

(a) seed values are 1 and 2 (b) seed values are (1, last value of first stream).

Proof. Take some arbitrary c ∈ R. Let E be the event E = {F−1(U) ≤ c}. We want to show that
P(E) = F (c).

We have the following equivalences (the following statements have the same truth value):

{
F−1(U) ≤ c

}
⇔ {sup{x : F (x) ≤ U} ≤ c}
⇔ {∀x ∈ R F (x) ≤ U ⇒ x ≤ c}
⇔ {∀x ∈ R x > c ⇒ F (x) > U}
⇔ {∀x > c F (x) > U}

The first equivalence is by definition of the pseudo-inverse. The second is by the definition of a sup. The
third is by the boolean equivalence of (A ⇒ B) and (notB ⇒notA). The fourth is simple re-writing.
Thus we have shown that E = {U < infx>c F (x)}. Now, by definition of an inf:

{
U < inf

x>c
F (x)

}
⊆ {∀x > c F (x) > U} ⊆

{
U ≤ inf

x>c
F (x)

}

and, because F () is right-continuous, we have infx>c F (x) = F (c). Thus

{U < F (c)} ⊆ {∀x > c F (x) > U} ⊆ {U ≤ F (c)}

As U is uniformly distributed on (0, 1), P(U < F (c)) = P(U ≤ F (c)) = F (c) thus F (c) ≤ P(E) ≤
F (c).
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�

Application to real random variable. In the case where X has a positive density over some
interval I , then F is continuous and strictly increasing on I , and the pseudo-inverse is the inverse
of F , as in the next example. It is obtained by solving the equation F (x) = p, where x is the
unknown in I .

EXAMPLE 3.10: EXPONENTIAL RANDOM VARIABLE. The cdf of the exponential distri-
bution with parameter λ is F (x) = 1−e−λx. The pseudo-inverse is obtained by solving
the equation

1 − e−λx = p

where x is the unknown. The solution is x = − ln(1−p)
λ . Thus a sample X of the

exponential distribution is obtained by letting X = − ln(1−U)
λ , or, since U and 1 − U

have the same distribution:

X = − ln(U)
λ

(3.9)

where U is the output of the random number generator.

Application to integer random variable. Assume N is a random variable with values in N. Let
pk = P(N = k), then for n ∈ N:

F (n) =
n∑

k=0

pk

and for x ∈ R: {
if x < 0 then F (x) = 0
else F (x) = P(N ≤ x) = P(N ≤ �x�) = F (�x�)

We now compute F−1(p), for 0 < p < 1. Let n be the smallest integer such that p < F (n). The set
{x : F (x) ≤ p} is equal to (−∞, n) (Figure 3.8); the supremum of this set is n, thus F−1(p) = n.
In other words, the pseudo inverse is given by

F−1(p) = n⇔ F (n− 1) ≤ p < F (n) (3.10)

Thus, an integer valued random variable N can be sampled by: N = the index n such that
F (n− 1) ≤ U < F (n), where U is the output of the random generator.

EXAMPLE 3.11: GEOMETRIC RANDOM VARIABLE. Here X takes integer values
0, 1, 2, .... The geometric distribution with parameter θ satisfies P(X = k) = θ(1 − θ)k,
thus for n ∈ N:

F (n) =
n∑

k=0

θ(1 − θ)k = 1 − (1 − θ)n+1

by application of Equation (3.10):

F−1(p) = n ⇔ n ≤ ln(1 − p)
ln(1 − θ)

< n + 1
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n = F-1(p)n-1

p  

F(n-1)

F(n)  

xF(x) · p

Figure 3.8: Pseudo-Inverse of cdf F () of an integer-valued random variable

hence

F−1(p) =
⌊

ln(1 − p)
ln(1 − θ)

⌋
and, since U and 1 − U have the same distribution, a sample X of the geometric
distribution is

X =
⌊

ln(U)
ln(1 − θ)

⌋
(3.11)

QUESTION 3.6.1. Consider the function defined by COIN(p)= if rand()<p 0 else 1. What
does it compute ? 7

QUESTION 3.6.2. Consider the sampling method: Draw COIN(p) until it returns 0. The value of
the sample N is the number of iterations. Is this a good method for generating a sample from a
geometric distribution ? 8

QUESTION 3.6.3. Compare Equation (3.9) and Equation (3.11). 9

3.6.2 REJECTION SAMPLING

This is a method of large applicability. It can be used to generate samples of random variables
when the inversion method does not work easily. It applies to random vectors of any dimension.

7It generates a sample of the Bernoulli random variable that takes the value 0 with p and the value 1 with probability
1 − p.

8The distribution of N is geometric with θ = 1 − p. so this method does produce a sample from a geometric
distribution. However it draws in average 1

θ random numbers from the generator, and the random number generator
is usually considered an expensive computation compared to a floating point operation. If θ is small, the procedure in
Example 3.11 on page 80 is much more efficient.

9They are similar, in fact we have N = �X� if we let λ = ln(1−θ). This follows from the fact that if X ∼ exp(λ),
then �X� is geometric with parameter θ = 1 − e−λ
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The method is based on the following result, which is of independent interest. It allows to sample
from a distribution given in conditional form.

THEOREM 3.6.2 (Rejection Sampling for a Conditional Distribution). LetX be a random variable
in some space S such that the distribution of X is the conditional distribution of X̃ given that
Ỹ ∈ A, where (X̃, Ỹ ) is a random variable in S × S′ and A is a measurable subset of S.
A sample of X is obtained by the following algorithm:

do
draw a sample of (X̃, Ỹ )

until Ỹ ∈ A
return(X̃)

The expected number of iterations of the algorithm is 1
P(Ỹ ∈A)

.

Proof. Let N be the (random) number of iterations of the algorithm, and let (X̃k, Ỹk) be the sample
drawn at the kth iteration. (These samples are independent, but in general, X̃k and Ỹk are not indepen-
dent). Let θ = P(Ỹ ∈ A). We assume θ > 0 otherwise the conditional distribution of X̃ is not defined.
The output of the algorithm is X = X̃N .

For some arbitrary measurable B in S, we compute P(X̃N ∈ B):

P

(
X̃N ∈ B

)
=

∑
k≥1

P

(
X̃k ∈ B and N = k

)

=
∑
k≥1

P

(
X̃k ∈ B and Ỹ1 ∈/A, ..., Ỹk−1 ∈/A, Ỹk ∈ A

)

=
∑
k≥1

P

(
X̃k ∈ B and Ỹk ∈ A

)
P

(
Ỹ1 ∈/A

)
...P
(
Ỹk−1 ∈/A

)

=
∑
k≥1

P

(
X̃k ∈ B|Ỹk ∈ A

)
θ(1 − θ)k−1

=
∑
k≥1

P

(
X̃1 ∈ B|Ỹ1 ∈ A

)
θ(1 − θ)k−1

= P

(
X̃1 ∈ B|Ỹ1 ∈ A

)∑
k≥1

θ(1 − θ)k−1

= P

(
X̃1 ∈ B|Ỹ1 ∈ A

)
The second equality is by definition of N . The third is by the independence of (X̃k, Ỹk) and (X̃k′ , Ỹk′)
for k �= k′. The last equality is because θ > 0. This shows that the distribution of X is as required.

N − 1 is geometric with parameter θ thus the expectation of N is 1/θ.

�

EXAMPLE 3.12: DENSITY RESTRICTED TO ARBITRARY SUBSET. Consider a random
variable in some space (R, Rn, Z...) that has a density fY (y). Let A be a set such that
P(Y ∈ A) > 0. We are interested in the distribution of a random variable X whose
density is that of Y , restricted to A:

fX(y) = KfY (y)1{y∈A} (3.12)
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where K−1 = P(Y ∈ A) > 0 is a normalizing constant. This distribution is the condi-
tional distribution of Y , given that Y ∈ A.

QUESTION 3.6.4. Show this. 10

Thus a sampling method for the distribution with density in Equation (3.12) is to draw
samples of the distribution with density fY until a sample is found that belongs to A.
The expected number of iterations is 1/P(Y ∈ A).

For example, consider the sampling of a random point X uniformly distributed on
some bounded area A ⊂ R

2. We can consider this density as the restriction of the
uniform density on some rectangle R = [xmin, xmax] × [ymin, ymax] that contains the
area A. Thus a sampling method is to draw points uniformly in R, until we find one
in A. The expected numbers of iterations is the ratio of the area of R to that of A;
thus one should be careful to pick a rectangle that is close to A. Figure 3.9 shows a
sample of the uniform distribution over a non-convex area.

QUESTION 3.6.5. How can one generate a sample of the uniform distribution over R ? 11
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Figure 3.9: 1000 independent samples of the uniform distribution over A = the interior of the cross. Sam-
ples are obtained by generating uniform samples in the bounding rectangle and rejecting those samples
that do not fall in A.

EXAMPLE 3.13: HALF-NORMAL DENSITY. [6] The half-normal distribution is the distri-
bution of the absolute value of normal random variable. It has density 2√

2π
e− y2

2 1{y>0}.
It can easily be seen that it is also the conditional distribution of a standard normal
random variable given that it is positive. We could derive a sampling method from

10For any (measurable) subset B of the space, P(X ∈ B) = K
∫
B fY (y)1{y∈A}dy = KP(Y ∈ A and Y ∈ B) =

P(Y ∈ B|Y ∈ A).
11The coordinates are independent and uniform: generate two independent samples U, V ∼Unif(0, 1); the sample

is ((1 − U)xmin + Uxmax, (1 − V )ymin + V ymax.
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this, using Example 3.12 on page 81, if we knew how to sample from a normal distrib-
ution. In fact, the method presented in this example is used to generate a sample from
the normal distribution, so we do not follow this track. Instead, we use the following
observation.

Let Y, Z be two independent, exponential random variables, with parameter λ = 1.
The conditional distribution of Y given that Z > 1

2(1 − Y )2 is half-normal.

To see why, compute, for an arbitrary function φ:

E(φ(Y )1{Z> 1
2
(1−Y )2})

=
∫

y>0
φ(y)

(∫ +∞

1
2
(1−y)2

e−zdz

)
e−ydy

=
∫

y>0
φ(y)e−

1
2
(1−y)2e−ydy

= K

∫
y>0

φ(y)e−
1
2
y2

dy

where K is some constant. Thus

E(φ(Y )|Z >
1
2
(1−Y )2) =

K

P(Z > 1
2(1 − Y )2)

∫
y>0

φ(y)e−
1
2
y2

dy = K ′
∫

y>0
φ(y)e−

1
2
y2

dy

where K ′ is some other constant. This shows that the conditional distribution of Y is
half-normal.

Since sampling from an exponential distribution can easily be done by inversion of
the cdf, we can now apply the previous theorem with X̃ = Y and obtain a sampling
method for the half-normal distribution: draw independent samples Y, Z of the expo-
nential distribution with λ = 1 until the condition Z > 1

2(1 − Y )2 is true. The sample is
the value of Y .

Now we come to a very general result, for all distributions that have a density.
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THEOREM 3.6.3 (Rejection Sampling for Distribution with Density). Consider two random vari-
ables X,Y with values in the same space, that both have densities. Assume that:

• we know a method to draw a sample of X
• the density of Y is known up to a normalization constant K: fY (y) = Kfn

Y (y), where fn
Y is

a known function
• there exist some c > 0 such that

fn
Y (x)

fX(x)
≤ c

A sample of Y is obtained by the following algorithm:

do
draw independent samples of X and U , where U ∼Unif(0, c)

until U ≤ fn
Y (X)

fX(X)

return(X)

The expected number of iterations of the algorithm is c
K

.

Proof. Apply Theorem 3.6.2 with X̃ = X and Ỹ = (X,U). All we need to show is that the conditional
density of X given that U ≤ fn

Y (X)
fX(X) is fY .

To this end, pick some arbitrary function φ. We have

E

(
φ(X)|U ≤ fn

Y (X)
fX(X)

)

= K1E

(
φ(X)1{U≤ fn

Y
(X)

fX (X)}

)

= K1

∫
E

(
φ(x)1{U≤ fn

Y
(x)

fX (x)}
|X = x

)
fX(x)dx

= K1

∫
φ(x)

fn
Y (x)

fX(x)
fX(x)dx

=
K1

K

∫
φ(x)fY (x)dx =

K1

K
E(φ(Y ))

where K1 is some constant. This is true for all φ thus, necessarily, K1/K = 1 (take φ = 1).

�

A frequent use of Theorem 3.6.3 is as follows.

EXAMPLE 3.14: ARBITRARY DISTRIBUTION WITH DENSITY. Assume that: Y takes
values in the bounded interval [a, b], has a density fY = Kfn

Y (y) that can easily be
computed but for the multiplicative constant K, and that we know an upper bound M
on fn

Y . We take X uniformly distributed over [a, b] and obtain the sampling method:

do
draw X ∼Unif(a, b) and U ∼Unif(0, M)

until U ≤ fn
Y (X)

return(X)
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Note that we do not need to know the multiplicative constant K. For example, consider
the distribution with density

fY (y) = K
sin2(y)

y2
1{−a≤y≤a} (3.13)

K is hard to compute, but a bound M on fn
Y is easy to find (M = 1).

EXAMPLE 3.15: A STOCHASTIC GEOMETRY EXAMPLE. We want to sample the ran-
dom vector (X1, X2) that takes values in the rectangle [0, 1]× [0, 1] and whose distrib-
ution has a density proportional to |X1 − X2|. We take fX = the uniform density over
[0, 1]× [0, 1] and fn

Y (x1, x2) = |x1−x2|. An upper bound on the ratio fn
Y (x1,x2)

fX(x1,x2) is 1. The
sampling algorithm is thus:

do
draw X1, X2 and U ∼Unif(0, 1)

until U ≤ |X1 − X2|
return(X1, X2)

Figure 3.10 shows an example. Note that there is no need to know the normalizing
constant to apply the sampling algorithm.
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Figure 3.10: (a) Empirical histogram (bin size = 10) of 2000 samples of the distribution with density fX(x)
proportional to sin2(x)

x2 1{−a≤y≤a} with a = 10. (b) 2000 independent samples of the distribution on the
rectangle with density fX1,X2(x1, x2) proportional to |x1 − x2|.
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3.6.3 AD-HOC METHODS

The methods of inversion and rejection sampling may be improved in some special cases. We
mention in detail the case of the normal distribution, which is important to optimize because of its
frequent use.

Sampling a Normal Random Variable. The method of inversion cannot be directly used, as the
cdf is hard to compute. An alternative is based on the method of change of variables.

PROPOSITION 3.6.1. Let (X,Y ) be independent, standard normal random variables. Let{
R =

√
X2 + Y 2

Θ = arg(X + jY )

R and Θ are independent, R has a Rayleigh distribution (i.e is positive with density re
−r2

2 ) and Θ
is uniformly distributed on [0, 2π].

Proof. Apply the formula for a change of variables in Section 12.1.2. We have{
X = R cos(Θ)
Y = R sin(Θ)

The jacobian of this transformation is R, thus

fR,Θ(r, θ) =
R

2π
e−

R2
2

�

The cdf of the Rayleigh distribution can easily be inverted: F (r) = P(R ≤ r) = 1 − e−r2/2 and
F−1(p) =

√−2 ln(1 − p). A sampling method for a couple of two independent standard normal
variables is thus (Box-Müller method):

draw U ∼Unif(0, 1)

R =
√−2 ln(U)

draw Θ ∼Unif(0, 2π)
X = R cos(Θ), Y = R sin(Θ)
return(X,Y )

QUESTION 3.6.6. In Example 3.13 on page 82 we obtained a method to sample from the half-
normal density. How can this be used to sample a normal random variable ? 12

Correlated Normal Random Vectors. We want to sample (X1, ..., Xn) as a normal random
vector with zero mean and covariance matrix Ω (see Section ??). If the covariance matrix is
diagonal (i.e. Ωi, j = 0 for i �= j) then the Xis are independent and we can sample them one by
one (or better, two by two). We are interested here in the case where there is some correlation.

12Let Y be a sample from the standard half-normal distribution. Let Z be an independent coin tossing variable with
Z = ±1 with equal probabilities. Let X = ZY . Z has the same distribution as −Z therefore X also has the same
distribution as −X . X > 0 means that Z = 1 therefore the conditional distribution of X given that X > 0 is that of
Y , i.e. is the conditional distribution of a standard normal variable given that it is > 0. By symmetry, the same holds
for the conditional distribution given that X < 0. Thus X has a standard normal distribution.
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The method we show here is again based on a change of variable. There exists always a change
of basis in R

n such that, in the new basis, the random vector has a diagonal covariance matrix. In
fact, there are many such bases (one of them is orthonormal and can be obtained by diagonalisation
of Ω, but is much more expensive than the method we discuss next). An inexpensive and stable
algorithm to obtain one such basis is called Choleski’s factorization method. It amounts to finding
a matrix L such that Ω = LLT . Let Y be a standard normal vector (i.e. an iid sequence of n
standard normal random variables). Let X = LY . The covariance matrix of X is

E(XXT ) = E(LY (LY )T )) = E(L(Y Y T )LT ) = LE(Y Y T )LT = LLT = Ω

Thus a sample of X can be obtained by sampling Y first and computing LY . Figure 3.6.3 shows
an example.
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(a) X1, X2 independent
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(b) X1, X2 dependent

Figure 3.11: 1000 independent samples of the normal vector X1,X2 with 0 mean and covariance Ω1,1 =
σ2

1 = 1, Ω2,2 = σ2
2 = 1 and Ω1,2 = Ω2,1 = 0 (left), Ω1,2 = Ω2,1 = 1/2 (right). The right sample is obtained by

the transformation X = LY with Y iid ∼ N0,1 and L = (1, 0; 1/2,
√

3/2).

Other Methods There are many ways to optimize the generation of samples. Good references are
[6] and [?]

3.7 REVIEW

QUESTION 3.7.1. What are real time and simulated time ? 13

QUESTION 3.7.2. Why do we need to run independent replications of a simulation ? How are they
obtained ? 14

13The time taken by the computer to run the simulation program; the time as experienced by the system being
simulated.

14To obtain confidence intervals. By running multiple instances of the simulation program; if done sequentially,
the seed of the random generator can be carried over from one run to the next. If replications are done in parallel on
several machines, the seeds should be chosen independently by looking up a table of random numbers.



88 CHAPTER 3. SIMULATION

QUESTION 3.7.3. Why do we need to verify normality when computing confidence intervals ? 15

QUESTION 3.7.4. Why do we need the bootstrap method to test whether the sample size is large
enough, when computing confidence intervals ? 16

3.8 EXERCISES

Floyd: simulating the Internet

15Because the computation of the confidence interval assumes that either (1) the data is approximately normal or
(2) the mean of the data converges in distribution to a normal random variable.

16Because we have only one value of the statistic t, so we cannot perform a normality test on it.



CHAPTER 4

MODEL FITTING

In this chapter we study how to derive a model from data, for example, fitting a curve to a series of
measurements. Using a motivating example, we illustrate that fitting a model can be misleading,
and that the issue can be circumvented if we interpret the model fitting problem as a statistical es-
timation problem. The widely used least square fitting method corresponds to the homoscedastic
assumption, i.e., when the noise can be assumed to be normal iid. Verification of assumptions can
be done by examination of residuals. Linear regression is a special case, also called “ANOVA”,
which occurs when the dependency of the model parameters is linear; there are closed form solu-
tions for computing the model (and confidence intervals). We see that linear regression is much
more general than the term “linear” suggests. In some very specific cases, the ANOVA model
can be used to simplify factorial analysis, i.e. a quantitative assessment of the importance of fac-
tors. Last, we will point out to modelling patterns: the hidden factor and Simpson’s paradox. The
proofs of the theorems in this chapter are all based on a few geometrical properties of gaussian
independent (but not identical) vectors, which are explained in appendix in Chapter 12.
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4.1 WHAT IS MODEL FITTING ?

We start with a simple example.

EXAMPLE 4.1: VIRUS SPREAD DATA. The number of hosts infected by a virus is
plotted versus time in hours.
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The plot suggests an exponential growth, therefore we are inclined to fit these data to
a model of the form

Y (t) = aeαt (4.1)

where Y (t) is the number of infected hosts at time t. We are particulary interested in
the parameter α, which can be interpreted as the growth rate; the doubling time (time
for the number of infected hosts to double) is ln 2

α . On the plot, the dashed line is the
curve fitted by the method of least squares explained later. We find α = 0.5173 per
hour and the doubling time is 1.34 hour. We can use the model to predict that, 6 hours
after the end of the measurement period, the number of infected hosts would be ca.
100’000.

In general, model fitting can be defined as the problem of finding an explanatory model for the
data, i.e. a mathematical relation of the form

yi = fi(�β) (4.2)

that “explains the data well”, in some sense. Here yi is the collection of measured data, i is the
index of a measurement, fi is an array of functions, and �β is the parameter that we would like to
obtain. In the previous example, the parameter is �β = (a, α) and fi(�β) = fi(a, α) = aeαti where
ti is the time of the ith measurement, assumed here to be known.

What does it mean to “explain the data well” ? It is generally not possible to require that Equa-
tion (4.2) holds exactly for all data points. Therefore, a common answer is to require that the model
minimizes some metric of the discrepancy between the explanatory model and the data. A very

common metric is the mean square distance
∑

i

(
yi − fi(�β)

)2

. The value of the growth rate α

in the previous example was obtained in this way, namely, we computed a and α that minimize∑
i(yi − aeαti)2.
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QUESTION 4.1.1. How would you compute a and α ? 1

But this raises another question. What metric should one use ? What is so magical about least

squares ? Why not use other measures of discrepancy, for example
∑

i |yi−fi(�β)| or
∑

i

(
ln(yi) − ln(fi(�β))

)2

?

The following example shows the importance of the issue.

EXAMPLE 4.2: VIRUS SPREAD DATA, CONTINUED. AMBIGUITY IN THE OPTIMIZATION

CRITERION. We also plotted the number of infected hosts in log scale:
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and computed the least square fit of Equation (4.2) in log scale (plain line). Namely,
we computed a and α that minimize

∑
i (ln(yi) − ln(a) − αti)

2. We found for α the
value 0.39 per hour, which gives a doubling time of 1.77 hour and a prediction at time
+6 hours equal to ca. 39′000 infected hosts (instead of previously 100′000).

The two different models are compared below (in linear and log scales).
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Both figures show that what visually appears to be a good fit in one scale is not so in
the other. Which one should we use ?

An answer to the issue comes from statistics. The idea is to add to the explanatory model a
description of the “noise” (informally defined as the deviation between the explanatory model and

1This is a non constrained optimization problem in two variables; we used a generic solver (fminsearch in
matlab)
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the data), and obtain a statistical model. We can also think of the statistical model as a description
of a simulator that was used to produce the data we have. Its parameters are well defined, but not
known to us.

The statistical model usually has a few more parameters than the explanatory model. The parame-
ters of the statistical model are estimated using the classical approach of maximum likelihood. If
we believe in the statistical model, this answers the previous issue by saying that the criterion to
be optimized is the likelihood. The belief in the model can be checked by examining residuals.

EXAMPLE: VIRUS SPREAD DATA, CONTINUED. A STATISTICAL MODEL.One statistical
model for the virus spread data is

Yi = aeαti + εi with εi iid ∼ N0,σ2 (4.3)

in other words, we assume that the measured data yi is equal to the ideal value given
by the explanatory model, plus a noise term εi. Further, we assume that all noises are
independent, gaussian, and with same variance. The parameter is θ = (a, α, σ).

In Equation (4.3), we write Yi instead of yi to express that Yi is a random variable.
We think of our data yi as being one sample produced by a simulator that implements
Equation (4.3).

We will see in Section 4.2 that the maximum likelihood estimator for this model is the
one that minimizes the mean square distance. Thus, with this model, we obtain for α
the value in Example 4.1 on page 90.

A second statistical model could be:

ln(Yi) = ln
(
aeαti

)
+ εi with εi iid ∼ N0,σ2 (4.4)

Now, we would be assuming that the noise terms in log-scale have the same variance,
in other words, the noise is proportional to the measured value. Here too, the maxi-
mum likelihood estimator is obtained by minimizing the least square distance, thus we
obtain for α the value in Example 4.2 on page 91.

We can validate either model by plotting the residuals:
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We see clearly that the residual for the former model do not appear to be normally
distributed, and the converse is true for the former model, which is the one we should
adopt. Therefore, an acceptable fitting is obtained by minimizing least squares in
log-scale.
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QUESTION 4.1.2. How would you compute the residuals ? 2

We summarize what we have learnt so far as follows.

FITTING A MODEL TO DATA

1. Define a statistical model that contains both the deterministic part (the one we are interested
in) and a model of the noise.

2. Estimate the parameters of the statistical model using maximum likelihood. If the number
of data points is small, use a brute force approach (e.g use fminsearch). If the number of
data points is large, you may need to look in the literature for efficient, possibly heuristic,
optimization methods.

3. Validate the model fit by screening the residuals, either visually, or using tests (Chapter 7).

4.2 LEAST SQUARES CORRESPOND TO GAUSSIAN, SAME VARI-
ANCE

A very frequent case is when the statistical model has the form

Yi = fi(�β) + εi for i = 1, . . . , I with εi iid ∼ N0,σ2 (4.5)

as in the examples before (Models in Equations (4.3) and (4.4)). Namely, the discrepancy between
the explanatory model and the data is assumed to be gaussian with same variance. In some
literature, the “same variance” assumption is called homoscedasticity.

THEOREM 4.2.1 (Least Squares). For the model in Equation (4.5), the maximum likelihood esti-
mator of the parameter (�β, σ) is given by:

1. β̂ = arg min�β

∑
i

(
yi − fi(�β)

)2

2. σ̂2 = 1
I

∑
i

(
yi − fi(β̂)

)2

Proof. The log likelihood of the data is

l�y = −I

2
ln (2π) − I ln (σ) − 1

2σ2

I∑
i=1

(
yi − fi(
β)

)2

(4.6)

For any fixed σ, it is maximum when
∑I

i=1

(
yi − fi(
β)

)2

is minimum, which shows item 1. Take the

derivative with respect to σ and find that for any fixed 
β, it is maximum for σ = 1
I

∑
i

(
yi − fi(
β)

)2

,

which shows item 2.

2The residuals are estimates of the noise terms εi. Let â and α̂ be the values estimated by maximum likelihood, for
either model. The residuals are ri = yi − âeα̂ti for the former model, ri = ln yi − ln

(
âeα̂ti

)
for the latter.
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�

The theorem explains what we do when we fit the explanatory model yi = fi(�β) to our data using
least squares: we implicitly assume that the error terms in our data are independent, gaussian, and
of same amplitude. We have seen in the examples above that care must be taken to validate this
assumption.

The set of points in R
I that have coordinates of the form fi(�β) constitue a “manifold” (for p = 2,

it is a surface). Item 1 says that �β is the parameter of the point ŷ on this manifold that is the nearest
to the data point �y, in euclidian distance. The point ŷ is called the predicted response; it is an
estimate of the value that �y would take if there would be no noise. It is equal to the orthogonal
projection of the data �y onto the manifold.

QUESTION 4.2.1. How would you compute confidence intervals for �β ? 3

4.3 LINEAR REGRESSION

A special case of the previous section is when the explanatory model depends linearly on its para-
meter �β. This is called the linear regression model. The main fact here is that everything can be
computed easily, in matrix forms.

Assume thus that the statistical model of our experiment has the form:

DEFINITION 4.3.1 (Linear Regression Model).

Yi = (X�β)i + εi for i = 1, . . . , I with εi iid ∼ N0,σ2 (4.7)

where the unknown parameter �β is in R
p and X is a I × p matrix. The matrix X supposed to be

known exactly in advance. We also assume that

H X has rank p

Assumption H means that different values of �β give different values of the explanatory model X�β,
i.e. the explanatory model is identifiable.

The elements of the known matrix X are sometimes called explanatory variables, and then the
yis are called the response variables.

EXAMPLE 4.3: JOE’S SHOP AGAIN, FIGURE 1.1(B). We assume that there is a thresh-
old ξ beyond which the throughput collapses (we take ξ = 70). The statistical model
is

Yi = (a + bxi)1xi≤ξ + (c + dξ)1{xi>ξ} + εi (4.8)

where we impose
a + bξ = c + dξ (4.9)

3One method is to use the asymptotic confidence interval of Theorem 2.8.1. A second method is the bootstrap:
draw R bootstrap replicates of 
Y and obtain R estimates of 
β. Use the order statistics of the bootstrap estimates to
obtain confidence intervals.
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In other words, we assume the throughput response curve to be piecewise linear.
Equation (4.9) expresses that the curve is continuous. Recall that xi is the offered
load and Yi is the actual throughput.

Here we take 
β = (a, b, d) (we can derive c = a + (b − d)ξ from Equation (4.9)). The
dependency of Yi on 
β is indeed linear. Note that we assume that ξ is known (see in
exercise how to handle the case where ξ is to be identified).

Assume that we sort the xis in increasing order and let i∗ be the largest index i such
that xi ≤ ξ. Re-write Equation (4.8) as

Yi = a + bxi + εi for i = 1 . . . i∗

Yi = a + bξ + d(xi − ξ) + εi for i = i∗ + 1 . . . I

thus the matrix X is given by:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 0
1 x2 0
· · · · · · · · ·
1 xi∗ 0
1 ξ xi∗+1 − ξ
· · · · · · · · ·
1 ξ xI − ξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is simple to see that a sufficient condition for H is that there are at least two distinct
values of xi ≤ ξ and at least one value > ξ.

QUESTION 4.3.1. Show this. 4

A model as in this example is sometimes called Intervention Analysis.

With the linear regression model, the manifold mentioned in the discussion after Theorem 4.2.1 is
a linear manifold (for p = 2, a plane). It is equal to the linear sub-space spanned by the columns of
matrix X . The nearest point is given by an orthogonal projection, which can be computed exactly.
The details are given in the following theorem.

4We need to show, if the condition is true, that the matrix X has rank p = 3. This is equivalent to saying that the
equation

X

⎛
⎝ a

b
d

⎞
⎠ = 0

has only the solution a = b = d = 0. Consider first a and b. If there are two distinct values of xi, i ≤ i∗, say x1

and x2 then a + bx1 = a + bx2 = 0 thus a = b = 0. Since there is a value xi > ξ, it follows that i∗ + 1 ≤ I and
d(xI − ξ) = 0 thus d = 0.
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THEOREM 4.3.1 (Linear Regression). Consider the model in Definition 4.3.1; let �y be the I × 1
column vector of the data.

1. The p× p matrix (XTX) is invertible
2. (Estimation) The maximum likelihood estimator of �β is β̂ = K�y with K = (XTX)−1XT

3. (Standardized Residuals) Define the ith residual as ei =
(
�y −Xβ̂

)
i
. The residuals are

zero-mean gaussian but are correlated, with covariance matrix σ2(IdI − H), where H =
X(XTX)−1XT .
Let s2 = 1

I−p
‖e‖2 = 1

I−p

∑
i e

2
i (rescaled sum of squared residuals). s2 is an unbiased

estimator of σ2.
The standardized residuals defined by ri := ei

s
√

1−Hi,i
have unit variance and ri ∼ tN−p−1.

This can be used to test the model by checking that ri are approximately normal with unit
variance.

4. (Confidence Intervals) Let γ =
∑p

j=1 ujβj be a (non-random) linear combination of the

parameter �β; γ̂ =
∑

j ujβ̂j is our estimator of γ. Let g =
∑

k

(∑
j ujKj,k

)2

(variance

bias). Then γ̂−γ√
gs

∼ tN−p. This can be used to obtain a confidence interval for γ.

Proof. tbd

�

Comments. Item 3 states that the residuals are (slightly) biased, and it is better to use standardized
residuals.

The matrix H is the projection onto the subspace spanned by the columns of X .

The predicted response is ŷ = Xβ̂. It is equal to the orthogonal projection of �y. and is given by

ŷ = H�y (4.10)

The scaled sum of squared residuals s2 is also equal to 1
I

(‖�y‖2 − ‖ŷ‖2). Its distribution is 1
I
χ2

I−p.
This can be used to compute a confidence interval for σ.

The proof of the theorem shows a slightly stronger result than item 4: the joint distribution of β̂ is
gaussian with mean �β and covariance matrix σ2KKT , and β̂ is independent of e.

EXAMPLE: JOE’S SHOP AGAIN. CONTINUATION OF EXAMPLE 4.3. We can thus apply
matrix computations given in Theorem 4.3.1; item 2 gives an estimate of (a, b, d) and
thus of c. Item 4 gives confidence intervals. The values and the fitted linear regression
model are shown in the table and figure below.
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a 0.978 ± 0.609
b 0.0915 ± 0.0137
c 15.8 ± 2.99
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We also computed the residuals ei (crosses) and standardized residuals ri (circles).
There is little difference between both types of residuals. They appear reasonably nor-
mal, but one might criticize the model in that the variance appears smaller for smaller
values of x. The normal qqplot of the residuals also shows approximate normality (the
qqplot of standardized residuals is similar and is not shown).
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QUESTION 4.3.2. Can we conclude that there is congestion collapse ? 5

WHERE IS LINEARITY ? In the previous example, we see that that yi is a linear function of �β,
but not of xi. This is quite general, and you should avoid a widespread confusion: linear regression
is not restricted to models where the data yi is linear with the explanatory variables xi.

BEYOND THE LINEAR CASE

EXAMPLE: JOE’S SHOP - ESTIMATION OF ξ. In Example 4.3 on page 94 we assumed
that the value ξ after which there is congestion collapse is known in advance. Now we
relax this assumption. Our model is now the same as Equation (4.8), except that ξ is
also now a parameter to be estimated.

5Yes, since the confidence interval for d is entirely positive [resp. negative].
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To do this, we apply maximum likelihood estimation. We have to maximize the log-
likelihood l�y(a, b, d, ξ, σ), where 
y, the data, is fixed. For a fixed ξ, we know the value of
(a, b, d, σ) that achieves the maximum, as we have a linear regression model. We plot
the value of this maximum versus ξ (Figure 4.1) and numerically find the maximum. It
is for ξ = 77.

To find a confidence interval, we use the asymptotic result in Theorem 2.8.2. It says
that a 95% confidence interval is obtained by solving l(ξ̂) − l(ξ) ≤ 1.9207, which gives
ξ ∈ [73, 80].
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−250

−240

−230

−220
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−200

−190

Figure 4.1: Log likelihood for Joes’ shop as a function of ξ.

4.4 N-WAY ANOVA

Called N-Way ANOVA, it is a special case of linear regression, which is often used to capture the
effect of n qualitative factors. ANOVA stands for “Analysis of Variance”, because all statistical
tests and estimations can be expressed from the sample variance (sums of squares). It is also a
special case of the ANOVA model introduced in Section 7.4.1.

We describe the model for n = 2 (it is called in the statistics literature “2-way ANOVA with
replicates”). For general values of n, the concepts are similar, but the notation becomes heavy.

DEFINITION 4.4.1 (2-Way ANOVA). The statistical model is

Y [i, j, r] = a+ b[i] + c[j] + d[i, j] + ε[i, j, r] (4.11)

with i = 1, ...I , j = 1, ..., J , r = 1, ..., R and ε[i, j, r] are iid ∼ N0,σ2 .

The variables i, j are called factors (they take values in a discrete set). A possible value of a factor
is called a level (here the levels are 1...I for the first factor). Y [i, j, r] represents the value of the
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rth replicate of an experiment with 2 factors, when factor 1 has the value i and factor 2 has value
j.

The coefficients a, b[i], c[j], d[i, j] are called effects. The coefficients d[i, j] are called interac-
tions.

The additive model is a variant model where we force d[i, j] = 0.

To avoid underspecification, we impose the constraints:

⎧⎨
⎩
∑

i b[i] = 0∑
j c[j] = 0

for all j
∑

i d[i, j] = 0 and for all i
∑

j d[i, j] = 0
(4.12)

The N-Way ANOVA model is a special case of linear regression, and everything we saw in Sec-
tion 4.3 applies. The parameter �β is the array (a, b[], c[], d[, ]), subject to the constraints in Equa-
tion (4.12). Its dimension is p = IJ . The manifold spanned by the columns of the matrix X is the
set of arrays z[i, j, r] that depend only on i and j. Its dimension is also p = IJ , which shows that
condition H in Definition 4.3.1 is satisfied. For the additive model, the dimension of the parameter
is p = I + J − 1.

N-Way ANOVA is also a special case of the ANOVA model used for tests in Section 7.4.1: the
random variables Y [i, j, r] are gaussian with mean

μ[i, j] = a+ b[i] + c[j] + d[i, j] (4.13)

and common variance σ2. Note that the constraints in Equation (4.12) do not put any restrictions
on μ[i, j]: any function μ[i, j] can be put in the form of Equation (4.13) with the constraints in
Equation (4.12) being satisfied.

QUESTION 4.4.1. Prove this. 6

EXAMPLE 4.4: MOBILE ROUTING. Consider the results of simulations that aim to
compare 4 different routing protocols (A to D) proposed for mobile ad-hoc networks.
Three mobility models (U, W and C) are used, and every experiment is repeated 4
times. The performance metric is the throughput achieved by the network. The figures
show the values of the mean and median of 6 replicates.

6We are given the array μ[i, j], we want to find a, b[], c[] and d[] such that Equation (4.13) and Equation (4.12)
hold. Take a = 1

IJ

∑
i,j μ[i, j], b[i] = 1

J

∑
j μ[i, j]− a, c[j] = 1

I

∑
i μ[i, j]− a, and d[i, j] = μ[i, j]− b[i]− c[j]− a.

One can verify that all required equations hold.
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The model is 2-way ANOVA with 6 replicates.

If we believe that mobility does not affect the performance of a routing protocol, then
we should have all interaction terms equal to 0. We will see in this section that this
can be exactly tested.

The results in Theorem 4.3.1 have a simpler form, given by the following result.

THEOREM 4.4.1 (Estimation of ANOVA Model). The maximum likelihood estimate of the para-
meters of the model in Definition 4.4.1 is given by

â = ȳ

b̂[i] = ȳ[i, ., .] − ȳ

ĉ[j] = ȳ[., j, .] − ȳ

d̂[i, j] = ȳ[i, j, .] − ȳ[i, ., .] − ȳ[., j, .] + ȳ



4.4. N-WAY ANOVA 101

where ȳ = 1
IJR

∑
i,j,r y[i, j, r] and a notation such as ȳ[i, ., .] means the average of the subar-

ray of y obtained when i is fixed. So for example ȳ[i, ., .] = 1
JR

∑
j,r y[i, j, r] and ȳ[i, j, .] =

1
R

∑
r y[i, j, r].

The variance biases are

ga =
1

IJR

gb[i] =
I − 1

IJR

gc[j] =
J − 1

IJR

gd[i,j] =
(I − 1)(J − 1)

IJR

For the additive model, the estimates â, b̂[i], ĉ[j] are given by the same formulae, and so are the
variances biases.

Proof.1. show that a, b[], c[], d[, ] satisfy the conditions in Equation (4.12).

2. Let ŷ[i, j] = â + b̂[i] + ĉ[i] + d̂[i, j]. We want to show that ŷ is the orthogonal projection on the
subspace spanned by the columns of X . First, ŷ belongs to the subspace by construction. So all we
need now is to show that 
y− ŷ is orthogonal to the subspace. Check this by computing the inner product
of a system of generating elements of the subspace.

3. tbd

�

EXAMPLE 4.5: MOBILE ROUTING, CONTINUED. We applied the formulae and com-
puted the residuals. The histogram and qqplot indicate a large deviation from normal-
ity.
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We try a Box-Cox transformation and find that changing Y to 1/Y does give more
satisfactory residuals.
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We also tried the additive model to the transformed data, namely

1/Y [i, j, k] = a + b[i] + c[j] + ε[i, j, k]

We re-apply the formulae to this model and find residuals as shown below.
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For the additive model, the estimated effects are:

Tables of effects (effect, 0.95 confidence interval)
routing

A B C D
0.37544 -0.31829 0.13596 -0.19311
0.10321 0.10321 0.10321 0.10321
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They show that A and C perform significantly better (if we believe in the additive model,
which we will discuss next)

QUESTION 4.4.2. Can you compare a confidence interval for b[1] − b[3] ? 7

4.5 FACTORIAL ANALYSIS

4.5.1 INTRODUCTION

The goal of factorial analysis is to understand the impact of each factor on some performance
metric. In general, it is performed by an exhaustive application of the scientific method, as illus-
trated in Section 1.4.1. This may be time consuming as the number of possible combinations of
factors may suffer from combinatorial explosion.

In some special cases where the “ANOVA” linear regression model holds, it is possible to have
powerful results in relatively few computations. This is the main result of this section. Before
studying the ANOVA Factorial Analysis model, we first see in the next section the nature of the
difficulty.

4.5.2 ITERATIVE APPLICATION OF TWO FACTOR ANALYSIS

A simple way to do factorial analysis, when there are few factors, is to test the inclusion of factors
one by one. This is called Two Factor Analysis. We explain it on one example:

EXAMPLE 4.6: We would like to interpret the data in Figure 4.2 with the model

Zi = a + bxi + cyi + εi (4.14)

where Zi is the measured response time for a transaction i submitted to an information
system, xi is the number of database accesses required by this transaction, and yi is
the number of disk accesses.

We first ask whether the combination of database and disk accesses is required to
explain the data. Since the model in Equation (4.14) fits in the ANOVA framework,
we can apply Theorem 7.4.1. More precisely, we test H0: b = c = 0 versus H1:
(b, c) �= (0, 0). The result shows that we should reject H0, i.e. the parameter (b, c) is
significant.

Df Sum of Sq Mean Sq F Value Pr(F)
diskAc+dbAc 2 19685.91 9842.95 5.4e+002 0
Residuals 97 1780.22 18.35

7We need to compute the variance bias g for b[1] − b[3]. We find g = 2
JK . Thus the variance of the estimator of

b[1] − b[3] is 2s2

JK = 0.0842. The confidence interval for b[1] − b[3] is thus 0.23948 ± 0.1701. It does not contain 0
thus A is better than B.
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(b) Response times Zi versus disk access counts yi

Figure 4.2: Data for Example 4.6 on page 103
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So, at this point, we conclude that the full model in Equation (4.14) is required, namely
the response time is influenced by the disk and memory access counts.

We continue the analysis and ask whether, given that we accept database access in
the model (b �= 0), the second factor disk access is also required. We test H0: c = 0
versus H1: c �= 0. The result below shows that c is not significant at size 0.05 (given
that b is accepted in the model).

Df Sum of Sq Mean Sq F Value Pr(F)
dbAc 1 55.02 55.02 2.998 0.087

Residuals 97 1780.22 18.35

We repeat the analysis, but now adding c before b, i.e. we test H0: b = 0 versus H1:
b �= 0 . The result shows that the addition of b is significant !

Df Sum of Sq Mean Sq F Value Pr(F)
diskAc 1 1413.42 1413.42 77.0141 5.87308e-014

Residuals 97 1780.22 18.35

We see that now, both database access and disk access are significant. To under-
stand why this happened in this example, take a look at Figure 4.3. We see that data
base access and disk access are strongly correlated, so adding data base access to
disk access does not explain the data better (but the converse is not true).
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Figure 4.3: Database access counts xi versus disk access counts yi.

This example illustrates that when testing factors one by one, the answer may depends on the order
with which the factors are considered. This is annoying, but is in the nature of the explanatory
model, and is not an artifact of the statistical method.

We see next a case where this annoying phenomenon cannot occur.
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4.5.3 FACTORIAL ANALYSIS WITH ORTHOGONAL FACTORS

This is a practical case where we can analyze factors for themselves, independent of the order
where we add them. In practice, we use it when the factors take a small number of discrete values,
with an ANOVA model. The method is based on the following theoretical framework.

DEFINITION 4.5.1 (Orthogonal Factors). Assume a Linear Regression Model as in Definition 4.3.1
and:

1. The parameter can be decomposed in a unique way as �β = �β1 + �β2 + ... + �βm0 , where the
component �βm ∈ Bm represents factor m. Bm is a linear subspace of the set of parameters.

2. The decomposition is with orthogonal factors, i.e.X(Bm) ⊥ X(Bm′) for all m �= m′.

EXAMPLE: RESPONSE TIME AGAIN.What is the decomposition of factors being tested
in Example 4.6 on page 103 ?

The model is Zi = a + bxi + cyi + εi.

One possible decomposition, in two factors, is

(a, b, c) = (a, 0, 0) + (0, b, c)

The first factor is a, the second is (b, c). The first test in Example 4.6 on page 103
says that the presence of (b, c) is significant, which is equivalent to accepting that
(b, c) �= (0, 0).

Are the factors orthogonal ? B1 is the set of (a, 0, 0), a ∈ R, and X(B1) is the set of
vectors of length I = 100 of the form⎛

⎜⎜⎝
a
a
· · ·
a

⎞
⎟⎟⎠ = a

⎛
⎜⎜⎝

1
1
· · ·
1

⎞
⎟⎟⎠ = a
e1

Similarly, B2 is the set of (0, b, c), b, c ∈ R, and X(B2) is the set of vectors of the form
b
e2 + b
e2 with


e2 =

⎛
⎜⎜⎜⎜⎝

x1

· · ·
xi

· · ·
xI

⎞
⎟⎟⎟⎟⎠ and 
e3 =

⎛
⎜⎜⎜⎜⎝

y1

· · ·
yi

· · ·
yI

⎞
⎟⎟⎟⎟⎠

The factors are orthogonal if and only if < 
e1, 
e2 >=< 
e1, 
e3 >= 0. This is not the case
as < 
e1, 
e2 >=

∑
i xi �= 0.

An alternative decomposition, in three factors, is

(a, b, c) = (a, 0, 0) + (0, b, 0) + (0, 0, c)

There are three spaces X(Bj), j = 1, 2, 3, each generated by 
ej . They are not mutually
orthogonal either, so this model does not satisfy Definition 4.5.1.
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EXAMPLE: N-WAY ANOVA IS WITH ORTHOGONAL FACTORS. As in Definition 4.4.1, we
give the details for N = 2.

The parameter 
β is the array (a, b[], c[], d[, ]) and B is the set of 
β that satisfy the
constraints in Equation (4.12). The set X(B) is the set of arrays z[i, j, r] that depend
only on i and j. Its dimension is p = IJ .

Consider the decomposition of 
β into 4 factors: a, b[], c[] and d[, ]. The first factor is not
a real factor, it represents the constant term, the second b[] represents the first true
factor, the third factor c[] represents the second true factor; the fourth factor d[, ] is the
interaction between the two true factors.

With the constraints of the ANOVA model, the model is with orthogonal factors. To
see why, we determine the spaces X(Bm), m = 1...4.

• X(B1) is obtained by letting b[] = c[] = d[, ] = 0 in 
β. Thus it is the set of arrays
z1[i, j, k] that are constants: z1[i, j, k] = a. The dimension is k1 = 1.

• X(B2) is the set of arrays z2 of the form z2[i, j, k] = b[i] for some values of b[]
such that

∑
i b[i] = 0. The dimension is k2 = I − 1.

It comes < z1, z2 >= Ja
∑

i b[i] = 0 thus X(B1) ⊥ X(B2).
• Similarly, X(B3) is the set of arrays z3 of the form z3[i, j, k] = c[j] for some values

of c[] such that
∑

j c[j] = 0. The dimension is k3 = J − 1 and X(B1) ⊥ X(B3).
Further, < z2, z3 >=

∑
i,j b[i]c[j] = (

∑
i b[i])(

∑
j c[j]) = 0 thus X(B2) ⊥ X(B3).

• X(B4) is the set of arrays z4 of the form z4[i, j, k] = d[i, j] for some values of d[]
such that

∑
i d[i, j] =

∑
j d[i, j] = 0. The dimension is k4 = (I − 1)(J − 1). It

follows similarly that X(B4) is orthogonal to X(Bm), m = 1, 2, 3.

THEOREM 4.5.1. Consider a linear regression model with orthogonal factors. Let ŷm be the
predicted response if we consider only factor m (i.e. if we let �βm′ = 0 for all m′ �= m). Let

SS(m) = ‖ŷm‖2 (4.15)

SSR =
∥∥∥�Y − (ŷ1 + ...+ ŷm0)

∥∥∥2

(4.16)

• The predicted response (under the model without restrictions) is ŷ1 + ...+ ŷm0 .
• The likelihood ratio statistic for the test H0: �βm = �0 versus H1: βm �= �0 is

f :=
SS(m)/km

SSR/(N − (k1 + ...+ km0))
(4.17)

It has a Fisher distribution with degrees of freedom as in the fraction. Its p-value is 1 −
Fkm,N−(k1+...+km0 )(f)

The test with size α accepts the inclusion of the mth factor if the p-value is less than α, i.e. if the
F -statistic in the theorem is large.
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SSR is the sum of squared residuals; SS(m) is classically interpreted as the variation in the data
explained by factor m. To see why, let model m be defined as the model obtained if we accept
only factors 1 to m (i.e if we let �βm′ = 0 for m′ > m). Under model m the predicted response is

ŷ1 + ...+ ŷm and the residual sum of squares is
∥∥∥�Y − (ŷm+1 + ...+ ŷm0)

∥∥∥2

. Thus the reduction in

residual sum of squares obtained when we go from model m − 1 to model m (i.e. we add factor
m) is SS(m).

Note that, with our assumptions, this reduction is independent of the order of the factors, and the
annoying phenomenon reported in Example 4.6 on page 103 cannot occur here.

Proof. tbd in details. Follows from Theorem 12.5.1 and Theorem 12.5.2.

�

EXAMPLE: MOBILE ROUTING, CONTINUED. Since the factors are orthogonal, we can
apply Theorem 4.5.1 to the original model. The F -tests indicate that the interactions
are non-significant.

Df Sum of Sq Mean Sq F Value Pr(F)
routing 3 52580.60 17526.87 13.80558 0.0000038

mobilityModel 2 58962.28 29481.14 23.22174 0.0000003
routing:mobilityModel 6 14277.35 2379.56 1.87433 0.1122506

Residuals 36 45703.77 1269.55

However, we found in Example 4.5 on page 101 that the residuals indicate a large
deviation from normality and that changing Y to 1/Y does give satisfactory residuals.
The F -tests for 1/Y indicate that the interactions are non significant:

Df Sum of Sq Mean Sq F Value Pr(F)
routing 3 3.576561 1.192187 28.34307 0.0000000

mobilityModel 2 6.110433 3.055216 72.63475 0.0000000
routing:mobilityModel 6 0.275198 0.045866 1.09042 0.3867329

Residuals 36 1.514259 0.042063

This shows that an additive model is adequate, namely

1/Y [i, j, k] = a + b[i] + c[j] + ε[i, j, k]

We re-apply Theorem 4.5.1 to this model and find the results below. This shows that
both routing and mobility model play a role in the final result.

Df Sum of Sq Mean Sq F Value Pr(F)
routing 3 3.576561 1.192187 27.98160 4.19193e-010

mobilityModel 2 6.110433 3.055216 71.70843 2.86000e-014
Residuals 42 1.789456 0.042606
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SPECIAL CASE: FACTORS WITH ONLY 2 LEVELS. When the indices i, j in Equation (4.11)
take only two values (there are only two levels), then all factor subspaces Bi have dimension 1.
The convention in this case is to label the two levels −1 and 1. The 2-way ANOVA model in
Equation (4.11) can then be re-written as

Y [i, j, k] = a+ bi+ cj + dij + ε[i, j, k]

where a, b, c, d are scalars and i = ±1, j = ±1, k = 1...K. This model is sometimes called 2kr
factorial analysis (here with k = 2 and r = K). See exercise 4.7 for an example.

4.6 APPLICATION TO MODELING: HIDDEN FACTORS

EXAMPLE 4.7: TCP THROUGHPUT. The data on Figure 4.4, left, suggests that
throughput increases with mobility. The right plot shows the same data, but reveals
the window size. The conclusion is inverted: throughput decreases with mobility. The
hidden factor influences the final result: all experiments with low speed are for small
window sizes.
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Figure 4.4: Left: plot of throughput versus speed for a mobile node. Right: same plot, but showing window
size; s = small window, L = large window.

Avoiding hidden factors may be done by proper randomization of the experiments. On the example
above, a proper design would have distributed window sizes randomly with respect to the speed.
If randomization is not possible, then all factors have to be incorporated in the model.

QUESTION 4.6.1. Give a linear regression model for Figure 4.4. 8

In conclusion: before stating that some factor has a given impact on the overall performance, make
sure that there is no hidden factor that plays a role.

8Let Yi be the throughput of the ith data point, si the speed, and wi = 1 when the window size is small, wi = 2
otherwise. A model is Yi = awi

+ bwi
si + εi. The unknown parameter is 
β = (a1, a2, b1, b2) with 4 degrees of

freedom. The lines y = aix + bi are shown on Figure 4.4, right.
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4.7 EXERCISES

EXERCISE 4.1. Compute confidence intervals for Example 1 in Section 4.3.

EXERCISE 4.2. Compute the confidence interval for Example 3 by using Theorem ?? item 5 instead
of the method above.

EXERCISE 4.3. Homework

1. Import the data of Table 1.3 by copying the file indicated in a complementary document.
There is one single file for the whole dataset.

2. Do a linear regression of the response time as a function of the three factors and their
interaction: user type, compiler option and experiment period. Give confidence intervals for
the effects. Verify the residuals. Does it look convincing ? What effects are significant ? Can
you conclude which compiler option is better

3. Do the same with 1000/(response time). What is now the conclusion ?
4. Do the same analysis with user type =”R” and userType=“L” separately. Can you con-

clude ?

USEFUL MATLAB COMMANDS

• anova1, anova2, anovan perform linear regression for the N -way ANOVA model, i.e.
for N = 2:

Y [i, j, k] = a+ b[i] + c[j] + d[i, j] + ε[i, j, k] (4.18)

• regress solves the general model as in Theorem 4.3.1.

USEFUL S COMMANDS Read the S-PLUS guide to statistics, Chapter “Designed Experiments
and Analysis of Variance”, Section “The Two-Way Layout with Replicates”

Useful commands:

• fac.design, data.frame: create data structures
• plot.design, plot.factor, interaction.plot: graphical exploration
• x <- aov, coefficients(x), model.tables(x,se=T): perform analysis of

variance and display results with estimate of standard deviation of effect
• lm, glm, gam: normal, non normal linear regression (best least square estimator)



CHAPTER 5

PERFORMANCE PATTERNS

5.1 CONGESTION COLLAPSE

Consider a network where sources may send at a rate limited only by the source capabilities. Such
a network may suffer of congestion collapse, which we explain now on an example.

We assume that the only resource to allocate is link bit rates. We also assume that if the offered
traffic on some link l exceeds the capacity cl of the link, then all sources see their traffic reduced in
proportion of their offered traffic. This assumption is approximately true if queuing is first in first
out in the network nodes, neglecting possible effects due to traffic burstiness.

Consider first the network illustrated on Figure 5.1. Sources 1 and 2 send traffic to destination
nodes D1 and D2 respectively, and are limited only by their access rates. There are five links
labeled 1 through 5 with capacities shown on the figure. Assume sources are limited only by their
first link, without feedback from the network. Call λi the sending rate of source i, and λ′i the
outgoing rate.

For example, with the values given on the figures we find λ1 = 100kb/s and λ2 = 1000kb/s, but
only λ′1 = λ′2 = 10kb/s, and the total throughput is 20kb/s ! Source 1 can send only at 10 kb/s
because it is competing with source 2 on link 3, which sends at a high rate on that link; however,
source 2 is limited to 10 kb/s because of link 5. If source 2 would be aware of the global situation,
and if it would cooperate, then it would send at 10 kb/s only already on link 2, which would allow
source 1 to send at 100 kb/s, without any penalty for source 2. The total throughput of the network
would then become θ = 110kb/s.

The first example has shown some inefficiency. In complex network scenarios, this may lead to a
form of instability known as congestion collapse. To illustrate this, we use the network illustrated
on Figure 5.2. The topology is a ring; it is commonly used in many networks, because it is a simple
way to provide some redundancy. There are I nodes and links, numbered 0, 1, ..., I − 1. Source
i enters node i, uses links [(i + 1) mod I] and [(i + 2) mod I], and leaves the network at node
(i + 2) mod I . Assume that source i sends as much as λi, without feedback from the network.
Call λ′i the rate achieved by source i on link [(i + 1) mod I] and λ′′i the rate achieved on link
[(i+ 2) mod I]. This corresponds to every source choosing the shortest path to the destination. In

111
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1

2

X Y

D1

D2

link 1
c1 = 100 kb/s

link 2
c2 = 1000 kb/s

link 3
c3 = 110 kb/s

link 4
c4 = 100 kb/s

link 5
c5 = 10 kb/s

Source 1

Source 2

Figure 5.1: A simple network exhibiting some inefficiency if sources are not limited by some feedback from
the network

the rest of this example, we omit “modI” when the context is clear. We have then:⎧⎨
⎩

λ′i = min
(
λi,

ci

λi+λ′
i−1
λi

)
λ′′i = min

(
λ′i,

ci+1

λ′
i+λi+1

λ′i
) (5.1)
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Figure 5.2: A network exhibiting congestion collapse if sources are not limited by some feedback from the
network

Applying Equation 5.1 enables us to compute the total throughput θ. In order to obtain a closed
form solution, we further study the symmetric case, namely, we assume that ci = c and λi = λ for
all i. Then we have obviously λ′i = λ and λ′′i = λ′′ for some values of λ′ and λ′ which we compute
now.

If λ ≤ c
2

then there is no loss and λ′′ = λ′ = λ and the throughput is θ = Iλ. Else, we have, from
Equation (5.1)

λ′ =
cλ

λ+ λ′

We can solve for λ′ (a polynomial equation of degree 2) and obtain

λ′ =
λ

2

(
−1 +

√
1 + 4

c

λ

)

We have also from Equation (5.1)

λ′′ =
cλ′

λ+ λ′
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Combining the last two equations gives

λ′′ = c− λ

2

(√
1 + 4

c

λ
− 1

)

Using the limited development, valid for u→ 0

√
1 + u = 1 +

1

2
u− 1

8
u2 + o(u2)

we have

λ′′ =
c2

λ
+ o(

1

λ
)

Thus, the limit of the achieved throughput, when the offered load goes to +∞, is 0. This is what
we call congestion collapse.

Figure 5.3 plots the throughput per source λ′′ as a function of the offered load per source λ. It
confirms that after some point, the throughput decreases with the offered load, going to 0 as the
offered load goes to +∞.
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� �
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 � � � � � � � 	 � 
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 � 
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Figure 5.3: Throughput per source as a function of the offered load per source, in Mb/s, for the network of
Figure 5.2. Numbers are in Mb/s. The link rate is c = 20Mb/s for all links.

The previous discussion has illustrated the following fact:

FACT 5.1.1 (Efficiency Criterion). In a packet network, sources should limit their sending rate
by taking into consideration the state of the network. Ignoring this may put the network into
congestion collapse. One objective of congestion control is to avoid such inefficiencies.

Congestion collapse occurs when some resources are consumed by traffic that will be later dis-
carded. This phenomenon did happen in the Internet in the middle of the eighties. At that time,
there was no end-to-end congestion control in TCP/IP. As we will see in the next section, a sec-
ondary objective is fairness.

QUESTION 5.1.1. Can you imagine a congestion collapse scenario due to customer impatience ?
1

1to be done –see Hébuternes notes.
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5.1.1 PUT MORE, GET LESS

QUESTION 5.1.2. Can you imagine a system where adding capacity to a bottleneck makes things
worse for every user ? 2

5.2 MULTI-USER PERFORMANCE

In many complex systems, there is not a single user and a global performance objective is not
obviously defined. Maximizing the overall sum of individual performance metrics is not always
intuitive.

5.2.1 EFFICIENCY VERSUS FAIRNESS

Assume that we want to maximize the network throughput, based on the considerations of the
previous section. Consider the network example in Figure 5.4, where source i sends at a rate xi,
i = 0, 1 . . . , I , and all links have a capacity equal to c. We assume that we implement some form
of congestion control and that there are negligible losses. Thus, the flow on link i is n0x0 + nixi.
For a given value of n0 and x0, maximizing the throughput requires that nixi = c − n0x0 for
i = 1, . . . , I . The total throughput, measured at the network output, is thus Ic− (I − 1)n0x0; it is
maximum for x0 = 0 !

link i
capacity c

n0 Type 0 
Sources at rate x0

��
��

ni Type i 
Sources at rate xi
���
���
���

Figure 5.4: A simple network used to illustrate fairness (the“parking lot” scenario)

The example shows that maximizing network throughput as a primary objective may lead to gross
unfairness; in the worst case, some sources may get a zero throughput, which is probably consid-
ered unfair by these sources.

5.2.2 MAX-MIN FAIRNESS

In a simple vision, fairness simply means allocating the same share to all. In the simple case of
Figure 5.4 with ni = 1 for all i, this would mean allocating xi = c

2
to all sources i = 0, . . . , I .

However, in the case of a network, such a simple view does not generally make sense.

2Here is one example. Consider Figure 5.2 and assume now that the access link rate rate for every source is limited
to 6 Mb/s. For every user, the bottleneck is the access link, and the throughput per user is 6 Mb/s. Assume now that
we multiply the access link rate by 10. Figure 5.3 shows that the throughput decreases to 4 Mb/s.
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Consider again the example of Figure 5.4, now with general values for ni. If we follow the previous
line of reasoning, we would allocate the fraction c

n0+ni
to each of the n0 + ni sources using link

i. This yields xi = c
n0+ni

for i ≥ 1; for i = 0, the reasoning of the previous section indicates that
we should allocate x0 = min1≤i≤I

c
n0+ni

. For example, with I = 2, n0 = n1 = 1 and n2 = 9,
we would allocate x0 = 0.1c, x1 = 0.5c and x2 = 0.1c. This allocation however would not
fully utilize link 1; we could decide to increase the share of sources of type 1 since this can be
done without decreasing the shares of other sources. Thus, a final allocation could be x0 = 0.1c,
x1 = 0.9c and x2 = 0.1c. We have illustrated that allocating resources in an equal proportion is
not a good solution since some sources can get more that others without decreasing others’ shares.
Formally, this leads to our first definition of fairness called max-min fairness.

Consider an allocation problem; define the vector �x whose ith coordinate is the allocation for user
i. Let X be the set of all feasible allocations.

DEFINITION 5.2.1 (Max-min Fairness). [1]A feasible allocation of rates �x is “max-min fair” if
and only if an increase of any rate within the domain of feasible allocations must be at the cost of
a decrease of some already smaller rate. Formally, for any other feasible allocation �y, if ys > xs

then there must exist some s′ such that xs′ ≤ xs and ys′ < xs′ .

Depending on the problem, a max-min fair allocation may or may not exist. However, if it exists, it
is unique (see later for a proof). We develop the theory in a special case where existence is always
guaranteed. For a general set of results, see [Radunovic02-Allerton].

NETWORK MODEL We use the following simplified network model in the rest of this section.
We consider a set of sources s = 1, . . . , S and links 1, . . . , L. Let Al,s be the fraction of traffic
of source s which flows on link l, and let cl be the capacity of link l. We define a network as the
couple (�x,A).

A feasible allocation of rates xs ≥ 0 is defined by:
∑S

s=1Al,sxs ≤ cl for all l.

Our network model supports both multicast and load sharing. For a given source s, the set of links
l such that Al,s > 0 is the path followed by the data flow with source s. In the simplest case (no
load sharing), Al,s ∈ {0, 1}; if a flow from source s is equally split between two links l1 and l2,
then Al1,s = Al2,s = 0.5. In principle, Al,s ≤ 1, but this is not mandatory (in some encapsulation
scenarios, a flow may be duplicated on the same link).

It can be seen (and this is left as an exercise) that the allocation in the previous example is max-min
fair. The name “max-min” comes from the idea that it is forbidden to decrease the share of sources
that have small values, thus, in some sense, we give priority to flows with small values.

In general, we might ask ourselves whether there exists a max-min fair allocation to our network
model, and how to obtain it. This will result from the key concept of “bottleneck link”.

DEFINITION 5.2.2 (Bottleneck Link). With our network model above, we say that link l is a bot-
tleneck for source s if and only if

1. link l is saturated: cl =
∑

iAl,ixi

2. source s on link l has the maximum rate among all sources using link l: xs ≥ xs′ for all s′

such that Al,s′ > 0.

Intuitively, a bottleneck link for source s is a link which is limiting, for a given allocation. In the
previous numerical, example, link 2 is a bottleneck for sources of type 0 and 2, and link 1 is a
bottleneck for the source of type 1.
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THEOREM 5.2.1. A feasible allocation of rates �x is max-min fair if and only if every source has a
bottleneck link.

PROOF: Part 1. Assume that every source has a bottleneck link. Consider a source s for which
we can increase the rate xs while keeping the allocation feasible. Let l be a bottleneck link for s.
Since l is saturated, it is necessary to decrease xs′ for some s′ such that Al,s′ > 0. We assumed
that we can increase the rate of s: thus there must exist some s′ �= s that shares the bottleneck link
l. But for all such s′, we have xs ≥ xs′ , thus we are forced to decrease xs′ for some s′ such that
xs ≥ xs′ : this shows that the allocation is max-min fair.

Part 2. Conversely, assume that the allocation is max-min fair. For any source s, we need to
find a bottleneck link. We proceed by contradiction. Assume there exists a source s with no
bottleneck link. Call L1 the set of saturated links used by source s, namely, L1 = {l such that cl =∑

iAl,ixi and Al,s > 0}. Similarly, call L2 the set of non-saturated links used by source s. Thus a
link is either in L1 or L2, or is not used by s. Assume first that L1 is non-empty.

source s

link l1

link l2

source 
σ(l1)

source 
σ(l1)

Figure 5.5: A network example showing one multicast source

By our assumption, for all l ∈ L1 , there exists some s′ such that Al,s′ > 0 and xs′ > xs. Thus
we can build a mapping σ from L1 into the set of sources {1, . . . , S} such that Al,σ(l) > 0 and
xσ(l) > xs (see Figure 5.5 for an illustration). Now we will show that we can increase the rate xs

in a way that contradicts the max-min fairness assumption. We want to increase xs by some value
δ, at the expense of decreasing xs′ by some other values δs′ , for all s′ that are equal to some σ(l′).
We want the modified allocation to be feasible; to that end, it is sufficient to have:

Al,sδ ≤ Al,σ(l)δσ(l) for all l ∈ L1 (5.2)

Al,sδ ≤ cl −
∑

i

Al,ixi for all l ∈ L2 (5.3)

δσ(l) ≤ xσ(l) for all l ∈ L1 (5.4)

Equation (5.2) expresses that the increase of flow due to source s on a saturated link l is at least
compensated by the decrease of flow due to source σ(l). Equation (5.3) expresses that the increase
of flow due to source s on a non-saturated link l does not exceed the available capacity. Finally,
equation (5.4) states that rates must be non-negative.
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This leads to the following choice.

δ = min
l∈L1

{xσ(l)Al,σ(l)

Al,s

} ∧ min
l∈L2

{cl −
∑

iAl,ixi

Al,s

} (5.5)

which ensures that Equation (5.3) is satisfied and that δ > 0.

In order to satisfy Equations (5.2) and (5.4) we need to compute the values of δσ(l) for all l in L1.
Here we need to be careful with the fact that the same source s′ may be equal to σ(l) for more than
one l. We define δ(s′) by

δ(s′) = 0 if there is no l such that s′ = σ(l) (5.6)

δ(s′) = max{l such that σ(l)=s′}{ δAl,s

Al,σ(l)
} otherwise (5.7)

This definition ensures that Equation (5.2) is satisfied. We now examine Equation (5.4). Consider
some s′ for which there exists an l with σ(l) = s, and call l0 the value which achieves the maximum
in (5.7), namely:

δ(s′) =
δAl0,s

Al0,s′
(5.8)

From the definition of δ in (5.5), we have

δ ≤ xσ(l0)Al0,σ(l0)

Al0,s

=
xs′Al0,s′

Al0,s

Combined with (5.8), this shows that Equation (5.4) holds. In summary, we have shown that we
can increase xs at the expense of decreasing the rates for only those sources s′ such that s′ = σ(l)
for some l. Such sources have a rate higher than xs, which shows that the allocation �x is not
max-min fair and contradicts our hypothesis.

It remains to examine the case where L1 is empty. The reasoning is the same, we can increase xs

without decreasing any other source, and we also have a contradiction.

THE ALGORITHM OF PROGRESSIVE FILLING The previous theorem is particularly useful in
deriving a practical method for obtaining a max-min fair allocation, called “progressive filling”.
The idea is as follows. You start with all rates equal to 0 and grow all rates together at the same
pace, until one or several link capacity limits are hit. The rates for the sources that use these
links are not increased any more, and you continue increasing the rates for other sources. All the
sources that are stopped have a bottleneck link. This is because they use a saturated link, and all
other sources using the saturated link are stopped at the same time, or were stopped before, thus
have a smaller or equal rate. The algorithm continues until it is not possible to increase. The
algorithm terminates because L and S are finite. Lastly, when the algorithm terminates, all sources
have been stopped at some time and thus have a bottleneck link. By application of Theorem 5.2.1,
the allocation is max-min fair.

EXAMPLE Let us apply the progressive filling algorithm to the parking lot scenario. Initially,
we let xi = 0 for all i = 0, . . . , I; then we let xi = t until we hit a limit. The constraints are

n0x0 + nixi ≤ c for all i = 1, . . . , I
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Thus the first constraint is hit at t1 = min{ c
n0+ni

} and it concerns sources of type 0 and type i0 for
all values of index i0 which minimize the expression above. Thus

x0 = min{ c

n0 + ni

}

In order to compute the rates for sources of other types, we continue to increase their rates. Now
all constraints become independent and we finally have

xi =
c− n0x0

ni

If all ni’s are equal, the we see that all sources obtain the same rate. In some sense, max-min
fairness ignores the fact that sources of type 0 use more network resources than those of type i,
i ≥ 1. In that case, the total throughput for the parking lot network is (I+1)c

2
, which is almost half

of the maximum admissible throughput of Ic.

THEOREM 5.2.2. For the network defined above, with fixed routing parameters Al,s, there exists a
unique max-min fair allocation. It can be obtained by the algorithm of progressive filling.

PROOF: We have already proven the existence. Assume now that �x and �y are two max-min fair
allocations for the same problem, with �x �= �y. Without loss of generality, we can assume that there
exists some i such that xi < yi. Consider the smallest value of xi that satisfies xi < yi, and call i0
the corresponding index. Thus, xi0 < yi0 and

if xi < yi then xi0 ≤ xi (5.9)

Now since �x is max-min fair, from Definition 5.2.1, there exists some j with

yj < xj ≤ xi0 (5.10)

Now �y is also max-min fair, thus by the same token there exists some k such that

xk < yk ≤ yj (5.11)

Combining (5.10) and (5.11), we obtain

xk < yk ≤ yj < xj ≤ xi0

which contradicts (5.9).

The notion of max-min fairness can be easily generalized by using weights in the definition [1, 3].

5.2.3 PROPORTIONAL FAIRNESS

The previous definition of fairness puts emphasis on maintaining high values for the smallest rates.
As shown in the previous example, this may be at the expense of some network inefficiency. An
alternative definition of fairness has been proposed in the context of game theory [4].



5.2. MULTI-USER PERFORMANCE 119

DEFINITION 5.2.3 (Proportional Fairness). An allocation of rates �x is “proportionally fair” if and
only if, for any other feasible allocation �y, we have:

S∑
s=1

ys − xs

xs

≤ 0

In other words, any change in the allocation must have a negative average change. Let us con-
sider for example the parking lot scenario with ns = 1 for all s. Is the max-min fair allocation
proportionally fair ?

To get the answer, remember that, for the max-min fair allocation, xs = c/2 for all s. Consider a
new allocation resulting from a decrease of x0 equal to δ:

y0 = c
2
− δ

ys = c
2

+ δ s = 1, . . . , I

For δ < c
2
, the new allocation �y is feasible. The average rate of change is(

I∑
s=1

2δ

c

)
− 2δ

c
=

2(I − 1)δ

c

which is positive for I ≥ 2. Thus the max-min fair allocation for this example is not proportionally
fair for I ≥ 2. In this example, we see that a decrease in rate for sources of type 0 is less important
than the corresponding increase which is made possible for the other sources, because the increase
is multiplied by the number of sources. Informally, we say that proportional fairness takes into
consideration the usage of network resources.

Now we derive a practical result which can be used to compute a proportionally fair allocation. To
that end, we interpret the average rate of change as ∇J�x · (�y − �x), with

J(�x) =
∑

s

ln(xs)

Thus, intuitively, a proportionally fair allocation should maximize J .

THEOREM 5.2.3. There exists one unique proportionally fair allocation. It is obtained by maxi-
mizing J(�x) =

∑
s ln(xs) over the set of feasible allocations.

PROOF: We first prove that the maximization problem has a unique solution. Function J is
concave, as a sum of concave functions. The feasible set is convex, as intersection of convex sets,
thus any local maximum of J is an absolute maximum. Now J is strictly concave, which means
that

if 0 < α < 1 then J(α�x+ (1 − α)�y) < αJ(�x) + (1 − α)J(�y)

This can be proven by studying the second derivative of the restriction of J to any linear segment.
Now a strictly concave function has at most one maximum on a convex set (Chapter ??).

Now J is continuous if we allow log(0) = −∞ and the set of feasible allocations is compact
(because it is a closed, bounded subset of R

S). Thus J has at least one maximum over the set of
feasible allocations.
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Combining all the arguments together proves that J has exactly one maximum over the set of
feasible allocations, and that any local maximum is also exactly the global maximum.

Then for any �δ such that �x+ �δ is feasible,

J(�x+ �δ) − J(�x) = ∇J�x · �δ +
1

2

t
�δ∇2J�x

�δ + o(||�δ||2)
Now by the strict concavity, ∇2J�x is definite negative thus

1

2

t
�δ∇2J�x

�δ + o(||�δ||2) < 0

for ||�δ|| small enough.

Now assume that �x is a proportionally fair allocation. This means that

∇(J)�x · �δ ≤ 0

and thus J has a local maximum at �x, thus also a global maximum. This also shows the uniqueness
of a proportionally fair allocation.

Conversely, assume that J has a global maximum at �x, and let �y be some feasible allocation. Call
D the average rate of change:

D = ∇(J)�x · (�y − �x)

Since the feasible set is convex, the segment [�x, �y] is entirely feasible, and

D = lim
t→0+

J(�x+ t(�y − �x)) − J(�x)

t

and thus D ≤ 0.

EXAMPLE Let us apply Theorem 5.2.3 to the parking lot scenario. For any choice of x0, we
should set xi such that

n0x0 + nixi = c, i = 1, . . . , I

otherwise we could increase xi without affecting other values, and thus increase function J . The
value of x0 is found by maximizing f(x0), defined by

f(x0) = n0 ln(x0) +
I∑

i=1

ni(ln(c− n0x0) − ln(ni))

over the set 0 ≤ x0 ≤ c
n0

. The derivative of f is

f ′(x0) =
n0

x0

− n0

c− n0x0

I∑
i=1

ni

After some algebra, we find that the maximum is for

x0 =
c∑I

i=0 ni
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and

xi =
c− n0x0

ni

For example, if ni = 1 for all i = 0, . . . , I , we obtain:

x0 = c
I+1

xi = cI
I+1

Compare with max-min fairness, where, in that case, the allocation is c
2

for all rates. We see that
sources of type 0 get a smaller rate, since they use more network resources.

The concept of proportional fairness can easily extended to rate proportional fairness, where the
allocation maximizes a weighted sum of logarithms [2].

UTILITY APPROACH Proportional fairness is an example of a more general fairness concept,
called the “utility” approach, which is defined as follows. Every source s has a utility function us

where us(xs) indicates the value to source s of having rate xs. Every link l (or network resource
in general) has a cost function gl, where gl(f) indicates the cost to the network of supporting
an amount of flow f on link l. Then, a “utility fair” allocation of rates is an allocation which
maximizes H(�x), defined by

H(�x) =
S∑

s=1

us(xs) −
L∑

l=1

gl(fl)

with fl =
∑S

s=1Al,sxs, over the set of feasible allocations.

Proportional fairness corresponds to us = ln for all s, and gl(f) = 0 for f < cl, gl(f) = +∞ for
f ≥ cl. Rate proportional fairness corresponds to us(xs) = ws ln(xs) and the same choice of gl.

Computing utility fairness requires solving constrained optimization problems; a reference is [5].

MAX-MIN AS LIMITING CASE OF UTILITY FAIRNESS It can be shown that max-min fair-
ness is a limiting case of utility fairness – see [Radunovic02-Allerton].

5.2.4 PUT MORE, GET LESS FOR SOME

If a multi-user performance criterion is used, then it can happen that adding some capacity de-
creases the performance experienced by some.

QUESTION 5.2.1. Give an example where this happens. 3

3Consider the parking lot scenario above, with I = 2 nodes, n0 = n1 = 1, n2 = 9, c1 = c2 = 1, and assume the
system distributes rates in a max-min fair way. The max-min fair rate is x0 = x2 = 0.1, x1 = 0.9. Now increase the
capacity of link 2 to c2 = 10. The max-min fair allocation is now x0 = x1 = 0.5, x2 = 1.044. The rate of source 1
has decreased.
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5.3 BRAESS PARADOX

We have seen earlier that adding capacity may decrease the performance seen by some users.
In some cases, adding capacity may decrease the performance seen by all users. The Braess
paradox in one such example, found in networking. It is another example of “Put more, get less”.

Here is Braess’ original example, slightly modified. Consider a network where users pick the
routes with minimum delay. See Figure 5.6. Assume first that the delay on link 5 is infinite
(the link is not open). The delay on link j is a function Dj(ρj), where ρj is the load. Take
D1(ρ) = D4(ρ) = 2 + 10ρ, D2(ρ) = D3(ρ) = 48 + ρ and let the total load be b0 = 6. Every user
has the choice of a number of routes. Assume there are infinitely many small users. As a result, the
traffic for a given source destination pairs uses only routes that minimize the delay. The resulting
rate distribution is said to satisfy the Wardrop Equilibrium condition.

b0

1

2

3

45

Figure 5.6: Network where the Braess paradox occurs. There are 5 links, labeled 1 to 5. Links 2 and 3
have a long fixed delay but high throughput. Links 1 and 4 have a small fixed delay but low throughput. Link
5 has medium fixed delay and high throughput. Assume all users pick a shortest delay path. Delays get
worse for all users in the equilibrium reached after link 5 is opened.

For example, if we take ρ1 = 1, ρ2 = 5, the delay on route 1− 3 is 61, and on route 2− 4 it is 105;
this is not a Wardrop equilibrium. But if we take ρ1 = ρ2 = 3, we have a Wardrop equilibrium and
the mean delay for all is 83.

More generally, consider a network model as follows [Kelly91-nr]. J is the set of links and we
define ρj Dj as above. S is the set of source destination pairs and R is the set of possible routes
(not necessarily disjoint), where routes joining different source destination pairs considered to be
distinct. Let Hs,r = 1{s uses r} and Aj,r = 1{j is on r}. Let bs be the total traffic demand of s, νr

the distribution of route r. The Wardrop equilibrium is defined by the following conditions:⎧⎨
⎩

Hν = b
Aν = ρ
νr > 0 ⇒∑

j∈r Dj(ρj) = minr′:Hs,r′=1

∑
j∈r′ Dj(ρj)
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QUESTION 5.3.1. Write the Wardrop equilibrium conditions for the example above. 4

THEOREM 5.3.1 (Kelly91-nr). Consider the network model above, and assume that Dj(ρ) is con-
tinuous and increasing. There is one unique Wardrop equilibrium.

The proof can be found in [Kelly91-rt]. It consists in associating the Wardrop equilibrium condi-
tions to a convex optimization problem, and applying the strong duality principle.

Now let us come back to the example in Figure 5.6. Open link 5 and let its delay function be
f5(ρ) = 6 + ρ. The old allocation is not a Wardrop equilibrium; the new equilibrium is for ρ1 = 4,
ρ2 = 2, ρ5 = 2 and the mean delay is 92 for all. Adding a new link has made things worse for all !

This is because the equilibrium obtained by the individual decisions is not a social optimum. A
general discussion of such concepts is the topic of game theory. We can also relate this example to
our general discussion of bottlenecks: adding link 5 does not improve the capacity of the network,
which is limited by links 1 and 3. However, this illustrates that adding capacity at the wrong place
may make things worse.

A Wardrop equilibrium is, in some sense equivalent to what is called a Nash equilibrium in game
theory. See [Altman01-survey] for a more accurate statement and a first introduction to game
theory. See Exercise 5.5 for an example of Braess paradox with elastic traffic. See [Altman01-
ITC17] for sufficient conditions for avoiding the Braess paradox.

5.4 NON MONOTONE EFFECTS IN QUEUING

5.4.1 PRIORITY QUEUES

Bramson queues. To be done from Deleval’s simulation.

5.4.2 FIFO SYSTEMS

Matthew Andrew’s paper on instability.

5.4.3 BELADY’S ANOMALY

Storing page references in FIFO mode leads to a situation similar to Braess’ s paradox. See Ta-
ble 5.1.

5.5 EXERCISES

EXERCISE 5.1. Consider the intranet on Figure 5.7. There are three Ethernet segments at 10
Mb/s,each corresponding to a net:subnet prefix noted n1, n2 and n3. Every Ethernet segment
is connected to two routers as indicated on the figure. There is no external connection to this
intranet. Each Ethernet segment has a number of hosts directly attached to it. The Ethernet
segments are shared media, there is no Ethernet switching equipment.

4to be done
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Reference String 3 2 1 0 3 2 4 3 2 1 0 4 2 3 2 1 0 4
Cache 3 2 1 0 3 2 4 3 2 1 0 4 2 3 3 1 0 4

3 2 1 0 3 2 4 3 2 1 0 4 2 2 3 1 0

Reference String 3 2 1 0 3 2 4 3 2 1 0 4 2 3 2 1 0 4
Cache 3 2 1 0 3 2 4 4 4 1 0 0 2 3 3 1 0 4

3 2 1 0 3 2 2 2 4 1 1 0 2 2 3 1 0
3 2 1 0 3 3 3 2 4 4 1 0 0 2 3 1

Reference String 3 2 1 0 3 2 4 3 2 1 0 4 2 3 2 1 0 4
Cache 3 2 1 0 0 0 4 3 2 1 0 4 4 3 2 1 0 4

3 2 1 1 1 0 4 3 2 1 0 0 4 3 2 1 0
3 2 2 2 1 0 4 3 2 1 1 0 4 3 2 1

3 3 3 2 1 0 4 3 2 2 1 0 4 3 2

Table 5.1: Belady’s anomaly. A Cache with First In, First Out replacement policy. Top: first line: list of
references to objects labeled 1 to 4. References not in bold face represent cache misses. Following lines:
content of the cache. The cache can hold 2 entries. Middle, Bottom: same, but cache can hold 3 [resp. 4]
entries. The number of cache misses is worst (15) with the large cache than with the middle one (14).

R1

R2 R3

n1 n2

n3

x1
x2

x3

Figure 5.7: The network for Exercise 4.5

We assume that the IP routing tables in R1, R2 and R3 are setup in such a way that traffic from
subnet ni to a subnet nj , with i �= j goes through exactly one router.

We call xi the total traffic generated by all hosts directly attached to segment i. We neglect the
effect of collisions on one Ethernet and thus assume that the maximum amount of traffic possible
on every Ethernet segment is 10 Mb/s. We further assume that the destination of traffic originating
from subnet i is uniformly distributed among the three subnets. Thus, for example, the amount of
traffic originating from subnet 1 which has a destination in subnet 2 isx1

3
.

1. What is the maximum value of the total traffic x1 + x2 + x3 which is possible with these
assumptions ?

2. We assume that there are ui flows per segment, each with rate λi, i = 1, 2, 3. Thus xi = uiλi.
If we apply max-min fairness per flow, what is the value of λi for the two following cases:
(i) ui = u for i = 1, 2, 3, and (ii) u1 = 4, u2 = 3 and u3 = 2 ? What is then the maximum
throughput ?

3. Same question if we apply proportional fairness.
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EXERCISE 5.2. Is max-min fairness equivalent to maximizing F (�x) = mins(xs) ? (Examine
separately each of the tow sides of the equivalence).

EXERCISE 5.3. Consider n sources. The rate xi of source i is constrained by xi ≤ ri, for some
fixed numbers ri, 1 ≤ n. In addition, we require that

∑n
i=1 xi ≤ C for some fixed C. With these

constraints, are the max-min fair and proportionally fair rate allocations the same ?

EXERCISE 5.4. Consider the example in Figure 5.1.

1. Give an explicit formula for the throughput as a function of the parameter λ.
2. In the general case for this sample example, what is the maximum throughput available ?

Does it correspond to an equal allocation of resources ?

EXERCISE 5.5. Read [Kelly01-mmi] Sections 1–4, then answer the following questions.

1. What is a Pareto efficient rate allocation ?
2. What is a Wardrop stable point (also called equilibrium) in this paper ?
3. For the single path routing and TCP flows, is the Wardrop equilibrium Pareto efficient ?
4. For the multiple path routing and TCP flows, is the Wardrop equilibrium Pareto efficient ?
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CHAPTER 6

QUEUING THEORY FOR THOSE WHO

CANNOT WAIT

Queuing phenomena are very frequent in computer and communication systems, and explain a
large number of performance patterns. We focus here on fundamental queuing aspects, leav-
ing out the analytical solution of particular queuing systems; the interested reader should con-
sult [Thiran02-LN], [Nain98-Umass] or [Kleinrock76-book] for a classical treatment of queuing
systems.
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6.1 DESCRIPTION OF A QUEUING SYSTEM WITH CUMULA-
TIVE FUNCTIONS

6.1.1 CUMULATIVE FUNCTIONS

Consider a system which is viewed as a black box. It may be a network node, an information
system... We use the following definitions and assumptions.

• A(t) input function is the amount of work that arrives into the system in the time interval
[0, t]

• D(t) output function is the amount of work done in the time interval [0, t]
• Q(t) := A(t) −D(t) is the backlog (unfinished work) at time t.
• Assume that there is some time t0 ≤ 0 at which A(t0) = D(t0) = 0. We interpret t0 as an

instant at which the system is empty.
• Let Q(t) := A(t) −D(t); we interpret Q(t) as the backlog (unfinished work) at time t.
• There is no loss of work.

Also define
d(t) = min {u ≥ 0 : A(t) ≤ (D(t+ u)}

The FIFO assumption means that d(t) is the response time for a hypothetical atom of work that
would arrive at time t. See Figure 6.1.

A(t) D(t)

time

bits
d(t)

t

Q(t)

Figure 6.1: Use of cumulative functions to describe a queuing system.
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EXAMPLE 6.1: PLAYOUT BUFFER. Consider a packet switched network that carries
bits of information from a source with a constant bit rate r (Figure 6.2) as is the case
for example, with circuit emulation. We have a first system S, the network, with input
function A(t) = rt. The network imposes some variable delay, because of queuing
points, therefore the output A′() does not have a constant rate r. What can be done
to re-create a constant bit stream ? A standard mechanism is to smooth the delay

A(t) A’(t) D(t)

time

bits

d(0)d(0) - Δ d(0) + Δ

(D1): 
r(t

  
- d(0

) + 
Δ) 

(D
2):

 r (
t  

- d(0
) -

Δ)
 d(t)

A(t) A’(t) D(t)
S S’

Figure 6.2: A Simple Playout Buffer Example

variation in a playout buffer. It operates as follows. When the first bit of data arrives, at
time d(0), it is stored in the buffer until some initial delay has elapsed. Then the buffer
is served at a constant rate r whenever it is not empty. This gives us a second system
S ′, with input A′() and output D(). What initial delay should we take ? We give an
intuitive, graphical solution. For a formal development, see see [LeBoudecThiran02-
book], Section 1.1.1.

The second part of Figure 6.2 shows that if the variable part of the network delay
(called delay jitter) is bounded by some number Δ, then the output A′(t) is bounded
by the two lines (D1) and (D2). Let us the output D(t) of the playout buffer to the
function represented by (D2), namely D(t) = rt − d(0) − Δ. This means that we read
data from the playout buffer at a constant rate r, starting at time d(0) + Δ. The fact
that A′(t) lies above (D2) means that there is never underflow. Thus the playout buffer
should delay the first bit of data by an amount equal to a bound on delay jitter.

QUESTION 6.1.1. What is the required playout buffer size ? 1

6.1.2 SINGLE SERVER QUEUE

Consider a lossless, FIFO, system, with the same assumptions as in Section 6.1.1, and assume
further that it is a single server queue. Formally, this means the following.

• Let β(s) is the service capacity during an interval of duration s where there is some work to
do. For example:

1A bound on buffer size is the vertical distance between A(t) and A′(t); from Figure 6.2, we see that it is equal to
2rΔ.
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– constant rate server: β(t) = ct where c is some constant
– server with latency: β(t) = c(t − t0)

+: this server make take some time ≤ t0 to wake
up when some new jobs arrive

• Define s(t) as the largest time ≤ t where the system is empty, i.e. we have either

– Q(t) = 0 and then s(t) = t
– Q(s(t)) = 0 and Q(u) > 0 for u = s(t+ 1), ..., t

s(t) + 1 is beginning of the busy period at t. By definition, the single server queue is
characterized by

Q(t) = A(t) − A(s(t)) − β(t− s(t))

THEOREM 6.1.1 (Reich). For the single server, infinite buffer queue defined above:

Q(t) = max
s≤t

(A(t(−A(s) − β(t− s))

Proof. tbd

�

6.1.3 APPLICATION TO SCALING OF INTERNET DELAY

We are interested in knowing whether queuing delays are going to disappear when the Internet
grows to broadband. The following analysis is due to Norros [Norros94-QS] and Kelly [Kelly99-
smi].

Assume traffic on an internet link grows according to three scale parameters: volume (v), speedup
(s) and number of users (u). This is captured by the relation:

A(t) = v

u∑
i=1

Ai(st) (6.1)

We are interested in the delay; assuming the link is a constant rate server with rate c, this is the
backlog divided by c. We also assume that the capacity of the link is scaled with the increase in
volume: c = c0vsu. The question is now: how does the delay depend on v, s, u ?

The maximum delay, D(v, s, u) is derived from Reich’s formula:

D(v, s, u) = max
t≥0

(
A(t)

c
− t

)

The dependence on v and s is simple to analyse. It comes

D(v, s, 1) = max
t≥0

(
vA1(st)

c
− t

)
= max

t≥0

(
A1(t)

c0s
− t

s

)
=

1

s
D(1, 1, 1)

and similarly for u �= 1 we haveD(v, s, u) = 1
s
D(1, 1, u). Thus the delay is independent of volume

scaling, and is inversely proportional to the speedup factor s. The dependence on u requires more
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assumptions. To go further, we assume a stochastic model, such that the queue length processQ(t)
is stationary ergodic. We can use Reich’s formula:

Q(0) = max
t≥0

(A(−t) − ct)

where A(−t) is now the amount of work that has arrived in the interval [−t, 0]. We assume that
Equation (6.1) continues to hold. Further, we model Ai(−t) by a fractional brownian traffic
[Norros94-QS]. This is a simplified model which captures long range dependence. This means
that

Ai(−t) = λt+
√
λaBi

H(t)

where Bi
H is fractional brownian motion, λ the traffic intensity, and a a variance parameter. Frac-

tional brownian motion is a gaussian process, with mean λt and variance λat2H . Remember that
BH(t) is self-similar in the sense that the process BH(kt) has the same distribution as kHBH(t).

Assume that the Ais are independent. It follows from the properties of fractional brownian motion
that A(−t) is also fractional brownian traffic. Its mean is uλ and its variance is uλat2H , thus it has
intensity uλ and same variance parameter a.

By Reich’s formula

D(1, 1, u) = max
t≥0

(
A(t)

cou
− t

)
= max

t≥0

[(
λ

c0
− 1

)
t+

√
λaBH(t)

1

c0
√
u

]

Do the change of variable t = kτ . It comes

D(1, 1, u) ∼ max
τ≥0

[(
λ

c0
− 1

)
kτ +

√
λakHBH(τ)

1

c0
√
u

]

where ∼ means same distribution. Take k such that k = kH√
u

, i.e. k = u−
1

2(1−H) . Then we have

D(1, 1, u) ∼ u−
1

2(1−H)D(1, 1, 1)

In summary, the delay scales according to

D(v, s, u) =
1

sub
D(1, 1, 1)

with b = 1
2−2H

. In practice, we expect the Hurst parameter usually lies in the range [0.67, 0.83]
thus 1.5 ≤ b ≤ 3. In summary, delay decreases with speedup more rapidly with the number of
users.

6.2 CLASSICAL RESULTS FOR A SINGLE QUEUE

The single queue has received much attention, and there are analytical results available for a large
class of systems with random arrivals and service.
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6.2.1 OTHER REPRESENTATION OF A SINGLE SERVER QUEUE

There are other representations than cumulative functions, which are more adapted if we are in-
terested not only in the workload but also in other state information. For example, consider a
computer that receives tasks to process, with task n arriving at time an, having a processing re-
quirement sn, and departing at time dn. The representation with cumulative functions can be used,
by defining A(t) =

∑
n: an≤t sn and D(t) =

∑
n: dn≤t sn, but it does not directly give information

about the number of tasks in the systems.

A general definition of a single server queue is by means of the sequences an, dn, sn. The system
is a FIFO single server queue if it satisfies

dn = max (an, dn−1) + sn (6.2)

Classical queuing theory for the FIFO single server queue is interested in Equation (6.2) where the
an, wn is stochastic. an and dn are interpreted as arrival and departure times of “customers”. In the
rest of this section we replace an, dn with An, Dn to emphasize that they are random.

6.2.2 KENDALL’S NOTATION

The classical notation for a queue, in its simplest form, is of the type A/S/s/K where:

• A (character string) describes the type of arrival process: G stands for the most general
arrival process, A =GI means that the arrival process is a point process with iid interarrival
times, M is for a Poisson arrival process.

• S (character string) describes the type of service process: G for the most general service
process, S =GI means that the service times are iid and independent of the arrival process,
S =M is the special case of GI with exponential service times, S =D with constant service
times.

• s and K are integers representing the number of servers and the capacity (maximum number
of customers allowed in the system, queued + in service). When K = ∞, it may be omitted.

• The marked point process An, Sn is stationary.
• The service discipline is by default FIFO, otherwise it is mentioned explicitly.

6.2.3 SUMMARY OF SOME CLASSICAL RESULTS FOR THE SINGLE SERVER

QUEUE

We focus now on the case s = 1. Quantities of interest are

• the arrival rate λ the intensity of the arrival process an (mean number of customer arrivals
per second, also equal to the inverse of the mean interarrival time (Chapter 11)

• ρ = λS̄ (server utilization) where S̄ is the mean service time (Palm expectation of Sn).
• the residence time Rn = Dn − An and waiting time Wn = Rn − Sn for customer n
• the number of customers in the system N(t), the number of customers waiting Nw(t), given

by
N(t) =

∑
n∈Z

1{An≤t}1{Dn>t}

Nw(t) = (N(t) − 1)+
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STABILITY An important issue in the analysis of the single server queue is stability. In mathe-
matical terms, it means whether N(t) is stationary. When the system is unstable, a typical behav-
iour is that the backlog grows to infinity.

THEOREM 6.2.1 (Loynes). The single server queue is unstable for ρ > 1 and stable for ρ < 1.

The first part says that a necessary condition for stability is ρ ≤ 1. We give a heuristic explanation
for the necessary condition is as follows. If the system is stable, all customers eventually enter
service, thus the mean number of beginnings of service per second is λ. From Little’s law applied
to the server (see Section 6.3), we have ρ = the probability that the server is busy, which is ≤ 1.
The proof of the second statement is more complex – see [Baccelli88-book] for details. For ρ = 1
there may or may not be stability, depending on the specific queue.

Be careful that this intuitive stability result holds only for a single queue. For networks of inter-
connected queues, there is no such general result.

For the finite capacity queue, stability is usually for any value of ρ.

QUESTION 6.2.1. Consider a queuing system of the form G/G/1 where the service time wn of
customer n is equal to the inter-arrival time an+1 − an. What are the values of ρ, N̄ ? 2

QUESTION 6.2.2. Give an example of stable single server queue with ρ = 1. 3

Classical quantitative results for simple, but useful, queues are given below. The notation is ex-
plained at the end of this chapter.

M/GI/1 QUEUE Stability is for ρ < 1⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N̄ = ρ2κ
1−ρ

+ ρ with κ = 1
2

(
1 +

σ2
S

S̄2

)
N̄w = ρ2κ

1−ρ

R̄ = S̄(1−ρ(1−κ))
1−ρ

W̄ = ρS̄κ
1−ρ

Stability is for ρ < 1 for all the examples below.

M/M/1 QUEUE Stability is for ρ < 1.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N̄ = ρ
1−ρ

N̄w = ρ2

1−ρ

R̄ = S̄
1−ρ

W̄ = ρS̄
1−ρ

σN =
√

ρ

1−ρ

σR = S̄
1−ρ

P(N = k) = (1 − ρ)ρk

P
0(R ≤ x) = 1 − e−(1−ρ) x

S̄

2λ = 1
S̄

thus ρ = 1. There is always exactly one customer in the queue. Thus N̄ = 1.
3The example in Question 6.2.1.
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M/M/1/K QUEUE Stability is for any ρ.⎧⎨
⎩

P(N = k) = η(1 − ρ)ρk1{0≤k≤K}
η= 1

1−ρK+1

P
0( arriving customer is discarded ) = P(N = K)

M/D/1 QUEUE Stability is for ρ < 1.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N̄ = ρ2

2(1−ρ)
+ ρ

N̄w = ρ2

2(1−ρ)

R̄ = S̄(2−ρ)
2(1−ρ)

W̄ = ρS̄
2(1−ρ)

σN = 1
1−ρ

√
ρ− 1.5ρ2 + 5

6
ρ3 − 1

12
ρ4

σR = S̄
1−ρ

√
1
3
ρ− 1

12
ρ2

QUESTION 6.2.3. Which of the quantities N̄ , N̄w, R̄, W̄ are Palm expectations ? 4

6.2.4 CLASSICAL RESULTS FOR MULTIPLE SERVER QUEUES

The multiple server queue is defined by the fact that at most s customers can be served in parallel.
The utilization ρ is now defined by ρ = λS̄

s
.

THEOREM 6.2.2 (Loynes). The multiple server queue is unstable for ρ > 1 and stable for ρ < 1.

M/M/S QUEUE Stability is for ρ < 1. Let

u =

∑s−1
i=0

(sρ)i

i!∑s
i=0

(sρ)i

i!

and p =
1 − u

1 − ρu

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N̄ = pρ
1−ρ

+ sρ

N̄w = pρ
1−ρ

R̄ = pS̄
s(1−ρ)

+ S̄

W̄ = pS̄
s(1−ρ)

σR = S̄
s(1−ρ)

√
p(2 − p) + s2(1 − ρ)2

σW = 1
1−ρ

√
pρ(1 + ρ− pρ)

P(N = k) =

{
η (sρ)k

k!
if 0 ≤ k ≤ s

η ssρk

s!
if k > s

η−1 =
∑s−1

i=0
(sρ)i

i!
+ (sρ)s

s!(1−ρ)

P
0(W ≤ x) = 1 − pe−s(1−ρ) x

S̄

P(all servers busy) = P(N ≥ s) = p (Erlang-C formula)

4R̄, W̄
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M/M/S/S QUEUE (Erlang Loss Formula) Stability is for any ρ.⎧⎨
⎩

P(N = k) = η1{0≤k≤s}
(sρ)k

k!

P
0( arriving customer is discarded ) = P(N = s) Erlang-B formula
η−1 such that

∑s
i=0 P(N = i) = 1

6.2.5 PROCESSOR SHARING

to be done, with application to TCP.

6.2.6 OTHER RESULTS

There is a huge literature on queuing systems, most of which is concerned with finding analytical
expressions for specific systems. It is worth mentioning that numerical solutions of the represen-
tation of the queue is sometimes possible, thus avoiding the need for an analytical expression.

DIRECT SOLUTION Consider for example the GI/GI/1 queue, for which no explicit solution
exists. The following equation can be used to obtain a numerical solution.

Qn = (Qn−1 + Sn−1 − An + An−1)
+

where Qn = N(A−
n ) is the number of customers in the system just before the nth arrival. The

knowledge of Qn can be used to derive or approximate many other quantities. Let Un = Qn−1 +
Sn−1 −An + An−1. We have P

0(Qn = k) = P
0(Un = k) if k > 0 and P

0(Qn = 0) = P(Un ≤ 0).
Assume ρ > 1 and the system is stationary. Let qk := P

0(Qn = k), uk := P
0(Un = k)sk :=

P
0(Sn = k), ak = P

0(An −An−1 = −k). Qn−1, (An − An−1) and Sn−1 are mutually independent
(because we consider a GI/GI/1 queue) thus u is the convolution u = q ∗ s ∗ a. Thus the array q
satisfies the fixed point equation {

qk = (q ∗ s ∗ a)k if k > 0
q0 =

∑
i≤0(q ∗ s ∗ a)i

This equation can be solved numerically by iteration. The convolution can be computed using the
fast Fourier transform. See [Grossglauser96-Sigcomm] for an example where this method is used.
There is also a large literature on advanced, analytical methods for solving the fixed point equation.

MARKOVIANISATION Consider again the GI/GI/1 queue. The distributions of the inter-arrival
and service times can be approximated by PH-type distributions (Section 11.8). There exist numer-
ical, efficient solutions for the stationary probability of the PH/PH/1 queue [LeBoudec88-Questa].

6.2.7 NON-LINEARITY OF RESPONSE TIME

The response time, queue occupancy, and for finite capacity queues, the loss probability, grow
dramatically as ρ comes close to 1; see Figure 6.3 for an example. This strong non-linearity is
important in practice.
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Figure 6.3: Average response time versus requests per second for a database server modeled as M/GI/1
queue

EXAMPLE 6.2: A database system services requests that can be modeled as a Pois-
son process. The time needed to process a request is 0.1 second and its standard
deviation is estimated to 0.03. How does the average response time depend on the
number of requests per second that can be served ? The solution is found by the
M/GI/1 queue model and is plotted in Figure 6.3.

QUESTION 6.2.4. What is the maximum load that can be served if an average response time
of 0.5 second is considered acceptable ? 5

QUESTION 6.2.5. What happens if this load is exceeded by 10% ? by 20% ? 6

Figure 6.4 shows how the response time of the M/GI/1 queue depends on the coefficient of variation
σS

S̄
.

QUESTION 6.2.6. How do the M/D/1 and M/M/1 queue compare to Figure 6.4 ? 7

EXAMPLE 6.3: We would like to compare a two-processor, shared memory ma-
chine versus a collection of two independent processors, with static load sharing

58.8 requests per second.
6By 10%: the response time becomes 1.75 (thus is multiplied by a factor of 3.5. By 20%: the system becomes

unstable ρ > 1; in practice it will lose requests, or enter congestion collapse.
7The bottom curve (cv = 0) is for M/D/1, the middle curve for M/M/1 (cv = 1).
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Figure 6.4: Mean response time for M/GI/1 queue, relative to service time, for different values of coefficient
of variation σS

S̄
: from top to bottom: 2, 1 and 0.

(Figure 6.5). Assume processing times and job inter-arrival times can be modeled
as independent iid exponential sequences. Thus the first [resp. second] case is mod-
eled as one M/M/2 queue [resp. a collection of two parallel M/M/1 queues]. Assume
load is balanced evenly between the two processors. Both systems have the same
utilization ρ. The mean response for the first system is obtained from Section 6.2.4;
we obtain S̄

1−ρ2 . For the second system it is simply S̄
1−ρ (Figure 6.5).

We see that for very small loads, the systems are similar, as expected. In contrast,
for large loads, the response time for the first system is much better, with a ratio equal
to 1 + ρ. For example, for ρ = 0.5, the second system has a response time 1.5 times
larger. However, the capacity is the same for both systems.

6.3 OPERATIONAL LAWS FOR QUEUING SYSTEMS

For systems that are stationary, there is a number of relations that directly derive from Chapter 11.
Among them is the celebrated Little law. In this section we give the most common ones. There are
many others; they can be derived from Chapter 11, in particular using the ergodic interpretation
method explained in Section 11.3.5.
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Figure 6.5: Mean response time for systems 1 (bottom) and 2 (top), relative to the service time.

6.3.1 LITTLE’S LAW AND APPLICATIONS

In practice, by the ergodic interpretation, the laws apply to large samples if we can assume that the
system is stationary and ergodic. For queuing systems, this usually means that the utilization is
less than 1.

THEOREM 6.3.1 (Operational Law). Consider a stationary system that is visited by a flow of cus-
tomers. For a formal definition, see Theorem 11.4.2.

• [Throughput] The throughput, defined as the expected number of arrivals per second, is
also equal to the inverse of the expected time between arrivals.

• [Little]
λR̄ = N̄

where λ is the expected number of customers arriving per second, R̄ is the expected response
time seen by an arbitrary customer and N̄ is the expected number of customers observed in
the system an arbitrary time

• [Utilization Law] If the system is a single server queue:

P(server busy) = ρ := λS̄

If it is an s-server queue,

E(number of busy servers) = sρ

with ρ := λS̄
s

.

Proof. The first item is Proposition 11.3.2; the second item is Theorem 11.4.2. The third item is
obtained by applying Little’s law to the set of servers.

�

QUESTION 6.3.1. Single server queue: with the notation in Section 6.2.3, show that N̄w = N̄ − ρ
8

8Follows from items 2 and 3 in Theorem 6.3.1.
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THE INTERACTIVE USER MODEL The interactive user model is illustrated inFigure 6.6. n
users send jobs to a service center. The think time is defined as the time between jobs sent by one
user. Call R̄ the expected response time for an arbitrary job at the service center, Z̄ the expected
think time and λ the throughout of the system.

THEOREM 6.3.2 (Interactive User).
λ(Z̄ + R̄) = n

Proof. Apply Little’s law to the entire system.

�

Service
Center

λ

Z R

n users

Figure 6.6: The Interactive User Model

EXAMPLE 6.4: SERVICE DESK. A car rental company in a large airport has 10 service
attendants. Every attendant prepares transactions on its PC and, once completed,
send them to the database server. The software monitor finds the following averages:
one transaction every 5 seconds, response time = 2 s.

QUESTION 6.3.2. What is the average think time ? 9

6.3.2 NETWORKS AND FORCED FLOWS

We often find systems that can be modeled as a directed graph, called a network. We consider
models of the form illustrated on Figure 6.7. If the total number of customers is constant, the
network is called “closed”, otherwise “open”.

THEOREM 6.3.3 (Network Laws). Consider a stationary network model

948 s
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node kλ
λk

λ

Figure 6.7: Network Model

• [Forced Flows] λk = λVk, where λk is the expected number of customers arriving per
second at node k and Vk is the expected number of visits to node k by an arbitrary customer
during its stay in the network.

• [Total Response Time] Let R̄ [resp. R̄k] be the expected total response time R̄ seen by an
arbitrary customer [resp. by an arbitrary visit to node k].

R̄ =
∑

k

R̄kVk

Proof. (Forced Flows). We apply Campbell’s formula. Let F (s, t) be the random function which
returns 1 if t ≥ s and the last customer who arrived before or at −t is in node k at time s, else returns
0. By definition of intensity:

λk = E

(∑
n∈Z

F (−An, 0)

)

where An is the point process of customer arrivals. Campbell’s formula applied to F (−t, 0) gives:

E(
∑
n∈Z

F (−An, 0) = λ
∑
t∈N

E
−t(F (t, 0)) = λ

∑
t∈N

E
0(F (0, t))

where the last part is by stationarity. Thus

λk = λE
0

(∑
t∈N

F (0, t)

)
= λVk

(Total Response Time) Let N̄ [resp. N̄k] be the expected number of customers in the service system
[resp. in node k]. We have N̄ =

∑
k N̄k. Apply Little’ and the Forced Flows laws.

�

EXAMPLE 6.5: Transactions on a database server access the CPU, disk A and disk
B (Figure 6.8). The statistics are: VCPU = 102, VA = 30, VB = 68 and R̄CPU =
0.192 s, R̄A = 0.101 s, R̄B = 0.016 s

QUESTION 6.3.3. What is the average response time for a transaction ? 10

1023.7 s
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6.3.3 BOTTLENECK ANALYSIS

Common sense (PE step G5) tells us to analyze bottlenecks first. Beyond this, simple performance
bounds in stationary regime can be found by using the following two principles:

1. waiting time is ≥ 0
2. a server utilization is bounded by 1

We illustrate the method on one generic example.

CPU

A

B

n users 
in think time

Figure 6.8: Network example used to illustrate bottleneck analysis. n attendants serve customers. Each
transaction uses CPU, disk A or disk B. Av. numbers of visits per transaction: VCPU = 102, VA = 30, VB =
17; av. service time per transaction: S̄CPU = 0.004 s, S̄A = 0.011 s, S̄B = 0.013 s; think time Z = 1 s.

Consider a queuing network, an example of which is given in Figure 6.8. It is a combination of
Figure 6.6 and Figure 6.7. Transactions are issued by a pool of n customers which are either idle
(in think time) or using the network. In addition, assume that every network node is a single server
queue, and let S̄k be the average service time per visit at node k. Thus R̄k − S̄k is the average
waiting time per visit at node k. The throughput λ is given by the interactive user model:

λ =
n

Z +
∑

k VkR̄k

(6.3)

and by forced flows, the utilization of the server at node k is ρk = λVkS̄k. Applying the two
principles above gives the constraints on λ:{

λ ≤ n
Z̄+
�

k VkS̄k

λ ≤ 1
maxk VkS̄k

(6.4)

Similarly, using Equation (6.3) and Equation (6.4), we find the following constraints on the re-
sponse time R̄ =

∑
k VkR̄k: {

R̄ ≥∑k VkS̄k

R̄ ≥ n
(
maxk VkS̄k

)− Z̄
(6.5)

Figure 6.9 illustrates the bounds.

QUESTION 6.3.4. Draw the response time bounds for this example. 11

QUESTION 6.3.5. Which of the bounds is accurate for low load ? For high load ? 12

11tbd
12For low load, the former bound in Equation (6.4) is accurate because queuing times are small. For high loads, we

do not know. If the system suffers from congestion collapse, the bounds may be very optimistic. In contrast, for an
ideal system, the throughput is driven by its bottleneck and the latter bound may be accurate.
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Figure 6.9: Throughput bound (B0) obtained by bottleneck analysis for the system in Figure 6.8, as a
function of the number of users n. B1, B2: typical throughput values for a system without [resp. with]
congestion collapse.

BOTTLENECK A node k that maximizes VkS̄k is called, in this model, a bottleneck. To see
why a bottleneck determines the performance, consider improving the system by decreasing the
value of VkS̄k (by reducing the number of times the resource is used, or by replacing the resource
by a faster one). If k is not a bottleneck, this does not affect asymptote on Figure 6.9, and only
marginally increases the slope of the bound at the origin, unlike if k is a bottleneck.

QUESTION 6.3.6. What is the bottleneck on the example of Figure 6.8 ? 13

QUESTION 6.3.7. What happens to the example of Figure 6.8 if the CPU processing time is reduced
from 0.004 to 0.003 ? to 0.002 ? 14

6.4 PRIORITIES

Kleinrock’s Conservation law (derived from Campbell). μc rule. Daigle’s queuing models. Priority
queuing and Daigle. Instability results.

6.5 CASE STUDY

Consider the question asked by the picture on the cover: “double the throughput, divide the re-
sponse time by 2 ”. Does this statement hold ?

First we apply the principles in Chapter 1.

• Goal: evaluate impact of doubling the capacity of a skilift on the response time.
• Factors: c = capacity of skilift in people per second.

13The CPU.
14The disk A becomes the bottleneck. Decreasing the CPU processing time to 0.002 does not improve the bound

significantly.
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• Metrics: response time. A more detailed reflection leads to considering the waiting time,
as this is the one that affects customer’s perception. We are interested in average and peak
values.

• Load: we consider two load models : (1) heavy burst of arrival (after a train or a bus arrives
to the skilift) (2) peak hour stationary regime

6.5.1 QUEUING MODEL

We can model the skilift as the queuing system illustrated in Figure 6.10. The first queue models
the gate; it is a single server queue. Its service time is the time between two passages through the
gate, when there is no idle period and is equal to 1/c. The second queue represents the transporta-
tion time. It is an infinite server queue, with no waiting time. Since our performance metric is the
waiting time, we ignore the second queue in the rest of the analysis.

Gate Lift

Waiting room

Figure 6.10: Queuing Model of Skilift

6.5.2 TRANSIENT ANALYSIS

Assume the arrival of skiers is one single burst (all arrive at the same time). Also assume that all
skiers use the same time to go through the gate, which is roughly true in this scenario. The model
in Section 6.1.1 applies, with A(t) = the number of skiers arriving in [0, t] and D(t) = the number
of skiers that entered the skilift in [0, t]. Thus the delay d(t) is the waiting time, excluding the
time spent on the skilift. We also have β(t) = ct, with c = the capacity of the skilift, in skiers per
second. We have A(t) = B for t ≥ 0. Figure 6.11 shows that doubling the capacity does divide
the worst case waiting time by two.

QUESTION 6.5.1. Is the average waiting time also divided by 2 ? 15

QUESTION 6.5.2. Assume the arrival of skiers is bursty, but not as sudden. For example, we take
A(t) = kct for 0 ≤ t ≤ t0 and A(t) = A(t0) for t ≥ t0, with k ≥ 1. What is now the conclusion ?
16

6.5.3 STATIONARY ANALYSIS

Assume now we are observing the system in the middle of the peak hour. We can model the gate
as a G/D/1 queue. It is difficult to give a more accurate statement about the arrival process without

15Yes, the waiting time seen by an average customer arriving as number y (0 ≤ y ≤ B) is linear in y, thus is equal
to the worst case response time divided by a 2.

16The response time is reduced by a factor higher than 2 (draw a picture).
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Figure 6.11: Transient Analysis: A burst of skiers arrives at time 0. Impact of doubling the capacity of the
skilift.

performing actual measurements. If a Poisson model is acceptable (many independent arrivals of
skiers from various slopes) then the M/G/1 results apply and the average response time is given in
Figure 6.3. The queuing time is the value on the curve minus the offset at 0, and the utilization ρ
(x-value of Figure 6.3) is λ

c
.

Doubling the capacity means that the utilization factor is halved, assuming this has no effect on
the arrival rate. The effect on the response time depends on where we stood on the curve. If the
system was close to saturation, the effect is a large reduction of the average waiting time. The
effect on the peak waiting time (here: 0.95-quantile) requires more sophisticated formulae (see
[Cost224-book]) but is similar.

It is probably unrealistic to assume that a reduction in waiting time has no effect on the arrival rate.
A better, though simplified, model is illustrated in Figure 6.12. It is a variant of the interactive
user model in Figure 6.6. Here we assume that the mean number N̄ of skiers in the system is
independent of c. We apply bottleneck analysis. Let T be the throughput of the skilift and Z̄ the
time spent on the lift or on the slope. We have{

T ≤ N̄
1
c
+Z̄

T ≤ c

and thus

W̄ ≥ max

(
N̄ − 1

c
− Z̄, 0

)

Figure 6.12 shows the bound as a function of 1
c

for sake of comparison with Figure 6.3. A few
points obtained by simulation are also plotted. This strongly suggests that the function f that maps
1
c

to the average response time is convex; the graph of a convex function is below its chords, thus

f(
1

2c
) <

1

2
f(

1

c
)

and reducing the capacity does reduce the waiting time by at least a factor 2.
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Gate Lift

Waiting room

Slope

think time

Z/(N-1)

-Z

1/c

waiting time

Figure 6.12: First: A Model that accounts for dependency of arrival rate and waiting time. Second: Waiting
time for this model in Figure 6.12 as a function of 1

c , where c is skilift capacity. Thick line: bound predicted
by bottleneck analysis. A few simulation results are shown with 95% confidence interval.

We also see that a key value is c∗ = N̄−1
Z̄

. If c is much larger than c∗, the waiting time is small,
so doubling the capacity has little effect anyhow. For c much smaller than c∗, the waiting time
increases at an almost constant rate. Thus we should target c of the order of c∗. For a highly
congested system (2c much smaller than c∗) the offset at 0 becomes negligible and the response
time is almost linear in 1/c, thus doubling the capacity does reduce the waiting time by 2, roughly
speaking – but the system is still congested after doubling the capacity.

QUESTION 6.5.3. For which values of c should the bound be accurate ? 17

17For small c and for large c.
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6.6 SUMMARY OF NOTATION

Notation Definition
A/S/s/K Kendall notation: arrival process/service process/ number of servers/

capacity of queue including customers in service
λ arrival rate
s number of servers

S̄, σS mean and standard deviation of service time
ρ = λS̄

s
server utilization

N, N̄, σN number of customers in system, its mean and standard deviation
Nw, N̄w, σNw number of customers waiting, its mean and standard deviation
R, R̄, σR time spent in system (residence time), its mean and standard deviation
W, W̄ , σW waiting time, its mean and standard deviation

Vk mean number of visits per customer to node k
Z̄ av. think time in interactive user model

6.7 EXERCISES

EXERCISE 6.1. Consider the Surge model with one UE. Assume the average inactive off period id
Z, the average active off period is Z ′, the average number of URLs requested per active period is
V , and the average response time for a URL request is R: What is the throughput of λ of one UE ?

EXERCISE 6.2. Consider again Question 9.8.20. How do you interpret the fact that the response
time varies linearly with the number of processes active in the system ?

EXERCISE 6.3. Read [Tan02-Sigmetrics] and answer the following questions.

1. is the goal of the evaluation well defined ? What is it ?
2. are the factors identified ? What are they ?
3. what performance indices are chosen ?
4. how is the workload generated ?
5. are there implicit assumptions that should have been formulated ?
6. are the experiments or results reproducible ?
7. what conclusions can be drawn from the study ?
8. is the approach scientific ? do you believe the conclusions ? why ?
9. what techniques are used for the evaluation ?

10. is the level of sophistication adequate ?
11. was a performance analysis justified (aren’t the results obvious or too dependent on input

factors, which are arbitrary) ?
12. is there any part that can be removed ?
13. are the graphics OK ?
14. what aspects of the evaluation do you like or dislike ?
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CHAPTER 7

TESTS

“No test can prove me right, a single test can prove me wrong”.1
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7.1 INTRODUCTION

We use tests to decide whether some assertions on some distributions are true or not. We have seen
in Chapter 2 that visual tests may be used for such a purpose. Tests are an objective way to reach
the same goal.

EXAMPLE 7.1: NON PAIRED DATA. A simulation study compares the execution time,
on a log scale, with two compiler options. See Figure 7.1 for some data. We would
like to test the hypothesis that compiler option 0 is better than 1. For one parameter
set, the two series of data come from different experiments.

We can compute a confidence interval for each of the compiler options. The data looks
normal, so we apply the student statistic and find the confidence intervals shown on
the figure.

For parameter set 1, the confidence intervals are disjoint, so it is clear that option 0
performs better. For parameter sets 2 and 3, the intervals are overlapping, so we
cannot conclude at this point.
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(a) Parameter set 1
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(b) Parameter set 2
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(c) Parameter set 3

Parameter Set Compiler Option 0 Compiler Option 1

1 [−0.1669; 0.2148] [0.3360; 0.7400]
2 [−0.0945; 0.3475] [0.2575; 0.6647]
3 [−0.1150; 0.2472] [−0.0925; 0.3477]

Figure 7.1: Data for Example 7.1 on page 151. Top: Logarithm of execution time, on a log scale, with two
compiler options (o=option 0, x=option 1) for three different parameter sets. Bottom: confidence interval for
the means.

We see from this example that confidence intervals may be used in some cases for hypothesis
testing, but not always. We study in this chapter how tests can be used to disambiguate such cases.

QUESTION 7.1.1. (Example 7.1 on page 151) For one parameter set, the two data series come
from different experiments. Assume, in contrast, they would come from matching pairs, i.e. the
nth data point for compiler options 0 and 1 come from the same transaction. How could you decide
whether compiler option 1 is better ? 2

2Compute the differences and a confidence interval for the median or the mean of the difference, and see if the
confidence interval in entirely positive.
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7.2 THE NEYMAN-PEARSON FRAMEWORK

7.2.1 DEFINITIONS

We are given a data sample xi, i = 1, ..., n. We assume that sample is the output generated by
some unknown model. We consider two possible hypotheses about the model, H0 and H1, and
we would like to infer from the data which of the two hypotheses is true. In the Neyman-Pearson
framework, the two hypotheses play different roles: H0, the null hypothesis, is the conservative
one. We do not want to reject it unless we are fairly sure. H1 is the alternative hypothesis.

For example, with Example 7.1 on page 151, the model could be: all data points for compiler
option 0 [resp. 1] are generated as iid random variables with some distribution F0 [resp. F1]. Then
H0 is: “F0 = F1” and H1 is “F0 and F1 differ by a shift in location”. This is the model used by the
Wilcoxon Rank Sum test (see Example 7.9 on page 177 for more details).

Another, commonly used model, for the same example could be: all data points for compiler
option 0 [resp. 1] are generated as iid random variables with some normal distribution Nμ0,σ2

[resp. Nμ1,σ2]. Then H0 is: “μ0 = μ1” and H1 is “μ0 �= μ1”. This is the model used by the
so-called “Analysis of variance” (see Example 7.4.1 on page 161 for more details).

The critical region, also called rejection regionC of a test is a set of values of the tuple (x1, ..., xn)
such that if (x1, ..., xn) ∈ C we reject H0, and otherwise we accept H0. The critical region entirely
defines the test.

The output of a test is thus a binary decision: “accept H0”, or “reject H0”. The output depends
on the data, which is random, and may be wrong with some (hopefully small) probability. We
distinguish two types of errors

• A type 1 error occurs if we reject H0 when H0 is true
• Conversely, a type 2 error occurs if accept H0 when H1 is true.

The art of test development consists in minimizing both error types. However, it is usually difficult
to minimize two objectives at a time. The probability of a type 1 error is called the size of the
test. A Neyman-Pearson test is designed such that the size has a fixed, small value (in our setting,
typically 5%); a good test is one that, in addition, minimizes the probability of a type 2 error.

EXAMPLE 7.2: COMPARISON OF TWO OPTIONS, REDUCTION IN RUN TIME. The re-
duction in run time due to a new compiler option is given in Figure 2.3 on Page 17.
Assume that we know that the data comes from some iid Xi∼ Nμ,σ2 . Assume we know
that σ = 50. This is not realistic and we will remove such assumptions in practice, but
this is convenient to make the point here.

Assume also that we want to test H0: μ = μ0 against H1: μ = μ1 with μ0 = 0 and
μ1 = 40. We build a test by taking a rejection region of the form

C =
{

(x1, ..., xn) such that
x1 + ... + xn

n
> k

}
(7.1)

In other words, we reject H0 if the sample mean is too large (since the alternative
hypothesis H1 assumes μ = μ1 > μ0). We want a test of size α = 0.05. This allows
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us to compute k, as follows (where X̄ = 1
n

∑
i Xi). We want k such that

α = PH0 ((X1, ..., Xn) ∈ C)

= PH0

(
X̄ > k

)
= PH0

(√
n

σ
X̄ >

√
n

σ
k

)

Now, under H0,
√

n
σ X̄ has a standard normal distribution. Thus we want k such that√

n
σ k = η, with N0,1(η) = 1 − α (η = 1.645 for α = 0.05). Thus we reject H0 when the

sample mean is larger than k = 1.645×σ√
n

(= 8.23 for n = 100). We have x̄ = 26.1, so
we reject H0.

The probability of an error of type 2 is

β = PH1

(
X̄ ≤ k

)
= PH1

(√
n

X̄ − μ1

σ
) ≤ √

n
k − μ1

σ

)

= N0,1

(√
n

X̄ − μ1

σ

)

For n = 100, β ≈ 10−10.

Now reverse the hypotheses, so that we have H0: μ = 0 against H1: μ = μ1. We take
a rejection region of the form

C =
{

(x1, ..., xn) such that
x1 + ... + xn

n
< k′

}
(7.2)

and we compute k in a similar way. We find

k′ = − σ√
n

η + μ1 = 31.77

Since the sample mean is in the rejection region, we also reject H0 in this case ! This
shows how the preferential treatment given to H0 by the Neyman-Pearson framework.

7.2.2 p-VALUE OF A TEST.

For many tests, the rejection region has the form {T (x) > m0}, where x is the observation, T ()
some mapping, and m0is a parameter that depends on the size of the test. (In Example 7.2 on
page 152 we have T (x) = x̄ for the former case, T (x) = −x̄ for the latter.)

The p-value of a test is defined as the probability, under H0, that T is larger than the observed
value.

DEFINITION 7.2.1. The p-value of an observation x is PH0(T (X) > T (x)).

In this formula,X is a random variable that represents a hypothetical replication of the experiment,
whereas x is the data that we have observed.

More formally, call φ the mapping

[0,+∞) → [0,+∞)
m �→ supθ∈H0

Pθ {T (X) > m}
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Here θ is a model, and θ ∈ H0 means that the model satisfies the hypothesis H0. Note that φ is
wide-sense decreasing. The p-value of an observation x is

p∗(x) := φ(T (x))

PROPOSITION 7.2.1. Assume that φ is strictly decreasing. The test is equivalent to: reject H0 iff
p∗(x) < α, where α is the size of the test.

Proof. The rejection region is

C := {x : T (x) > m0} = {x : φ(T (X)) < α} = {x : p∗(x) < α}

�

The assumption that φ is strictly decreasing is usually true in practice. In other words, the test
rejects H0 when the p-value is smaller than the test size α.

The interest of the p-value is the explicit dependence on α. It gives more information than just a
binary answer.

QUESTION 7.2.1. What is the relation between α, φ and m0 ? 3

EXAMPLE: CONTINUATION OF EXAMPLE 7.2 ON PAGE 152. For the first test (μ0 = 0
versus μ1 = 40), the rejection region is {x̄ > k} and T (x) = x̄. Thus

p∗ = PH0

(
X̄ > x̄

)
= PH0

(√
n

X̄ − μ0

σ
>

√
n

x̄ − μ0

σ

)

= 1 − N0,1

(√
n

x̄ − μ0

σ

)

We find p∗ = 1.0489e − 010 which is small, therefore we reject H0.

In the second test, the rejection region has the form {x̄ < k}. The p-value is now

p∗ = PH0

(−X̄ > −x̄
)

= PH0

(
X̄ < x̄

)
= N0,1

(√
n(x̄ − μ1)/σ

)
We find p∗ = 0.0027 which is less small but still smaller than 0.05, therefore we also
reject H0.

7.3 LIKELIHOOD RATIO TESTS

In this section we introduce a generic framework, used in most of this chapter, for constructing
tests. We give the application to simple tests for paired data and for goodness of fit.

3α = φ(m0)
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7.3.1 DEFINITION OF LIKELIHOOD RATIO TEST

ASSUMPTIONS AND NOTATION We assume some probability space parameterized by some
θ ∈ Θ. Consider Θ0 ⊂ Θ (nested models.). We have H0 := “θ ∈ Θ0” whereas H1 := “θ ∈
Θ \ Θ0”. For a given statistic (random variable) X and value x of X , define :

• lx(θ) := ln fX(x|θ) where fX(.|θ) is the probability density of the model, when the parame-
ter is θ.

• lx(H0) = supθ∈Θ0
lx(θ)

• lx(H1) = supθ∈Θ lx(θ)

For example, assume some data comes from an iid sequence of normal RVs ∼ N(μ, σ). We want
to test μ = 0 versus μ �= 0. Here Θ = {(μ, σ > 0)} and Θ0 = {(0, σ > 0)}.

If H0 is true, then, approximately, the likelihood is maximum for θ ∈ Θ0 and thus lx(H0) =
lx(H1). In the opposite case, the maximum likelihood is probably reached at some θ ∈/Θ0 and thus
lx(H1) > lx(H0). This gives an idea for a generic family of tests:

DEFINITION 7.3.1. The likelihood ratio test is defined by the rejection region

C = {lx(H1) − lx(H0) > k}

where k is chosen based on the required size of the test.

The test statistic lx(H1) − lx(H0) is called likelihood ratio for the two hypotheses H0 and H1.

Thus we reject θ ∈ Θ0 when the likelihood ratio statistic is large. The Neyman-Pearson lemma
([Weber-C11] Section 6.3) tells us that, in the simple case where Θ0 and Θ1 contain only one value
each, the likelihood ratio test minimizes the probability of type 2 error. Most tests used in this
lecture are actually likelihood ratio tests. As we will see later, for large sample size, there are
simple, generic results for such tests.

There is a link with the theory of maximum likelihood estimation. Under the conditions in Defini-
tion 2.8.1, define

• θ̂0 : the MLE of θ when we restrict θ to be in Θ0

• θ̂ : the unrestricted MLE of θ

Then lx(H0) = lx(θ̂0) and lx(H1) = lx(θ̂).

QUESTION 7.3.1. Why can we be sure that lx(θ̂) − lx(θ̂0) ≥ 0 ? 4

EXAMPLE: CONTINUATION OF EXAMPLE 7.2 ON PAGE 152. We want to test H0: μ = μ0

against H1: μ = μ1. Thus Θ0 = {μ0} and Θ = {μ0, μ1}. The log-likelihood of an
observation is

lx(μ) =
−n

2
ln
(
2πσ2

)− 1
2σ2

∑
i

(xi − μ)2

4As long as the MLEs exist: by definition, lx

(
θ̂
)
≥ lx(θ) for any θ.
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and the likelihood ratio statistic is

lx(H1) − lx(H0) = max{lx(μ1), lx(μ0)} − lx(μ0) = [lx(μ1) − lx(μ0)]
+

where [r]+ denotes the maximum of r and 0. The likelihood ratio test is of the form
[lx(μ1) − lx(μ0)]

+ > k, which, for k > 0 is equivalent to lx(μ1)− lx(μ0) > k. After some
algebra, it comes

lx(H1) − lx(H0) =
n

2σ2

(
2x̄(μ1 − μ0) + (μ2

0 − μ1)2
)

which is an increasing function of x̄, thus for μ1 > μ0, as in the first case (μ1 = 40 and
μ0 = 0), the rejection region for the likelihood ratio test has the form x̄ > k. In contrast,
if μ1 < μ0, it has the form x̄ < k. Thus the tests derived heuristically in Example 7.2
on page 152 are in fact likelihood ratio tests.

7.3.2 STUDENT TEST FOR SINGLE SAMPLE (OR PAIRED DATA)

This test applies to a single sample of data, assumed to be normal with unknown mean and vari-
ance. It can also be applied to two paired samples, after computing the differences.

The model is: X1, ..., Xn ∼ iid Nμ,σ2 where μ and σ are not known. The hypotheses are:

H0: μ = μ0 against H1: μ �= μ0

where μ0 is a fixed value.

We compute the likelihood ratio statistic. We have, after some algebra:

lx(H1) − lx(H0) = max
μ,σ2

ln fX(x|μ, σ2) − max
σ2

ln fX(x|μ0, σ
2)

=
n

2

(
− ln

(∑
i

(xi − x̄)2

)
+ ln

(∑
i

(xi − μ0)
2

))

=
n

2

(
− ln

(∑
i

(xi − x̄)2

)
+ ln(

∑
i

(xi − x̄)2 + n(x̄− μ0)
2)

)

=
n

2
ln

(
1 +

n(x̄− μ0)
2∑

i(xi − x̄)2

)

Let T (x) be the student statistic (Theorem 2.3.1):

T (x) =
√
n
x̄− μ0

σ̂
(7.3)

with σ̂2 = 1
n−1

∑
i(xi − x̄)2. We can write the likelihood ratio statistic as

lx(H1) − lx(H0) =
n

2
ln

(
1 +

T (x)2

n− 1

)
(7.4)
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which is an increasing function of |T (x)|. The rejection region thus has the form

C = {|T (x)| > η}

We compute η from the condition that the size of the test is α. Under H0, T (X) has a student
distribution tn−1 (Theorem 2.3.1). Thus

η = t−1
n−1

(
1 − α

2

)
(7.5)

For example, for α = 0.05 and n = 100, η = 1.98.

The p-value is
p∗ = 2(1 − tn−1(T (x))) (7.6)

EXAMPLE 7.3: PAIRED DATA. This is a variant of Example 7.2 on page 152. Consider
again the reduction in run time due to a new compiler option, as given in Figure 2.3 on
Page 17. We want to test whether the reduction is significant. We assume the data is
iid normal and use the student test:

H0: μ = 0 against H1: μ �= 0

The test statistic is T (x) = 5.08, larger than 1.98, so we reject H0. Alternatively, we
can compute the p-value and obtain p∗ = 1.80e− 006, which is small, so we reject H0.

We can compare this test to the use of a confidence interval. A confidence interval for μ is (Theo-
rem 2.3.1)

x̄± η
σ̂√
n

(7.7)

We could decide to reject H0 iff μ0 is not in the confidence interval, i.e.

|x̄− μ0| > η
σ̂√
n

(7.8)

which is exactly the same as the condition T (x) > η, which is the rejection condition of the student
test. Thus there is equivalence between testing for the mean equal to μ0 and asking whether μ0 is
in a confidence interval for the mean.

This result is quite general: consider a generic model parametrized with some θ ∈ Θ ⊂ R. There
is equivalence between tests of the form

θ = θ0 against H1: θ �= θ0

with computing confidence intervals for θ [Weber-C11]. For such cases, we do not need a general
theory of tests, since we can simply use confidence intervals as discussed in Chapter 2. However,
there are many tests that cannot be put in this form.
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7.3.3 THE SIMPLE GOODNESS OF FIT TEST

Assume we are given n data points x1, ..., xn, assumed to be generated from an iid sequence, and
we want to verify whether their common distribution is a given distribution F (). A traditional
method is to compare the empirical histogram to the theoretical one. Applying this idea gives the
following likelihood ratio test. We call it the simple goodness of fit test as the null hypothesis
is for a given, fixed distribution F () (as opposed to a family of distributions, which would give a
composite goodness of fit test).

To compute the empirical histogram, we partition the set of values of X into bins Bi. Let Ni =∑n
k=1 1{Bi}(Xk) (number of observation that fall in bin Bi) and qi = P{X1 ∈ Bi}. If the data

comes from the distribution F () the distribution of N is multinomial Mn,�q, i.e.

P {N1 = n1, ..., Nk = nk} =

(
n!

n1!...nk!

)
pn1

1 ...p
nk
k (7.9)

The test is

H0: Ni comes from the multinomial distribution Mn,�q

against

H1: Ni comes from a multinomial distribution Mn,�p for some arbitrary �p.

We now compute the likelihood ratio statistic. The parameter is θ = �p. Under H0, there is only
one possible value so θ̂0 = �q. From Equation (7.9), the likelihood is

l�p(�x) = C +
k∑

i=1

ni ln(pi) (7.10)

where ni =
∑n

k=1 1{Bi}(xk) and C = ln(n!)−∑k
i=1 ln(ni!). C is a constant and can be ignored in

the rest. To find θ̂, we have to maximize Equation (7.10) subject to the constraint
∑k

i=1 pi = 1. The
function to maximize is concave in pi, so we can find the maximum by the lagrangian technique.
The lagrangian is

L(�p, λ) =
k∑

i=1

ni ln(pi) + λ(1 −
k∑

i=1

pi) (7.11)

The equations ∂L
∂pi

= 0 give ni = λpi. Consider first the case ni �= 0 for all i. We find λ by the

constraint
∑k

i=1 pi = 1, which gives λ = n and thus p̂i = ni

n
. Finally, the likelihood ratio statistic

is

lH1(�x) − lH0(�x) =
k∑

i=1

ni ln
ni

nqi
(7.12)

In the case where ni = 0 for some i, the formula is the same if we adopt the convention that, in
Equation (7.38), the term ni ln

ni

nqi
is replaced by 0 whenever ni = 0.

We now compute the p-value. It is equal to

P

(
k∑

i=1

Ni ln
Ni

nqi
>

k∑
i=1

ni ln
ni

nqi

)
(7.13)
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where �N has the multinomial distribution Mn,�q.

For large n, we will see in Section 7.5 a simple approximation for the p-value. If n is not large,
there is no known closed form, but we can use Monte Carlo simulation as discussed in Section 3.4.

EXAMPLE 7.4: MENDEL [WEBER-C11]. Mendel crossed peas and classified the re-
sults in 4 classes of peas i = 1, 2, 3, 4. If his genetic theory is true, the probability that
a pea belongs to class i is q1 = 9/16, q2 = q3 = 3/16, q4 = 1/16. In one experiment,
Mendel obtained n = 556 peas, with N1 = 315, N2 = 108, N3 = 102 and N4 = 31. The
test is

H0 : “
q = 
p” against H1 : “
p is arbitrary”

The test statistic is
k∑

i=1

ni ln
ni

nqi
= 0.3092 (7.14)

We find the p-value by Monte-Carlo simulation (Example 3.7 on page 74) and find
p = 0.9191 ± 0.0458. The p-value is (very) large thus we accept H0.

7.4 ANOVA

In this section we cover a family of exact tests when we can assume that the data is normal. It
applies primarily to cases with multiple, unpaired samples.

7.4.1 ANALYSIS OF VARIANCE (ANOVA) AND F -TEST

Analysis of variance (ANOVA) is used when we can assume that the data is a family of independent
normal variables, with an arbitrary family of means, but with common variance. The goal is to test
some property of the mean. The name ANOVA is explained by Theorem 7.4.1.

ANOVA is found under many variants, and the basis is often obscured by complex computations.
All variants of ANOVA are based on a single result, which we give next; they differ only in how a
projection is computed.

ASSUMPTIONS AND NOTATION FOR ANOVA

• The data is a collection of N independent, normal random variables Xr, where the index r
is in some finite set R (with N = number of elements in R).

• Xr ∼ N(μr, σ
2), i.e. all variables have the same variance (this is pompously called “ho-

moscedasticity”). The common variance is fixed but unknown.
• Call �μ := (μr)r∈R. We assume that �μ ∈ M , where M is a linear subspace of R

R. Let
k = dimM . The parameter is θ = (�μ, σ) and the parameter space is Θ = M × (0,+∞)

• We want to test the nested model �μ ∈ M0, where M0 is a linear sub-space of M . Let
k0 = dimM0. We have Θ0 = M0 × (0,+∞).
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• ΠM [resp. ΠM0] is the orthogonal projector on M [resp. M0]
• Fm,n() is the Fisher distribution with degrees of freedom m,n

EXAMPLE: NON PAIRED DATA.(Continuation of Example 7.1 on page 151) Consider
the data for one parameter set. The model is

Xi = μ1 + ε1,i Yj = μ2 + ε2,j (7.15)

with εi,j ∼ iid N0,σ2 .

We can model the collection of variables as X1, ..., Xm, Y1, ..., Yn thus R = {1, ..., m +
n} and N = n + m. We have then

• M = {(μ1, ...μ1, μ2, ...μ2), μ1 ∈ R, μ2 ∈ R} and k = 2
• M0 = {(μ, ...μ, μ, ...μ), μ ∈ R} and k0 = 1
• ΠM (x1, ..., xm, y1, ..., yn) = (x̄, ..., x̄, ȳ, ..., ȳ), where x̄ = (

∑m
i=1 xi)/m and ȳ =

(
∑n

j=1 yj)/n.
• ΠM0(x1, ..., xm, y1, ..., yn) = (z̄, ..., z̄, z̄, ..., z̄), where z̄ = (

∑m
i=1 xi+

∑n
j=1 yj)/(m+

n).

This model belongs to the family of “one way ANOVA” models, and can be solved
using statistical packages.

EXAMPLE 7.5: FRUITFLIES. [Weber-C11] The longevity of different varieties of fruit-
flies was measured, on groups of 25 flies. The results are:

Group Mean life (days) standard deviation
1 63.56 16.4522
2 64.80 15.6525
3 63.36 14.5398

(here the standard deviation is
√

1
n−1

∑n
i=1(xi − x̄)2). The model is

Xi,j = μi + εi,j 1 ≤ ni i = 1, ..., k (7.16)

with εi,j ∼ iid N0,σ2 . It is also called the generic one-way ANOVA model (one way
because there is one “factor”, index i. Here i represents the variety of fruitflies, and j
the index of a sample within a variety.

The collection is Xr = Xi,j so R = {(i, j), i = 1, ..., k = 3 and j = 1, ..., ni} and
N =

∑
i ni. We have

• M = {(μi,j) such that μi,j = μi is independent of j}; the dimension of M is k =
3.

• M0 = {(μi,j) such that μi,j = μ is independent of i, j} and k0 = 1.
• ΠM (
x) is the vector whose (i, j)th coordinate is independent of j and is equal to

x̄i. := (
∑ni

j=1 xi,j)/ni.
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• ΠM0(
x) is the vector whose coordinates are all identical and equal to the overall
mean x̄.. := (

∑
i,j xi,j)/N .

THEOREM 7.4.1 (ANOVA). 1. The Maximum Likelihood Estimators for both restricted and
general models are given by

• μ̂0 = ΠM0(�x), σ̂
2
0 = 1

N
‖�x− μ̂0‖2

• μ̂ = ΠM(�x), σ̂2 = 1
N
‖�x− μ̂‖2

where �x is the value of the random variable �X .
2. The likelihood ratio for the test of H0: “�μ ∈M0, σ > 0” against H1: “�μ ∈M \M0, σ > 0”

is

−N
2

ln
SS1

SS0
=
N

2
ln

(
1 +

SS2

SS1

)

where
SS0 := ‖�x− μ̂0‖2 = Nσ̂2

0 = SS1 + SS2

SS1 := ‖�x− μ̂‖2 = Nσ̂2

SS2 := ‖μ̂− μ̂0‖2 = N × (σ̂2 − σ̂2
0)

3. Define the test statistic f by

f :=
SS2/(k − k0)

SS1/(N − k)

The distribution of f (when we replace �x by �X) under H0 is Fk−k0,N−k.
F is often called the F -value of the test.

4. The likelihood ratio test of size α rejects �μ ∈ M0 when f is large, i.e., when f > η, where
Fk−k0,N−k(η) = 1 − α. The p-value is p∗ = 1 − Fk−k0,N−k(f).

Proof.Apply Theorem 12.5.3

�

EXAMPLE: APPLICATION TO EXAMPLE 7.1 ON PAGE 151. We assume homoscedastic-
ity. We can test this hypothesis by applying the test in Section 7.4.4.

The theorem gives the following computations:

• μ̂ = (X̄, ..., X̄, Ȳ , ..., Ȳ ) and σ̂ = 1
n+m(

∑
i(Xi − X̄)2 +

∑
j(Yj − Ȳ )2)

• μ̂0 = (Z̄, ..., Z̄, Z̄, ..., Z̄) with Z̄ = (mX̄ + nȲ )(m + n) and σ̂0 = 1
n+m(

∑
i(Xi −

Z̄)2 +
∑

j(Yj − Z̄)2)
• SS1 =

∑
i(Xi − X̄)2 +

∑
j(Yj − Ȳ )2) = SXX + SY Y

• SS2 = m(Z̄ − X̄)2 + n(Z̄ − Ȳ )2 = (X̄ − Ȳ )2/(1/m + 1/n)
• the f value is SS2/SS1/(m + n − 2).
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Figure 7.2: Illustration of quantities in Theorem 7.4.1

Parameter Set 1 SS df MS F Prob>F
Columns 13.2120 1 13.2120 13.4705 0.0003116

Errors 194.2003 198 0.9808
total 207.4123 199

Parameter Set 2 SS df MS F Prob>F
Columns 5.5975 1 5.5975 4.8813 0.0283

Errors 227.0525 198 1.1467
total 232.6500 199

Parameter Set 3 SS df MS F Prob>F
Columns 0.1892 1 0.1892 0.1835 0.6689

Errors 204.2256 198 1.0314
total 204.4148 199

Table 7.1: ANOVA Tests for Example 7.1 on page 151 (Non Paired Data)

The ANOVA tables for parameter sets 1 to 3 are given in Table 7.1. The F-test rejects
the hypothesis of same mean for parameter sets 1 and 2, and accepts it for parameter
set 3. The software used to produce this example uses the following terminology:

• SS2: “Columns” (explained variation, variation between columns, or between
groups)

• SS1: “Error” (residual variation, unexplained variation)
• SS0: “Total” (total variation)

QUESTION 7.4.1. Compare to the confidence intervals given in the introduction. 5

QUESTION 7.4.2. What are SS0, SS1 and SS2 for parameter set 1 ? 6

5For parameter set 1, the conclusion is the same as with confidence interval. For parameter sets 2 and 3, confidence
intervals did not allow one to conclude. ANOVA disambiguates these two cases.

6The column “SS” gives, from top to bottom: SS2, SS1 and SS0.
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INTERPRETATION. Item 2 in the theorem justifies the name “ANOVA”: the likelihood ratio
statistic depends only on estimators of variance. Note that this is very specific of homoscedasticity.

The equality
SS0 = SS1 + SS2

can be interpreted as a decomposition of sum of squares, as follows. Consider Θ0 as the base
model, with k0 dimensions for the mean; we ask ourselves whether it is worth considering the
more complex model Θ, which has k > k0 dimensions for the mean. From its definition, we can
interpret those some of squares as follows.

• SS2 is the sum of squares explained by the model Θ, or explained variation.
• SS1 is the residual sum of squares
• SS0 is the total sum of squares

The likelihood ratio test accepts Θ when SS2/SS1 is large, i.e., when the percentage of sum of
squares SS2/SS1 (also called percentage of variation) explained by the model Θ is high.

The dimensions are interpreted as degrees of freedom:

• SS2 (explained variation) is in the orthogonal of M0 in M , with dimension k − k0: the
number of degrees of freedom for SS2 is k − k0

• SS1 (residual variation) in in the orthogonal ofM in R
R. The number of degrees of freedom

for SS1 is N − k

EXAMPLE: FRUITFLIES.The numerical solution of Example 7.5 on page 160is shown
in the table below.

Source SS df MS F Prob>F
Columns 30.427 2 15.213 0.0628 0.9392

Errors 17449.92 72 242.36
total 17480.35 74

Thus we accept H0, namely, longevity is not impacted by the variety.

QUESTION 7.4.3. Write down the expressions of MLEs, SS1, SS2 and the F -value. 7

7

• μ̂ is the vector whose (i, j)th coordinate is independent of j and is equal to X̄i. :=
∑ni

j=1 Xi,j/ni.
• SS1 =

∑
i,j(Xi,j − X̄i.)2

• σ̂2 = 1
N SS1

• μ̂0 is the vector coordinates are all identical and equal to the overall mean X̄.. := (
∑

i,j Xi,j)/N
• SS2 =

∑
i ni(X̄i. − X̄..)2

• SS0 = SS1 + SS2
• σ̂2

0 = 1
N SS0

• F = SS2/SS1 ∗ (N − k)/(k − 1)
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7.4.2 STUDENT TEST AS SPECIAL CASE OF ANOVA

In the specila case where k − k0 = 1 (as in Example 7.1 on page 151) the F -statistic is the square
of a student statistic, and a student test could be used instead. This is sometimes used by some
statistics packages.

7.4.3 TESTING FOR SPECIFIC VALUES

By an additive change of variable, we can extend the ANOVA framework to the case where M0 ⊂
M are affine (instead of linear) varieties of R

R. This includes testing for a specific value.

For example, assume we have the model

Xi,j = μi + εi,j (7.17)

with εi,j ∼ iid N0,σ2 . We want to test

H0: “μi = μ0 for all i” against H1: “μi unconstrained”

We change model by letting X ′
i,j = Xi,j − μ0 and we are back to the ANOVA framework.

7.4.4 TESTING FOR A COMMON VARIANCE

We often need to verify that the common variance assumption holds. This can be done as follows.

I > 2 DATA SETS

We are given a data set xi,j , i = 1, ..., I , j = 1, ..., ni. We assume that it is a realization of the
model

Xi,j ∼ iidN(μi, σ
2
i ) (7.18)

We assume that the normal assumption holds and we want to test

H0 σi = σ > 0 for all i
H1 σi > 0

We make a likelihood ratio test. We compute the likelihood ratio statistic. We need first to compute
the maximum likelihood under H1. The log-likelihood of the model is

lx(�μ, �σ) = −1

2

[
ln(2π) +

I∑
i=1

(
2ni ln(σi) +

ni∑
j=1

(xi,j − μi)
2

σ2
i

)]
(7.19)

To find the maximum under H1, observe that the terms in the summation do not have cross depen-
dencies, thus we can maximize each of the I terms separately. The maximum of the ith term is
for

μi = μ̂i :=
1

ni

I∑
j=1

xi,j (7.20)

σ2
i = s2

i :=
1

ni

I∑
j=1

(xi,j − μ̂i)
2 (7.21)
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and thus

lx(H1) = −1

2

[
ln(2π) +

I∑
i=1

ni (2 ln(si) + 1)

]
= −1

2

[
ln(2π) + n+ 2

I∑
i=1

ni ln(si)

]
(7.22)

where n =
∑I

i=1 ni.

Under H0 the likelihood is as in Equation (7.19) but with σi replaced by the common value σ. To
find the maximum,we use the ANOVA theorem. The maximum is for μi = μ̂i as in Equation (7.20)
and

σ2 = s2 :=
1

n

I∑
i=1

ni∑
j=1

(xi,j − μ̂i)
2 =

I∑
i=1

ni

n
s2

i (7.23)

and thus

lx(H0) = −1

2

[
ln(2π) +

I∑
i=1

ni
s2

i

s2
+ 2n ln(s)

]
= −1

2
[ln(2π) + n+ 2n ln(s)] (7.24)

The test statistic is the likelihood ratio statistic lrs = lx(H1) − lx(H0):

lrs = n ln(s) −
I∑

i=1

ni ln(si) (7.25)

The test has the form: reject H0 when lrs > K for some constant K.

The p-value can be obtained using either Monte-Carlo simulation or large sample asymptotics.
The former method proceeds as follows. The problem is now to compute P(T > l) where T is a
random variable distributed like

n ln(s) −
I∑

i=1

ni ln(si) (7.26)

and assuming H0 holds. We generate R replicated samples of T . To generate these samples, ob-
serve that all we need is to generate the random variables si. They are independent, and distributed
like σ2χ2

ni−1. Note that T is independent of the specific value of the unknown but fixed parameter
σ, thus we can let σ = 1 in the Monte Carlo simulation.

Alternatively, one can use the large sample asymptotic. The distribution of 2×lrs is approximately
χ2

I−1; this gives the approximate p-value:

p∗ ≈ 1 − χ2
I−1(2n ln(s) − 2

I∑
i=1

ni ln(si))

I = 2 DATA SETS: F -TEST

For two samples, the rejection region of the test of common variance can be computed explicitly,
by showing that, in this case, the test is an F -test.

We can rewrite the likelihood ratio statistic as

lrs =
1

2
[n ln(n1f + n2) − n1 ln(f)] + C (7.27)
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where C is a constant term (assuming n1 and n2 are fixed) and

f =
s2
1

s2
2

(7.28)

The derivative of lrs with respect to f is

∂lrs

∂f
=

n1n2(f − 1)

2f(n1f + n2)
(7.29)

thus lrs decreases with f for f < 1 and increases for f > 1. Thus the rejection region, defined as
{lrs > K}, is also of the form {K1 < f < K2}.

Now define

F =
σ̂2

1

σ̂2
2

(7.30)

with

σ̂2
i :=

1

ni − 1

I∑
j=1

(xi,j − μ̂i)
2 (7.31)

We take σ̂2
i instead of s2

i in order to obtain an F -test, as we see next. Note that

F = fC ′ (7.32)

where C ′ is a constant, so the set {K1 < f < K2} is equal to the set {C ′K1 < F < C ′K2} with
η = C ′K1 and ξ = C ′K2.

Under H0, the distribution of F is Fisher with parameters (m− 1, n− 1), so we have a Fisher test.
The bounds η and F > ξ are classically computed by the conditions

{
Fm−1,n−1(η) = α/2
Fm−1,n−1(ξ) = 1 − α/2

EXAMPLE: FRUITFLIES AGAIN. We want to teste whether the data for groups 1 and 3
in Example 7.5 on page 160 have the same variance. We have F24,24(ξ) = 1 − α/2.
Thus η = 0.44 and ξ = 2.27. The F statistic is 1.2804 so we accept H0.

7.5 ASYMPTOTIC RESULTS

In many cases it is hard to find the exact distribution of a test statistic. An interesting feature of
likelihood ratio tests is that we have a simple asymptotic result.
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7.5.1 LIKELIHOOD RATIO STATISTIC

The following theorem derives immediately from Theorem 2.8.2.

THEOREM 7.5.1. Consider a likelihood ratio test (Section 7.3) with Θ = M ×N , where M,N are
open subsets of R

p,Rq and denote θ = (μ, ν). Also let

• Θ0 = {μ = 0} = {θ = (0, ν), ν ∈ N}
• Θ = {θ = (μ, ν), μ ∈M ν ∈ N, ν �= 0}

We test the hypothesis H0 := {μ = 0} = {θ ∈ Θ0} against H1 := {μ �= 0} = {θ ∈ Θ \ Θ0}.
Assume that the conditions in Definition 2.8.1 hold. Then, approximately

2
(
lx(θ̂) − lx(θ̂0)

)
∼ χ2

p

(p is the number of degrees of freedom that H1 adds to H0). It follows that the p-value of the
likelihood ratio test can be approximated for large sample sizes by

p∗ ≈ 1 − χ2
p

(
2(lx(θ̂) − lx(θ̂0))

)
(7.33)

EXAMPLE: APPLICATION TO EXAMPLE 7.1 ON PAGE 151. Using Theorem 7.4.1 and
Theorem 7.5.1 we find that

2lrs := N ln
(

1 +
SS2
SS1

)
∼ χ2

1

The corresponding p-values are:

Parameter Set 1 pchi2 = 0.0002854
Parameter Set 1 pchi2 = 0.02731
Parameter Set 1 pchi2 = 0.6669

They are all very close to the exact values (given by ANOVA).

7.5.2 APPLICATION TO NON PAIRED DATA, DIFFERENT VARIANCES

We show in this section how the asymptotic result may be useful when the hypothesis of same
variance does not hold. Assume we are given two unpaired series of data, and we want to test
whether they have the same mean.

The model is
Xi = μ1 + ε1,i Yj = μ2 + ε2,j (7.34)

with εi,j ∼ iid N0,σ2 . We apply Section 7.3 and compute first the MLEs. For the unrestricted MLE
θ̂ = (μ̂1, μ̂2, σ̂1, σ̂2) we find
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• μ̂1 = x̄, μ̂2 = ȳ,
• σ̂2

1 = 1
m
Sxx, σ̂2

2 = 1
n
Syy,

• lx,y(θ̂) = cst− m
2

lnSxx − n
2

lnSyy

(with Sxx =
∑

i(xi − x̄)2). The restricted MLE θ̂0 = (μ̂, μ̂, σ̂′
1, σ̂

′
2) cannot be obtained explicitly.

We have

lx,y(μ, μ, σ
′
1, σ

′
2) = cst− m

2
lnσ′2

1 − Sxx +m(x̄− μ)2

2σ′2
1

− n

2
lnσ′2

2 − Syy + n(ȳ − μ)2

2σ′2
2

(7.35)

By differentiating with respect to μ we find that

μ̂ =
S1x̄+ S2ȳ

S1 + S2

(7.36)

with S1 = m/σ′2
1 and S2 = n/σ′2

2 . By substituting Equation (7.36) in Equation (7.35), we obtain
the log-likelihood as a function of two variables σ′

1, σ
′
2. We maximize it numerically to obtain

σ̂′
1, σ̂

′
2.

The likelihood ratio statistic is

T =
1

2

(
lx,y(θ̂) − lx,y(θ̂0)

)
(7.37)

it can be computed once we know all values of MLEs. We know that, under the assumption that
the means are equal, and asymptotically, T ∼ χ2

p. Now p = 1 since there are 4 free parameters for
θ and 3 for θ0. Thus, the test for equality of means has rejection region of the form C = {T > η}
where χ2

1(η) = 1−α, i.e. η = ξ2 where ξ is the 1−α/2 quantile of the standard normal distribution.

QUESTION 7.5.1. What is the p-value of the test ? 8

EXAMPLE 7.6: FRUITFLIES AGAIN. ([Weber-C11] Example 12.2.) Consider some
other data series about the longevity of fruitflies:

Group Mean life (days) standard deviation
1 63.56 16.4522
4 56.76 14.9284

We would like to test equality of mean for groups 1 and 4. We first test for same
variance and find F = 1.21. The rejection region is η < F < ξ with Fm−1,n−1(η) = α

2 ,
Fm−1,n−1(ξ) = 1 − α

2 . At size α = 0.05, we get η = 0.44, ξ = 2.27 so we accept the
hypothesis of equal variance. Testing for equality of mean is thus done with ANOVA;
we find f = 2.3423 and p-value p = Fm−1,n−1(f) = 0.132. Alternatively, we use a
t-test and get t = 1.53 < t−1

48 (0.975) = 2.01 and we accept equality of means at size
α = 0.05.

8

p∗ = 1 − χ2
1(T ) = 2(1 − N(

√
T ))

where N is the standard normal distribution function. We reject equality of means when p∗ is smaller than α.
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Assume now that we have the same data, except for the number of samples which
is now equal to 500. Let us repeat the analysis. The test for same variance gives
F = 1.21 but now η = 1.158 (for α = 0.10, or η = 1.192 for α = 0.05). So at size 0.05
already we reject the hypothesis of same variance. We cannot apply ANOVA.

Zum Glück, n is large, so we apply the MLE asymptotics instead. We find

• Unrestricted model: μ̂1 = 63.56, μ̂2 = 56.76, σ̂1 = 16.43574, σ̂2 = 14.91346
• Restricted model: μ̂ = 59.8145, σ̂′

1 = 16.8571, σ̂′
2 = 15.2230

• T = 45.9 > 3.84 thus we reject the hypothesis of equalities of means (at a size
α = 0.05).

7.5.3 PEARSON CHI-SQUARED STATISTIC AND GOODNESS OF FIT

We can apply the large sample asymptotic to goodness of fit tests as defined in Section 7.3.3.
This gives a simpler way to compute the p-value, and allows to extend the test to the composite
goodness of fit test, defined as follows.

COMPOSITE GOODNESS OF FIT Similar to Section 7.3.3, assume we are given n data points
x1, ..., xn, generated from an iid sequence, and we want to verify whether their common distri-
bution comes from a given family of distributions F (|θ) where the parameter θ is in some set
Θ0. We say that the test is composite because the null hypothesis has several possible values of
θ. We compare the empirical histograms: we partition the set of values of X into bins Bi. Let
Ni =

∑n
k=1 1{Bi}(Xk) (number of observation that fall in bin Bi) and qi = Pθ{X1 ∈ Bi}. If the

data comes from a distribution F (|θ) the distribution of Ni is multinomial Mn,�q(θ). The likelihood
ratio statistic test is

H0: Ni comes from a multinomial distribution Mn,�q(θ), with θ ∈ Θ0

against

H1: Ni comes from a multinomial distribution Mn,�p for some arbitrary �p.

We now compute the likelihood ratio statistic. It is similar to the derivation in Section 7.3.3. Let θ̂
be the MLE of θ under H0. θ̂0 = �q. We find that the likelihood ratio statistic is

lrs = lH1(�x) − lH0(�x) =
k∑

i=1

ni ln
ni

nqi(θ̂)
(7.38)

The p-value is

sup
θ∈Θ0

P

(
k∑

i=1

Ni ln
Ni

nqi
>

k∑
i=1

ni ln
ni

nqi(θ̂)

)
(7.39)

where �N has the multinomial distribution M
n, �q(θ)

. It can be computed by Monte Carlo simulation
as in the case of a simple test, but this may be difficult because of the supremum.

An alternative for large n is to use the asymptotic result in Theorem 7.5.1. It says that, for large
n, under H0, the distribution of 2lrs is approximately chi2m, with m = the number of degrees of
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freedom that H1 adds to H0. Here H0 has k0 degrees of freedom (where k0 is the dimension of Θ0)
and H1 has I − 1 degrees of freedom (where I is the number of bins). Thus the p-value of the test
is approximately

1 − χ2
I−k0−1(2lrs) (7.40)

where χ2
I−k0−1 is the cdf of the chi-squared distribution with I − k0 − 1 degrees of freedom.

EXAMPLE: IMPACT OF ESTIMATION OF (μ, σ). We want to test whether the data set on
the right of Figure 7.3 has a normal distribution. We use a histogram with 10 bins. We
need first to estimate θ̂ = (μ̂, σ̂).

1. Assume we do this by fitting a line to the qqplot. We obtain μ̂ = −0.2652, σ̂ = 0.8709.
The values of nqi(θ̂) and ni are:

7.9297 7.0000
11.4034 9.0000
18.0564 17.0000
21.4172 21.0000
19.0305 14.0000
12.6672 17.0000
6.3156 6.0000
2.3583 4.0000
0.6594 3.0000
0.1624 2.0000

The likelihood ratio statistic as in Equation (7.38) is lrs = 7.6352. The p-value is
obtained using a χ2

7 distribution (m = 10 − 2 − 1): p1 = 0.0327, thus we would reject
normality at size 0.05.

2. It is not correct to simply fit (μ, σ) on the qqplot. The theory says that we should find
(μ, σ) that maximizes the log likelihood of the model. This is equivalent to minimizing
the likelihood ratio statistic lH1(x) − lμ,σ(x) (note that the value of lH1(x) is easy to
compute). We do this with a numerical optimization procedure and find now μ̂ =
−0.0725, σ̂ = 1.0269. The corresponding values of nqi(θ̂) and ni are now:

8.3309 7.0000
9.5028 9.0000
14.4317 17.0000
17.7801 21.0000
17.7709 14.0000
14.4093 17.0000
9.4783 6.0000
5.0577 4.0000
2.1892 3.0000
1.0491 2.0000

Note how the true value of μ̂, σ̂ provides a better fit to the tail of the histogram. The
The likelihood ratio statistic is now lrs = 2.5973, which also shows a much better fit.
The p-value, obtained using a χ2

7 distribution is now p1 = 0.6362, thus we accept that
the data is normal.

3. Assume we would ignore that (μ, σ) is estimated from the data, but would do as if
the test were a simple goodness of fit test, with H0 : “The distribution is N−0.0725,1.0269”
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instead of H0 : “The distribution is normal”. We would compute the p value using a χ2
9

distribution (m = 10 − 1) and would obtain: p2 = 0.8170, a value larger than the true
p-value. This is quite general: if we estimate some parameter and pretend it is a priori
known, then we overestimate the p-value.

PEARSON CHI-SQUARED STATISTIC. In the case where n is large, 2× the likelihood ratio
statistic can be replaced by the Pearson chi-squared statistic, which has the same asymptotic
distribution. It is defined by

pcs =
I∑

i=1

(ni − nqi(θ̂))
2

nqi(θ̂)
(7.41)

Indeed, when n is large we expect, under H0 that ni − nqi(θ̂) is relatively small, i.e.

εi =
ni

nqi(θ̂)
− 1 (7.42)

is small. An approximation of 2lrs is found from the second order development around ε = 0:

ln(1 + ε) = ε− 1

2
ε2 + o(ε2) (7.43)

and thus

lrs =
∑

i

ni
ni

nqi(θ̂)
n
∑

i

(1 + εi)qi(θ̂) ln(1 + εi)

= n
∑

i

(
εi − 1

2
ε2i + o(ε2i )(1 + εi)qi(θ̂)

)

= n
∑

i

qi(θ̂)εi

(
1 − 1

2
εi + o(εi)(1 + εi)

)

= n
∑

i

qi(θ̂)εi

(
1 +

1

2
εi + o(εi)

)

= n
∑

i

qi(θ̂)εi + n
∑

i

qi(θ̂)
1

2
ε2i + n

∑
i

o(ε2i )

Note that
∑

i qi(θ̂)εi = 0 thus

lrs ≈ 1

2
pcs (7.44)

The Pearson Chi-squared statistic was historically developed before the theory of likelihood ratio
tests, which explains why it is commonly used.

In summary, for large n, the composite goodness of fit test is solved by computing either 2lrs or
pcs. The p-value is 1−χ2

n−k0−1(2lrs) or 1−χ2
I−k0−1(pcs). If either is small, we reject H0, i.e. we

reject that the distribution of Xi comes from the family of distributions F (|θ).
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SIMPLE GOODNESS OF FIT TEST. This is a special case of the composite test. In this case
m = n− 1 and thus the p-value of the test (given in Equation (7.13) can be approximated for large
n by 1−χ2

I−1(2lrs) or χ2
I−1(pcs). Also, the likelihood ratio statistic

∑k
i=1 ni ln

ni

nqi
can be replaced

by the Pearson-Chi-Squared statistic, equal to

I∑
i=1

(ni − nqi)
2

nqi
(7.45)

EXAMPLE: MENDEL’S PEAS, CONTINUATION OF EXAMPLE 7.4 ON PAGE 159. The like-
lihood ratio statistic is lrs = 0.3092 and we found by Monte Carlo a p-value p∗ =
0.9191±0.0458. By the asymptotic result, we can approximate the p-value by χ2

3(2lrs) =
0.8922.

The Pearson Chi-squared statistic is pcs = 0.6043, very close to 2lrs = 0.618. The
corresponding p value is 0.8954.

7.5.4 TEST OF INDEPENDENCE

The same ideas as in Section 7.5.3 can be applied to a test of independence. We are given
a sequence (xk, yk), which we interprete as a sample of the sequence (Xk, Yk), k = 1, ..., n.
The sequence is iid ((Xk, Yk) is independent of (Xk, Yk′) and has the same distribution). We
are interested in knowing whether Xk is independent of Yk.

To this end, we compute an empirical histogram of (X,Y ), as follows. We partition the set of
values of X [resp. Y ] into I [resp. J] bins Bi [resp. Cj]. Let Ni,j =

∑n
k=1 1{Bi}(Xk)1{Cj}(Yk)

(number of observation that fall in bin (Bi, Cj)) and pi,j = P{X1 ∈ Bi and Y1 ∈ Cj}. The
distribution of N is multinomial. The test of independence is

H0: “pi,j = qirj for some q and r such that
∑

i qi =
∑

j rj = 1”

against

H1: “pi,j is arbitrary”

The MLE under H0 is p̂0
i,j = ni.

n

n.j

n
where ni,j =

∑n
k=1 1{Bi}(xk)1{Cj}(yk) and{

ni. =
∑

j ni,j

n.j =
∑

i ni,j
(7.46)

The MLE under H1 is p̂1
i,j =

ni,j

n
. The likelihood ratio statistic is thus

lrs =
∑
i,j

ni,j ln
nni,j

ni.n.j

(7.47)

To compute the p-value, we use, for large n, a χ2
m distribution. The numbers of degrees of freedom

under H1 is IJ − 1, under H0 it is (I − 1) + (J − 1), thus m = (IJ − 1) − (I − 1) − (J − 1) =
(I − 1)(J − 1). The p-value is thus

p∗ =
(
1 − χ2

(I−1)(J−1)

)
(2lrs) (7.48)
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As in Section 7.5.3, 2lrs can be replaced, for large n, by the Pearson Chi-squared statistic:

pcs =
∑
i,j

(
ni,j − ni.n.j

n

)2
ni.n.j

n

(7.49)

EXAMPLE 7.7: BRASSICA OLERACEA GEMMIFERA. A survey was conducted at the
campus cafeteria, where customers were asked whether they like Brussels sprouts.
The answers are:

i\j Male Female Total
Likes 454 251 705

Dislikes 295 123 418
No Answer / Neutral 267 148 415

Total 1016 522 1538

We would like to test whether affinity to Brussels sprouts is independent of customer’s
gender.

Here we have I = 3 and J = 2, so we use a χ2 distribution with m = 2 degrees of
freedom. The likelihood ratio statistic and the p-value are

lrs = 2.6489, p = 0.0707 (7.50)

so we accept H0, i.e. affinity to Brussels sprouts is independent of gender.

Note that the Pearson Chi-squared statistic is

pcs = 5.2178 (7.51)

which is very close to 2lrs.

7.6 OTHER TESTS

7.6.1 GOODNESS OF FIT TESTS BASED ON AD-HOC PIVOTS

In addition to the Pearson χ2 test, the following two tests are often used. They apply to a continuous
distribution, thus do not require quantizing the observations. Assume Xi, i = 1, .., n are iid
samples. We want to test H0: the distribution of Xi is F against non H0.

Define the empirical distribution F̂ by

F̂ (x) :=
1

n

n∑
i=1

1{Xi≤x} (7.52)
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Kolmogorv-Smirnov The pivot is

T = sup
x

|F̂ (x) − F (x)|

That the distribution of this random variable is independent of F is not entirely obvious, but can
be derived easily in the case where F is continuous and strictly increasing, as follows. The idea is
to change the scale on the x-axis by u = F (x). Formally, define

Ui = F (Xi)

so that Ui ∼ U(0, 1). Also

F̂ (x) =
1

n

∑
i

1{Xi≤x} =
1

n

∑
i

1{Ui≤F (x)} = Ĝ(F (x))

where Ĝ is the empirical distribution of the sample Ui, i = 1, ..., n. By the change of variable
u = F (x), it comes

T = sup
u∈[0,1]

|Ĝ(u) − u|

which shows that the distribution of T is independent of F . Its distribution is tabulated in statistical
software packages. For a large n, its tail can be approximated by τ ≈ √−(lnα)/2 where P(T >
τ) = α.

Anderson-Darling Here the pivot is

A = n

∫
R

(
F̂ (x) − F (x)

)2

F (x)(1 − F (x))
dF (x)

The test is similar to K-S but is less sensitive to outliers.

QUESTION 7.6.1. Show that A is indeed a pivot. 9

EXAMPLE 7.8: FILE TRANSFER DATA. We would like to test whether the data in
Figure 7.3 and its log are normal. We cannot directly apply Kolmogorov Smirnov
since we do not know exactly in advance the parameters of the normal distribution to
be tested against. An approximate method is to estimate the slope and intercept of
the straight line in the qqplot. We obtain

Original Data
slope = 0.8155
intercept = 1.0421

Transformed Data
slope = 0.8709
intercept = -0.2652

9Use the fact that F̂ (x) = Ĝ(F (x)) and do the change of variable u = F (x) in the integral.
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Figure 7.3: Normal qqplots of file transfer data and its logarithm.

For example, this means that for the original data we take for H0: “the distribution is
N(μ = 1.0421, σ2 = 0.81552)”. We can now use the Kolmogorov-Smirnov test and
obtain

Original Data
h = 1 p = 0.0000

Transformed Data
h = 0 p = 0.2964

Thus the test rejects the normality assumption for the original data and accepts it for
the transformed data.

This way of doing is approximate in that we used estimated parameters for H0. This
introduces some bias, similar to using the normal statistic instead of student when we
have a normal sample. The bias should be small when the data sample is large, which
is the case here.

A fix to this problem is to use a variant of KS, for example the Lilliefors, or to use differ-
ent normality tests such as Jarque Bera (see Example 8.1 on page 185) or Shapiro-
Wilk. The Lilliefors test is a heuristic that corrects the p-value of the KS to account for
the uncertainty due to estimation. In this specific example, with the Lilliefors test we
obtain the same results as previously.

7.6.2 ROBUST TESTS

We give two examples of test that make no assumption on the distribution of the sample (but
assume it is iid). They are non parametric in the sense that they do not assume a parameterized
family of densities.

MEDIAN TEST The model is Xi ∼ iid with some distribution F () with a density. We want to
test

H0: “the median of F is 0” against H1: “unspecified”
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A simple test is based on confidence interval, as mentioned in Section 7.3.2. Let I(x) be a confi-
dence interval for the median (Theorem 2.2.1). We reject H0 if

0 ∈/I(x) (7.53)

This test is robust in the sense that it makes no assumption other than independence.

WILCOXON SIGNED RANK TEST. It is used to test a 0 median, for example when comparing
paired experiments. Assume the data comes from an iid model X1, ...Xn, with some unspecified,
but symmetric, distribution. The null hypothesis is that the median is 0. The Wilcoxon Signed
Rank Statistic is

W =
n∑

j=1

rank(|Xj|)sign(Xj)

where rank(|Xj|) is the rank in increasing order (the smallest value has rank 1) and sign(Xj) is
−1 for negative data, +1 for positive, and 0 for null data. If the median is positive, then many
values with high rank will be positive and W will tend to be positive and large. We reject the null
hypothesis when |W | is large.

It can be shown that the distribution of W under H0 is always the same. It is tabulated and con-
tained in software packages. For non small data samples, it can easily be approximated by a normal
distribution. We now compute its mean and variance.

Under H0 is

EH0(W ) =
n∑

j=1

EH0(rank(|Xj|)EH0(sign(Xj))

since under H0 rank(|Xj|) is independent of sign(Xj). Thus EH0(W ) = 0. The variance is

EH0(W
2) =

n∑
j=1

EH0(rank(|Xj|)2sign(Xj)
2) =

n∑
j=1

EH0(rank(|Xj|)2)

since sign(Xj)
2 = 1. Now

∑
j rank(|Xj|)2 =

∑
j j

2 is non random thus

varH0(W ) =
n∑

j=1

EH0(rank(|Xj|)2) = EH0(
∑

j

rank(|Xj|)2) =
n∑

j=1

j2 =
n(n+ 1)(2n+ 1)

6

EXAMPLE: PAIRED DATA.This is a variant of Example 7.2 on page 152. Consider
again the reduction in run time due to a new compiler option, as given in Figure 2.3 on
Page 17. We want to test whether the reduction is significant. We assume the data is
iid, but not necessarily normal. The median test gives a confidence interval

I(x) = [2.9127; 33.7597]

which does not contain 0 so we reject H0.

Alternatively, let us use the Wilcoxon Signed Rank test. We obtain the p-value

p = 2.3103e − 005

and thus this test also rejects H0.
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WILCOXON RANK SUM TEST AND KRUSKAL-WALLIS. It is used in unpaired experiments
to test (H0): the two samples come from the same distribution against (H1) the distributions of the
two samples differ by a location shift. It is assumed that the distributions have a density.

Let X1
i , i = 1...n1 and X2

i , i = 1...n2 be the two iid sequences that the data is assumed to be a
sample of. The Wilcoxon Rank Sum Statistic R is the sum of the ranks of the first sample in the
concatenated sample.

As for the Wilcoxon rank sum test, its distribution under the null hypothesis depends only on the
sample sizes and can be tabulated or, for a large sample size, approximated by a normal distribu-
tion. Its mean is

EH0(R1) =
n1(n1 + n2 + 1)

2
(7.54)

and its variance is

varH0(R1) =
n1n2(n1 + n2 + 1)

2
(7.55)

We reject H0 when the rank sum statistic deviates largely from its expectation under H0.

EXAMPLE 7.9: NON PAIRED DATA. The Wilcoxon rank sum test applied to Exam-
ple 7.1 on page 151 gives the following p-values:

Parameter Set 1 p = 0.0002854
Parameter Set 2 p = 0.02731
Parameter Set 3 p = 0.6669

The results are the same as with ANOVA. H0 (same distribution) is accepted for the
3rd data set only, at size= 0.05.

The Kruskal-Wallis test is a generalization of Wilcoxon Rank Sum to more than 2 non paired data
series. It tests (H0): the samples come from the same distribution against (H1): the distributions
may differ by a location shift.

7.7 REVIEW

7.7.1 SUMMARY

TBD

7.7.2 TESTS ARE JUST TESTS

1. The first test to do on any data is a visual exploration. In most cases, this is sufficient.
2. Testing for a 0 mean or 0 median is the same as computing a confidence interval for the mean

or the median.
3. Tests work only if the underlying assumptions are verified (for example, iid normal samples).

Even then, a test is just a test. Therefore, there are many different tests. Tests can be produced
from any pivot: see for example the K-S test for goodness of fit.
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4. Some tests work under a larger spectrum of assumptions (for example: even if the data is not
normal). They are called robust tests. They should be preferred whenever possible.

5. Test whether the same variance assumption holds, otherwise, use robust tests or asymptotic
results.

6. If you perform a large number of different tests on the same data, then the probability of
rejecting H0 is larger than for any single test. So, contrary to non-statistical tests, increasing
the number of tests does not always improve the decision.

7.7.3 REVIEW QUESTIONS

QUESTION 7.7.1. What is the critical region of a test ? 10

QUESTION 7.7.2. What is a type 1 error ? A type 2 error ? The size of a test ? 11

QUESTION 7.7.3. If a test says “do not accept H0”, can we conclude that H1 is true ? 12

7.8 EXERCISES

USEFUL S-PLUS COMMANDS aov, tables.model, summary, wilcox.test

USEFUL MATLAB COMMANDS anova1, anova2, anovan: (analysis of variance, differ
only in the format of the data model); ttest: student test; ranksum, signrank: Wilcoxon
non-parametric tests.

EXERCISE 7.1 (ANOVA). For which values of the ratio of variation explained by the model do we
reject H0 (i.e. accept H) ? Take the size α = 0.05. What happens for large values of N − k ?
Numerical application: Values in [Weber-C11] Example 11.3.

EXERCISE 7.2. Consider Example [Weber-C11] Section 11.4 (χ2-test). What is the p-value of the
test ?

EXERCISE 7.3. We test H0 against H1, using a test of size α, where the rejection region has the
form {T (X) > kα}. How do the results of the tests compare for α = 0.05 and α = 0.10 ? See for
example [Weber-C11] Example 11.3.

10Call x the data used for the test. The critical region C is a set C of possible values of the observation, such that
when the event “x ∈ C” is true we reject H0.

11A type 1 error occurs when the test says “do not accept H0” whereas the truth is H0. A type 2 error occurs when
the test says “accept H0” whereas the truth is H1. The size of a test is supθ such that H0 is true Pθ(C) ( = the worst
case probability of a type 1 error).

12No, consider Example 7.2 on page 152. The first test says “do not accept μ = 0”, from which we cannot conclude
that H1 = {“μ = 40”} is true, since the second test says “do not accept μ = 40”. A test can only gives an indication
that some hypothesis is wrong.
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EXERCISE 7.4 (Tests). We want to evaluate in detail whether Joe’s idea, namely to see whether
installing more base stations did bring some improvements (Questions 1.4.2 and 1.4.3), using
simple tests.

1. Import the values of achieved throughput that were used to build Figure 1.1a, Figure 1.1b
and Figure 1.1c by copying the file indicated in a complementary document. Note that these
are non-paired data.

2. Using ANOVA, test whether Figure 1.1b is better than Figure 1.1a. Same question when
comparing Figure 1.1a and Figure 1.1c on one hand, Figure 1.1b and Figure 1.1c on the
other hand. What are the assumptions of ANOVA?

3. Same question using Wilcoxon rank-sum tests. What are the assumptions of the Wilcoxon
rank-sum test?

4. Again using ANOVA, test whether Figure 1.1a, Figure 1.1b and Figure 1.1c have the same
mean.

5. Same question using Kruskal-Wallis tests. What are the assumptions of the Kruskal-Wallis
test?
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CHAPTER 8

LOAD GENERATION WITH SURGE

From PE4 we saw that a proper definition of load is key. We study here an example where the goal
is to study the performance of a network and a web server. We study the load generator SURGE
developed at Boston University, which, to my knowledge, is the most sophisticated one at the time
of writing.

The principle of a load generator are:

• characterize important aspects of the load; produce a stochastic model which reproduces
them

• implement an emulator that produces instances of the process, using a random number gen-
erator, like a simulator does. It generates real traffic, unlike a simulator.

An important aspect is the choice of distributions of single random variables used to model the
load. We also discuss an important feature called Heavy Tail.
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8.1 DISTRIBUTIONS

We review a number of attributes of distributions, which is useful in making the right choice.

[McLaughlin97] gives a compendium of distributions. See also [NIST] Section 1.3.6 for an illus-
tration of distributions.

8.1.1 SCALE, LOCATION AND SHAPE PARAMETERS

A distribution can always be scaled and translated, by a transformation of the form y = x−m
s

.
Physically, this corresponds to a change of origin and units. This gives two degrees of freedom
called location and scale. In contrast to scale and location, distributions have a shape, which make
them unique. The modeler’s talent is to pick a distribution that has a shape consistent with the data.

A normal distribution N(μ, σ2) has location= μ, scale= σ and always has the same nice, symmet-
ric bell shape. Other distributions such as Gamma, Beta or Weibull have a shape which depends
on the parameter (Figure 8.1). The Weibull distribution has density

f(x) =
c(x− a)c−1

bc
e−(x−a

b )
c

1{x>a} (8.1)

a is a location, and b a scale, parameter.

Consider as another example the effect of a Box-Cox transformation. Let X be a random vari-
able such that Y := bs(X) ∼ N(μ, σ2) (the distribution of X is Box-Cox-normal, with shape
parameter s). For s = 0 we have the log-normal distribution, whose density is (Figure 8.2)

f(x) =
1

x
√

2πσ2
exp−(log x− μ)2

2σ2
(8.2)

Here μ and σ both influence shape, mean and variance.
cxc−1

bc exp−(x/b)c1{x>0}

QUESTION 8.1.1. IfX ∼log-normal, say which one is correct: (1)X is the exponential of a normal
random variable; (2) X is the logarithm of a normal random variable. 1

1(1).
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QUESTION 8.1.2. Give the density of a scaled and translated log-normal distribution. If we require
the random variable to have support in (0,+∞), which scalings and translations are possible ? 2

QUESTION 8.1.3. What is the density of a box-cox-normal random variable ? 3
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Figure 8.1: Shape of the Weibull distribution for a = 0, b = 1 and various values of c.

8.1.2 SKEWNESS AND KURTOSIS

Skewness and Kurtosis qualify the shape of a distribution that has finite moments up to order
4. They are based on cumulants, defined as follows. The cumulant generating function of the

2Let Y = sX + m where X is log-normal. The density of Y is

1
(y − m)

√
2πσ2

exp− (log(y − m) − μ + log s)2

2σ2

thus the scaling by s is equivalent to changing μ and is not needed. Only location is required. However if we require
that Y takes values in (0,+∞), location is excluded; μ and σ are the only two parameters of a log-normal RV.

3For s = 0, it is the log-normal density; else

sxs−1 exp−1
2

(
xs − 1 − sμ

sσ

)2



184 CHAPTER 8. LOAD GENERATION WITH SURGE

s = 0

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

(a) Log-normal

Pareto, a =  1  p =0.5,1,2,3

2 4 6 8 10

0.
00

1
0.

01
0

0.
10

0
1.

00
0

(b) Pareto

Figure 8.2: Shape of the Log-Normal distribution for μ = 0, σ = 1 and of the Pareto distribution for a = 1
and p = 0.5, 1, 2 and 3.

distribution of a real random variable X is defined by

cgf(s) := log f̂(−s) = log E
(
esX
)

(f̂ is the Laplace transform). Assume that E(es0|X|) < ∞ for some s0 so that the above is well
defined around s = 0. This also implies that all moments are finite. Then, by a Taylor expansion:

cgf(s) = κ1s+ κ2
s2

2
+ κ3

s3

3!
+ ...+ κk

sk

k!
+ ...

The coefficient κk is, by definition, the cumulant of order k. We have κk = dk

dsk cgf(0). The first
four cumulants are : ⎧⎪⎪⎨

⎪⎪⎩
κ1 = E(X)

κ2 = E (X − E(X))2 = var(X)

κ3 = E (X − E(X))3

κ4 = E (X − E(X))4 − 3var(X)2

(8.3)

For the normal distribution Nμ,σ2 , cgf(s) = μs+ σ2

2
s2 thus all cumulants of order k ≥ 3 are 0.

SKEWNESS INDEX κ3 is called skewness. The skewness index is

γ1 := κ3/κ
3/2
2 = κ3/σ

3

The skewness index is insensitive to changes in scale (by a positive factor) or location. For a
density which is symmetric around its mean, κ2k+1 = 0; γ1 can be taken as a measure of asymmetry
of the distribution. When γ1 > 0 the distribution is right-skewed, and vice-versa. If φ is convex,
then φ(X) has greater skewness index than X .

KURTOSIS INDEX κ4 is called Kurtosis. The Kurtosis index is

γ2 := κ4/κ
2
2 = κ4/σ

4

The Kurtosis index is insensitive to changes in scale or location. It is used to measure departure
from the normal distribution. When γ2 > 0, the distribution has a sharper peak around the mean
and heavier tail; when γ2 < 0, it has a flatter top and decays more abruptly.
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QUESTION 8.1.4. Show that the Kurtosis index is also given by γ2 = E(X−E(X))4

σ4 − 3 4

QUESTION 8.1.5. Guess the index of skewness and the sign of the Kurtosis index for a uniform
distribution. Check in [McLaughlin97] 5

QUESTION 8.1.6. Show that var((X −E(X))2) = κ4 + 2σ4 = σ4(2 + γ2). Show that γ2 ≥ −2. 6

QUESTION 8.1.7. Show that the kth cumulant of the convolution of two distributions is the sum of
the kth cumulants 7

QUESTION 8.1.8. Let Y = s(X −m). Relate the cumulants of X and Y . 8

JARQUE-BERA. The Jarque-Bera statistic is used to test whether an iid sample comes from a

normal distribution. It is equal to n
6

(
γ̂2

1 +
γ̂2
2

4

)
, the distribution of which is asymptotically χ2

2 for

large sample size n. In the formula, γ̂1 and γ̂2 are the sample indices of skewness and kurtosis,
obtained by replacing expectations by sample averages in Equation (8.3).

EXAMPLE 8.1: APPLICATION TO EXAMPLE 7.8 ON PAGE 175. We would like to test
whether the data in Example 7.8 on page 175 and its transform are normal.

Original Data h = 1 p = 0
Transformed Data h = 0 p = 0.2964

The conclusions are the same as in Example 7.8 on page 175, but for the original data
the normality assumption is clearly rejected, whereas it was borderline in Example 7.8
on page 175.

8.1.3 POWER LAWS, ZIPF’S LAW AND PARETO DISTRIBUTIONS

The three terms in the title are often read in Internet related performance studies. They are quite
related, as we see now.

Power Laws. This is the name for relations of the form

y = axb

i.e., affine relations in xy-log scales: log y = b log x+ a.

4Simple calculus.
5γ1 = 0 and γ2 = −1.2.
61. Simple calculus. 2.The previous is always ≥ 0.
7The Laplace transform is the sum of the Laplace transforms.
8κ1(Y ) = κ1(X) + m and for k ≥ 2: κk(Y ) = skκk(X). Cumulants other than the mean κ1 are invariant by

translation, so we can study them for centered distributions only.
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PARETO DISTRIBUTION. The Pareto distribution has density (Figure 8.2)

f(x) = papx−(p+1)1{x>a} (8.4)

Its complementary distribution P(X > x) =
(

a
x

)p
is a power law. Its mean is ap

p−1
for p > 1 and

its variance is a2p
(p−2)(p−1)2

for p > 2.

QUESTION 8.1.9. Give a method to generates a random sample of k values from the Pareto distri-
bution with a = 1 and index p. 9

ZIPF’S LAW. Zipf’s law, in our context, means that the popularity of an object (for example: a
file requested on a server; a server) is approximately inversely proportional to its rank. It has been
observed in some cases, and has received much attention.

Formally, call θj the probability that object j is selected, and let θ(1) ≥ θ(2) ≥ ... be the collection
of θs in decreasing order. Zipf’s law means

θ(j) ≈ k

j

where k is some constant.

Now we show the relation to a Pareto distribution. Assume that we draw the θs at random (as we do
in a load generator) by obtaining some random value Xi for object i, and letting θi = Xi/(

∑
iXi).

Assume that the number of objects is large andXi’s marginal distribution is some fixed distribution
on R

+, with complementary distribution function G(x). Let X(n) be the reverse order statistic, i.e.
X(1) ≥ X(2) ≥ .... We would like to follow Zip’s law, i.e., for some constant c:

X(n) ≈ c

n
(8.5)

Now let us look at the empirical complementary distribution Ĝ; it is obtained by putting a point at
each Xi, with probability 1/N , where N is the number of objects. More precisely, let us define it
by

Ĝ(x) =
1

N

N∑
i=1

1{Xi≥x}

Thus Ĝ(X(n)) = n/N . Combine with Equation (8.5): Zipf’s law mandates that, at every point
x = X(n) where we have some data:

Ĝ(x) ≈ k

x

with k = c/N . This means that the empirical distribution of Xi is Pareto with tail index p = 1.

In other words, Zipf’s law can be interpreted as follows. The probability of choosing object i is
itself a random variable, obtained by drawing from a Pareto distribution with tail index b = 1, then
re-scaling to make the probabilities sum to 1.

9Let G be the complementary distribution of Pareto and U uniform on [0, 1]; then G−1(U) ∼ Pareto: thus X :=
1

U1/p where U is uniform on [0, 1].



8.1. DISTRIBUTIONS 187

8.1.4 SURVIVAL FUNCTION

A further element to determine which distribution to use is the survival function h(x) := P(X≥x+δ)
P(X≥x)

,
where δ is fixed. Interpret X as the duration of a session; then h(x) is the conditional probability
that a session, known to have lasted at least x, will live for at least δ more time units.

We compute an asymptotic of h(x), for large x, for Pareto and Weibull. We find, for Pareto

h(x) =

(
1 +

δ

x

)−b

→ 1

and for Weibull ⎧⎨
⎩

h(x) → 0 for c > 1

h(x) → e−
δ
b for c = 1

h(x) → 1 for c < 1

Thus for power laws and sub-exponential decay (c < 1) the survival function gets close to 1.
In contrast, for hyper-exponential decay (c > 1) the survival function gets close to 0. And for
exponential decay, it converges to a constant < 1 (memoriless property). Think about what it
means if X is the level of a flood...

8.1.5 FINDING A DISTRIBUTION THAT FITS SOME CONSTRAINTS

Maximum entropy. to be done

8.1.6 FITTING A DISTRIBUTION

An empirical tool is the qqplot, discussed in Section 2.4.1. It works under the assumption that
the sample comes from a common distribution, and is large enough for the empirical distribution
to converge to the theoretical one. It does not require the sample to be independent, as long as
convergence to the common distribution does occur.

A qqplot is normally done with respect to a standardized distribution (scale =1 and location =0);
the actual scale and location are read from the slope and intercept of a regression line, assuming
the qq-plot is close to a straight line.

If the sample is known to be iid, formal tests as in Section 7.6.1 can be used.

FITTING LARGE DATA SETS. For very large data sets, it is often reported that tests of fit fail,
whereas empirical histograms show a good fit. There are several interpretations to this.

1. a real data set never exactly fits a given, simple distribution. For large data sets, the test
becomes accurate and thus rejects the hypothesis of a fit.

2. lack of fit may be related to absence of stationarity: the distribution is no longer the same at
the beginning and the end of the measurement period

3. the data does not come from an independent sample. This is almost invariably true in prac-
tice, and is sufficient to explain failures of tests. Jan Beran [Bera94-book] reports that long
lasting correlation in the data set explains that the level of significance of the classical tests
may get close to 1 (instead of α), which makes the test meaningless. We will see an example
in Chapter 9 of how to handle this in some cases.
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For very large data sets, the problem can be avoided by sub-sampling the data according to a
Poisson or Bernoulli process. This will remove the problem if it is due to correlations and the
sampling results in few, far apart data points.

8.2 HEAVY TAILS

8.2.1 DEFINITION

Distributions such as N(μ, σ) have a density that decays very fast; thus, large values are very rare.
In fact, the normal distribution is often taken to model data with bounded support. In contrast, the
log-normal distribution does not decay as fast. We say that log-normal has a fat tail. The Pareto
distribution is even more pronounced and is said to have Heavy Tail, see Figure 8.2.1.
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Figure 8.3: P (x > x) versus x on log-log scales, when X is normal (dots), log-normal (solid) or Pareto
(dashs). The three distributions have same mean and 99%-quantile.

HEAVY TAIL. We use the following definition (there are more general ones). We say that the
distribution F is heavy tailed with index 0 < p ≤ 2 if there is some constant k such that, for large
x:

1 − F (x) ∼ k

xp
(8.6)

Here f(x) ∼ g(x) means that f(x) = g(x)(1 + ε(x)), with limx→∞ ε(x) = 0.

A heavy tailed distribution has an infinite variance, and for p ≤ 1 an infinite mean.

• The Pareto distribution with exponent p is heavy tailed with index p if 0 < p ≤ 2.
• The log-normal distribution is not heavy tailed (its variance is always finite).
• The Cauchy distribution (density 1

π(1+x2)
) is heavy tailed with index 1.
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The central limit theorem does not apply to distributions with infinite variance. Instead, if Xi are
iid, heavy tailed with index p, then there exist constants cn and dn such that

1

cn

n∑
i=1

Xi + dn

distrib
→

n→ ∞
Sp

where Sp has a “p-stable” distribution. p-stable distributions, for p ≤ 2, constitute a family of
distributions with the following property: if Xi are iid and p-stable then 1

n
1
p
(X1 + ... + Xn) has

the same distribution as the Xis, shifted by some number dn. The 2-stable distributions are the
normal ones. For p < 2, p-stable distributions exist and are defined by 3 parameters (in addition
to p), called location, scale and skewness. For p < 2, stable distributions are either constant or
heavy tailed, and p is precisely the heavy tail index. Stable distributions that are not constant have
a continuous density, which it is not known explicitly, in general. In contrast, their characteris-
tic functions are known explicitly, see [Crovella99-Method] and [Samorodnistky94-Book]. The
Cauchy distribution is 1-stable; Pareto is not stable. Figure 8.5 illustrates the convergence of a sum
of iid Pareto random variables.

More precisely, the p-stable distribution with location=μ, skewness=β and scale=σ is defined by its characteristic
function φ(ω) := E(eiωX) [Samorodnistky94-Book]. For p �= 1:

φ(ω) = exp
[
−σp|ω|p

(
1 − iβ(sgn(ω) tan

pπ

2

)
+ iμω

]
and for p = 1:

φ(ω) = exp
[
−σ|ω|

(
1 +

2iβ

π
sgn(ω) ln |ω|

)
+ iμω

]
where sgn(ω) = 1 if ω > 0, sgn(0) = 0, and sgn(ω) = −1 if ω < 0

EXAMPLE 8.2: PARETO DISTRIBUTION. We use the Pareto distribution on [1, +∞)
defined by its cdf equal to F (c) := P(X > c) = 1

cp with p = 1.25 (its mean is = 5
and it is heavy tailed). Assume we would not know that it comes from a heavy tailed
distribution and would like to use the asymptotic result in Theorem 2.3.2 to compute
a confidence interval for the mean. We verify convergence to the normal distribution
and find on Figure 8.4 that the asymptotic regime does not hold. In contrast, the
confidence interval for the median is perfectly correct.

QUESTION 8.2.1. For which parameters is Weibull heavy tailed ? 10

8.2.2 DISCUSSION

THE IMPORTANCE OF THE SECOND MOMENT. Heavy tail means that very large values are
not too rare. This is called by Mandelbrot the Noah effect (where a large value is a flood). We
further illustrate the concept in our context. Consider a server that receives requests for download-
ing files. Assume the requests arrival times form a Poisson process, and the requested file sizes are
iid ∼ F where F is some distribution. This is a simplified model, but it will make the point.

10None
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Figure 8.4: (a) Left: Artificially generated sample of 100 values from the Pareto distribution with exponent
p = 1.25. Center: confidence intervals for the mean computed from Theorem 2.3.2 (left) and the bootstrap
percentile estimate (center), and confidence interval for the median (right). Right: qqplot of 999 bootstrap
replicates of the mean. The qqplot shows deviation from normality, thus the confidence interval given by
Theorem 2.3.2 is not correct. Note that in this case the bootstrap percentile interval is not very good either,
since it fails to capture the true value of the mean (= 5). In contrast, the confidence interval for the median
does capture the true value (= 1.74). (b) Same with 10000 samples. The true mean is now within the
confidence interval, but there is still no convergence to normality.
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Figure 8.5: Aggregation a sum of iid Pareto random variables (a = 1, p ∈ {1, 1.5, 2, 2.5, 3}) (simulation
in S). On every row: The first three diagrams show the empirical distribution (normal qq-plot, histogram,
complementary distribution) of one sample of n1 = 104 iid Pareto random variables. The last three show
similar diagrams for a sample (Yj)1≤j≤n of n = 103 aggregated random variables: Yj = 1

n1

∑n1
i=1 Xi

j , where
Xi

j ∼ iid Pareto. The figure illustrates that for p < 2 there is no convergence to a normal distribution, and for
p ≥ 2 there is. It also shows that for p ≥ 2 the power law behaviour disappears by aggregation, unlike for
p < 2. Note that for p = 2 Xi is heavy tailed but there is convergence to a normal law.
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We assume that the server has a unit capacity, and that the time to serve a request is equal to the
requested file size. This again is a simplifying assumption, which is valid if the bottleneck is a
single, FIFO I/O. From Chapter 6, the mean response time of a request is given by the Pollaczek-
Khintchine formula

R = ρ+
ρ2(1 + σ2

μ2 )

2(1 − ρ)

where: μ is the mean and σ2 the variance, of F (assuming both are finite); ρ is the utilization factor
(= request arrival rate ×μ). Thus the response time depends not only on the utilization and the
mean size of requests, but also on the coefficient of variation C := σ/μ. As C grows, the response
times goes to infinity. Thus it is vital to capture the second moment. If the real data supports
the hypothesis that F is heavy tailed, then the average response time is likely to be high and the
estimators of it are unstable.

HEAVY TAIL IN PRACTICE Heavy tail is an asymptotic definition. Since, in practice, all data
sets are finite, it is impossible to have a firm answer from statistical inference. In particular, it is
often difficult to make a practical difference between log-normal and Pareto. Now since heavy tails
introduce much theoretical and practical difficulties, one will often try to avoid heavy tail models.

However, we should be guided by Occam and Dijksta’s principle, also called principle of Parsi-
mony in this context. If data is explained by one simple heavy tailed model with few parameters,
as well as by a non-heavy tail model with many parameters, then the heavy tail model should be
preferred. This is the case of some aspects of SURGE.

To make a simplistic comparison, the use of heavy tail distributions is similar to saying, in optics,
that the distance to a remote object is infinite. This is obviously wrong, but if it leads to simpler
computations, then it should be used.

QUESTION 8.2.2. If the tail of the distribution of X follows a power law, can you conclude that X
is heavy tailed ? 11

8.2.3 TESTING HEAVY TAIL

There is no simple, rigorous test, but there are the following heuristics.

• Plot the empirical distribution in log-log scale and look for a linear relationship, the slope of
which will give the exponent p in Equation (8.6). See Figure 1 in [Crovella99-Method].

• The Hill Plot and Hill estimators are based on the hypothesis that the distribution is Pareto. It
has many difficulties in practice. See [Cappe02-SPM] for details and Figure 13 in [Crovella99-
Method].

• A tool by Crovella and Taqqu (aest) uses the scaling properties and the central limit con-
vergence to stable distributions. Consider Xi iid and heavy tailed, with index p. Call X(m)

i

the aggregate sequence, where observations are grouped in bulks of m:

X
(m)
i :=

im∑
j=(i−1)m+1

Xj

11No, only if the exponent of the tail is ≤ 2.
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For large m1,m2, by the weak limit mentioned earlier, we should have approximately the
distribution equalities

1

m
1
p

1

X
(m1)
i ∼ 1

m
1
p

2

X
(m2)
j (8.7)

The idea is now to plot the empirical complementary distributions ofX(m)
i for various values

of m (Figure 2 in [Crovella99-Method]). Further, the deviation between two curves of the
plot is analyzed by means of horizontal and vertical deviations δ and τ as explained in
Figure 8.6. We have δ = log x2 − log x1. By Equation (8.7), we have x2 = (m2/m1)

1/px1

thus

δ =
1

p
log

m2

m1

Also, if Xi is heavy tailed, and m is large, then X
(m)
i is approximately stable. Thus, if

m2/m1 is an integer, the distribution of X(m2)
j (which is a sum of X(m1)

i ) is the same as that

of (m2/m1)
1/pX

(m1)
i . We should thus have

τ = log P(X
(m2)
i > x1) − log P(X

(m1)
i > x1) ≈ log

m2

m1

The method in aest consists in use only the points x1 where the above holds, then, at such
points, estimate p by

p̂ =
1

δ
log

m2

m1

Then the average of these estimates is used. See Figures 5, 7, 8 and 13 in [Crovella99-
Method] for an illustration to some data set.

• Downey proposed in [Downey01-IMW] a test for distinguishing between Pareto tails (hy-
pothesis H0) and non Pareto tails. It is based on an estimation of the curvature of the com-
plementary distribution (an estimate of the second derivative). If the curvature is large, the
Pareto assumption is rejected. See also Exercise 8.5.
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Figure 8.6: Deviations used in the aest tool.
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8.3 THE WORKLOAD GENERATOR SURGE

This section explains the paper [Barford98-Sigmetrics].

8.3.1 IMPORTANT ASPECTS OF THE LOAD

The following aspects are believed to capture the important characteristics of web traffic.

• The volume on the number of users. In SURGE, this corresponds to the load being generated
by atomic entities called User Equivalents (UEs). The generated load is an integer number
of UEs, each implemented as an independent thread of execution, on one or several machines

• Traffic generated by one UE satisfies a set of constraints on the arrival process, the dis-
tribution of request sizes and the correlation of successive requests to the same object, as
described below.

The values of the distributions were found by Barford and Crovella [Barford98-Sigmetrics] by
fitting measured values.

1. One UE alternates between ON-object periods and “Inactive OFF periods”. Inactive OFF
periods are iid with a Pareto distribution (Table 8.1).

2. During an ON-object period, a UE sends a request with embedded references. Once the
first reference (URL1) is received, there is an “Active OFF period”, then the request for the
second reference is sent, and so on, until all embedded references are received. There is
only one TCP connection at a time per UE, and one TCP connection for each reference (an
assumption that made sense with early versions of HTTP).

3. The active OFF times are modelled as iid random variables with Weibull distributions.
4. The number of embedded references is modelled as a set of iid random variables, with a

Pareto distribution.

The references are viewed as requests for downloading files. The model is that there is a set of files
labeled i = 1, ..., I , stored on the server. File i has two attributes: size xi and request probability
θi. The distribution of attributes has to satisfy the following conditions.

5. The distribution H(x) of file sizes is a combination of Lognormal and Pareto (Table 8.1).
6. θi satisfy Zipf’s law
7. The distribution F (x) of requested file sizes satisfy a Pareto distribution (Table 8.1).

There is a relation between those three constraints, which we derive now. Let I(t) be the random
variable that gives the index i of the tth file requested. Thus F (x) = P(xI(t) = x). We can assume
that the allocation of file sizes and popularities is done in a preliminary phase, and is independent
of I(t). Thus

F (x) =
∑

j

P(I(t) = j)1{xj≤x} =
∑

j

θj1{xj≤x} (8.8)
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Let x(1) = x(2) = ... be the file sizes sorted in increasing order, and let z(n) be the index of the nth
file in that order. z is a permutation of the set of indices, such that x(n) = xz(n). By specializing
Equation (8.8) to the actual values x(m) we find, after a change of variable j = z(n)

F (x(m)) =
∑

j

θj1{xj≤x(m)} =
∑

n

θz(n)1{x(n)≤x(m)}

thus

F (x(m)) =
m∑

n=1

θz(n) (8.9)

which gives a constraint between the θis and xis.

The file request references r(t), t = 1, 2, ... are constrained by their marginal distribution (defined
by θi). Here, we cannot assume that r(t) is an iid sequence, as there is some evidence of correlation
in the series (see Chapter 9). The condition taken here is is:

8. For any file index i, define T1(i) < T2(i) < ... the successive values of t ∈ {1, 2, ...}
such that i = r(t). Assume that Tk+1(i) − Tk(i) come from a common distribution, called
“temporal locality”. The authors find it lognormal, with parameters as indicated in Table 8.1.

QUESTION 8.3.1. Which of the distributions used in Surge are heavy tailed ? 12

8.3.2 BUILDING A PROCESS THAT SATISFIES ALL CONSTRAINTS

It remains to build a generator that produces a random output conformant to all constraints. Con-
straints 1 to 4 are straightforward to implement, with a proper random number generator. The
inactive OFF periods, active OFF periods and number of embedded references are implemented as
mutually independent iid sequences.

Constraints 5 to 7 require more care. First, the xi are drawn from H . Second, the θis are drawn (as
explained in Section 8.1.3) but not yet bound to the file indexes. Instead, the values are put in a set
Θ. In view of Equation (8.9), define

θ̂z(m) = F (x(m)) −
m−1∑
n=1

θz(m)

so that we should have θ̂z(m) = θz(m) for all m. If this would be true, it is easy to see that all
constraints are satisfied. However, this can be done in [Barford98-Sigmetrics] only approximately.
Here is one way to do it. Assume that z(m) =, namely, we have sorted the file indices by increasing
file size. For m = 1 we set θ1 to the value in Θ which is closest to θ̂1 = F (x1). Then remove that
value from Θ, set θ2 to the value in Θ closest to θ̂2 = F (x2) − θ1, etc.

Lastly, it remains to generate a time series of file requests I(t) such that the marginal distribution
is given by the θis and the temporal locality in condition 8 is satisfied. The method in SURGE
can be sketched as follows. First, for a given trace size, the number of occurences of file i is
drawn at random. This produces a sequence of values Ni (with E(Ni) = θi). A sequence T of
values of temporal localities is drawn, using an iid sequence of integers with lognormal distribution

12Inactive OFF time, File size, File request size. The number of embedded references is Pareto but not heavy tailed.
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model density f(x) value of parameters

Inactive OFF time Pareto Equation (8.4) k = 1, p = 1.5
No of embedded references Pareto Equation (8.4) a = 1, p = 2.43

Active OFF time Weibull Equation (8.1) b = 1.46, c = 0.382
File Size Lognormal Equation (8.2) ×1{x≤a} μ = 9.357, σ = 1.318

comb. Pareto Equation (8.4) a = 133K, p = 1.1
File Request Size Pareto Equation (8.4) a = 1000, p = 1.0
Temporal Locality Lognormal Equation (8.2) μ = 1.5, σ = 0.80

Table 8.1: Distributions and parameters used in SURGE.

(approximately). Then a stack S is created, which initially contains the set {1, 2, ..., i, ..., I} (every
file name appears exactly once). Let i = S[T [1]]. If Ni > 0, Ni is decremented, the value of r(1)
is moved from its position to the top of S. Else, i is deleted from the stack. Then the operation is
repeated (a second value i = S[T [2]] is selected and so on) until the stack is empty. This emulates
the behaviour of a stack of least recently used references and provides a process with the required
distribution. [Barford98-Sigmetrics] describes a refinement of the method, which produces a more
uniform appearance of file request names throughout the sequence.

8.4 FURTHER READING

8.4.1 OTHER SOURCE MODELLING ASPECTS

We have focused in this chapter on distribution of single random variable. In the following chapters
we will consider time correlation aspects in more detail. In particular, we will see that there is a
relation between heavy tail (a property of a marginal distribution) and long range dependence (a
property of the time correlation of a process).

A difficult issue is stationarity. The analyses shown in this chapter assume that the data comes
from a stationary random process. If this is not true, then statistical tests are not valid. There are
indications that the stationary models as seen in this chapter are valid for relatively short periods of
time [Zhang02]. Over longer periods, other models that account for time dependence are needed
(see Chapter 9).

A simple, traditional model of request arrivals is the Poisson process. However, for HTTP requests
or TCP connection openings (SYN packets), this is not a valid model in general, but it is so for
user level session generation [Paxson95-ToN], or also for traffic flows inside an operator backbone
(where a very large number of sources is aggregated).

Power laws is a very popular topic in research literature. They were found to hold for topology
aspects of the internet [Faloutsos02-].

8.4.2 OTHER LOAD GENERATION TOOLS

There are many other load generation tools. A load generation tool is called a benchmarking
tool when it comes with an exact specification of the load to be generated and the experimental
procedure. It is used to compare new products such as web server or back-end software. See the
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document resource page for more information.

Packet generators are low level load generators that create data packets suitable for testing net-
works. Primitives include a choice of distribution of inter-packet generation times.

See also [Nahum02-ToN] for a description of performance aspects of web servers.

8.5 EXERCISES

EXERCISE 8.1. Write an S-program that displays the aggregation of stable random variables, sim-
ilar to Figure 8.5, for p = 0.5, 1.0, 1.5, 2, for skewness = 1.0 (totally skewed stable distribution).
For p < 2, this distribution is on the set of positive numbers.

EXERCISE 8.2. Read [Braford98-Sigmetrics] and answer the following questions.

1. What is the difference between request size and file size ? Why is it important to model both ?
2. Why is temporal locality important to model ?
3. What are the drawbacks of a trace based approach ?
4. How is the load generator validated ? The generator is validated against its specification

by measuring the empirical distributions. There is no verification against real data.
5. Why does the Anderson-Darling test reject the proposed distribution whereas the empirical

plot seems to coincide ?
6. What are the differences between Surge and SpecWeb96 ?
7. Why is there a problem with temporal locality when several Surge clients run in parallel ?

EXERCISE 8.3. Read [Downey01-IMW] and answer the following questions.

1. What model does Downey propose for HTTP transfer time ? What did Barford and Crovella
propose ? How is the difference in conclusions explained ?

2. What is the goal of the curvature test ? How does it work ? How is the p-value computed ?
3. Which model do you prefer for HTTP transfer times ?
4. What is the experimental setup to run Surge ?One server machine (UNIX, C code) and a

number of client machines (any OS, Java code). Clients send file requests to the server over
a network.

5. Can Surge be used to test a server or a network ?

EXERCISE 8.4. Homework to be designed in detail

1. run surge clients
2. verify distribution aspects - use aest to compute heavy tail index of inactive OFF times
3. solve a PE question on the performance of wireless LAN
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CHAPTER 9

FORECASTING

In this provisional version, this chapter uses the reference [Weber-TS], an introductory
text on time series by Prof. Weber, Cambridge University, that is publicly available (see
web site for more information).

From http://www.perfdynamics.com:

Traffic planning is an absolute must, and it’s hard to do when you start, because
you don’t have enough data to predict off of. After building some data, you can use
a spreadsheet to create a simple traffic prediction model based on the historical data.
Get more sophisticated later as the need demands and time permits. Also, it is good to
choose some performance metrics that you will measure over time. One useful metric
is the number of Web pages [served] per minute, per CPU. This can be used to predict
hardware requirements against the traffic model or to monitor system performance
changes over time.

We consider performance evaluation activities which involve forecasting.

• Web site Capacity Planning: define how many hosts are needed next quarter to run a web
site

• Software Rejuvenation: decide when to restart a server program, in order to avoid draw-
backs of software aging.

• Dynamic Host Load Management: allocate jobs to hosts, in a large scale distributed sys-
tem, by predicting the available capacity. This example is discussed in Section 9.8.3.

In all cases, forecasting follows the pattern:

1. define a performance metric
2. define measurement methods
3. gather a time series of data
4. forecast from the time series.

In a lab exercise you will experiment with measurement methods. In this chapter we review meth-
ods for forecasting from a time series.

199
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9.1 FORECASTING FROM A TIME SERIES

9.1.1 PREDICTION MODELS

Assume time is discrete. The idea is to explain the data by a Prediction Model of the form

Yt = f(t, Y1, ..., Yt−1) + εt (9.1)

where f() is some non-random function and εt is a noise sequence, such that E(εt|Y1, ..., Yt−1) = 0.
Then, given that we observed Yt, Yt−1, ... the one-step ahead prediction at time t is (Yt+1|Y1, ...Yt) =
f(t+ 1, Y1, ..., Yt). A frequent case is when εt is an iid sequence with 0 expectation.

EXAMPLE 9.1: AVAILABLE CPU. Figure 9.1 shows the available CPU on a host.
A prediction model is Yt = m(t) + Xt with m(t) = .23697742 + .00045397267t −
.00000090822283t2 and

X(t) =
.8226X(t − 1) − .01234X(t − 2) − .002060X(t − 3) − .08239X(t − 4) + .6494X(t − 5)
−.5738X(t − 6) + εt

Here we have

f(t, Yt−1, ..., Y1) =
m(t) + .8226X(t − 1) − .01234X(t − 2) − .002060X(t − 3)
−.08239X(t − 4) + .6494X(t − 5) − .5738X(t − 6)

with Xt−j = Yt−j −m(t− j). This is an example of autoregressive process model (see
Section 9.7 for more details).

REMARKS.

• For model 1 (regression model), f() is a function of t only. The h-step ahead prediction
prediction is simply (Yt+h|Y1, ...Yt) = f(t+ h).

• For model 2, function f does depend on the past observed values. Here h-step ahead pre-
diction is done by applying one-step ahead recursively, replacing the future observed values
Yt, Yt+1, ..., Yt+h−2 by their predicted values.

• The more correlation there is in the data, the smaller the variance of εt in proportion to the
total variance of Yt. If the data is iid, the only prediction we can do is to estimate the mean
and give it as predicted value.

• A major difficulty is to find a tractable model for the data. The task is facilitated by a number
of classical transformations, described below.

• We do not predict the noise when it is iid, but we can give a confidence interval.
• If the data can be modeled by a second order stationary process, then the prediction model

is derived from the autocovariance function – see Section 9.7.5.
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Figure 9.1: Available CPU on a host (courtesy of Peter Dinda). One point every 10 seconds. First graph:
raw data and smoothed estimate m(t). Following graphs: 10-step ahead predictions at times 175 and 240,
with confidence interval, based on model described in text.
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9.1.2 FORECASTING METHODS

There is a large number of forecasting methods. We consider the following ingredients, which are
often used in combination.

1. Fit a regression model to the data. If the residuals can be assumed to be iid, then this is
sufficient.

2. Transform the data before applying another method, using reversible filters. The transformed
data can then be fit to regression model, or to a stationary time series model (see below).
This is useful to remove trend and seasonal components and to separate time scales (using
multiresolution analysis).

3. Else, fit a stationary process to the residuals, in order to transform them into iid noise. This
is the object of Section 9.7.

4. A heuristic, simple method, is the Holt-Winters method. It is in fact a special case of Sec-
tion 9.7, but is much simpler to use than the general method.

In all cases, scale transformations such as Box-Cox (Equation (2.16)) should be used to make the
model look additive.

9.1.3 THE MEANING OF PREDICTION.

Here, prediction is based on a model, fitted from past observation. We can thus extract quantitative
information about trends and risks, growth and decline, and use it for resource allocation.

However, remember that the goal is limited to forecast what can be forecast. Indeed, forecasting
is much like driving a car by looking into the mirror. No automatic software can forecast the
unexpected.

Here, confidence intervals are valid only as long as the model, fitted from the past, continues to
hold in the future. For example, the confidence intervals on Figure 9.1 may be violated if the
process changes suddenly.

9.2 USE OF LINEAR REGRESSION

9.2.1 LINEAR REGRESSION MODELS

Fit the data to a model of the form

Yt =
∑

i

xt(i)β(i) + εt

where εt is the noise. Here β(i) is the regression parameter, estimated by fitting the data on some
window [t− w + 1, t]. If εt is iid, the prediction is

(Yt+h|Y1, ...Yt) =
∑

i

xt+h(i)β(i)

and a confidence interval follows from the general theory of Section 9.7.
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If the data shows no periodic behaviour, a simple fit to a function of t with few parameters can be
used. The model for Swiss population data in Figure 9.11 is obtained with this method, by fitting
a polynomial of degree 2. If we are happy with this forecast, we can use confidence intervals from
Section ?? and the method stops here. See Section 9.8.1 and Section 9.8.2 for some examples.

In contrast, if the noise shows some non iid structure, we use Section 9.7.

9.2.2 APPLICATION TO SEASONAL MODELS

Harmonic + Trend model

Yt = f(t) + a0 +
h∑

j=1

(aj cos(ωjt) + bj cos(ωjt)) + εt

where f() is a function (for example: polynomial) with k parameters; h is the number of harmonics
used – the higher h is, the more accurate, but the less parsimonious the model is. The model has
k+2h+1 parameters in total, and can be estimated using the linear regression method in Section ??.

EXAMPLE 9.2: SPRINT TRAFFIC. (Figure 9.2). It has periodicity 16 (= 24 hours). We
fit the harmonic plus trend model, using the method in Chapter ?? and obtain

Yt = .21818262E + 09t0 + .37733531E + 06t1 − .13294939E + 04t2

−.87232216E + 08 cos(2 ∗ π ∗ t/16) − .38962764E + 07 sin(2 ∗ π ∗ t/16)
−.21264199E + 08 cos(2 ∗ π ∗ t/8) − .22685501E + 08 sin(2 ∗ π ∗ t/8) + εt

Confidence intervals are computed, assuming the normal iid model fits. We derive a
prediction with confidence intervals by letting t be outside the measurement interval

Season + Trend model This is an alternative, defined by:

Yt = at mod s + f(t) + εt

where f has k parameters (for example a polynomial of degree ≤ k − 1). The model has s + k
parameters in total, and can be estimated using linear regression method.

9.3 FINDING PERIODICITIES

A first step is a visual inspection of data, which reveals trends and seasonal components.

A method for mechanically finding a period is the periodogram ([Weber-TS] Chapter 4). The
presence and value of a period can be determined with the periodogram.
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Figure 9.2: (a) traffic volume on an american coast-to coast link (courtesy of Sprintlabs) – one point every
90 mn with fitted harmonic + trend model with 5 parameters; (b) model with confidence interval versus
actual data. From 225 to 250, the actual data (not known when the model was fitted) is shown with circles.
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Figure 9.3: Periodograms for Example 9.2 on page 203 (a) and Example 9.1 on page 200 (b).

APPLICATION TO EXAMPLE 9.2 ON PAGE 203 Figure 9.3 (a) shows a periodic behaviour with
period s = 16. The periodogram has a high peak at ω = 0.40343 (radians), which corresponds to
the period s = ω

2π
n ≈ 16, where n = 250 is the sample size. Sometimes the periodogram is not as

clear: see Figure 9.3.

QUESTION 9.3.1. In what sense is the periodogram a poor estimator ? 1

QUESTION 9.3.2. How is the periodogram computed in practice ? 2

Another method is the autocorrelation, defined in Section 9.7 – see Figure 9.4.
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Figure 9.4: Auto-correlation function for Example 9.2 on page 203 (a) (period = 16) and Example 9.1 on
page 200 (b).

1As the length of the time series increases, the variance of I(ω) does not decrease. In practice, the noise is high.
This is why it is required to look at smoothed versions of the periodogram.

2Using a Fast Fourier transform.



206 CHAPTER 9. FORECASTING

9.4 TRANSFORMING THE DATA

9.4.1 THE “CLASSICAL METHOD”

Most time series show both trend and seasonal components. In some cases, we are interested in
capturing both. In other cases, we my be interested only in the trend. In this section we review
several methods for isolating trends and seasonal components that use filters. The difference with
regression models is that filters are fixed and do not depend on the data, therefore, they do not
interfere with the computation of confidence intervals. We require that the data tranformation we
apply is reversible.

LINEAR FILTERS

Formally, we view a filter L as a time invariant linear mapping from the set of deterministic se-
quences (y1, ..., yn, ...) onto itself. Such a mapping has the form

(LY )t =
∞∑

s=−∞
asYt−s

where by convention we let Yt = 0 for t ≤ 0. In the rest of this lecture we assume that the mapping
is regular, i.e.

∑+∞
s=0 |as| < +∞. The mapping is causal if as = 0 for s < 0.

If you need more background on filters, read [Thiran02-LN] Chapter 4 or [Weber-TS] Chapter 3
and Section 5.1.

MOVING AVERAGES By definition, a moving average filter is one such that
∑

s as = 1.

Moving average filters exist in various flavours, depending on how much weight they put on the
past. The window of a filter is the set of s such that as �= 0. Classical filters are moving averages
(finite windows). Let us mention the deseasonalizing filter; it aims at separating a seasonal
component. For d odd, the simple de-seasonalizing filter is the simple symmetric moving average
seen above with d = 2q + 1. For d even, the simple de-seasonalizing filter is given by as = 0 for
|s| > d/2, a−s = as and ad/2 = 0.5/d, as = 1/d, for |s| < d/2. Variants are the centered moving
averages described in [Weber-TS] Section 6.2. L−Id is a projector (generaly not orthogonal) onto
the set of periodic sequences.

A moving average filter is low-pass, i.e., its power transfer function is high for small pulsations ω.
For other moving average filters see [Weber-TS] Chapter 6.

APPLICATION TO EXAMPLE 9.2 ON PAGE 203 The data in Figure 9.5 has period 16; we apply
the moving average filter defined by as = 0 except for{

as = 1
16

for s = −7 . . . 7
a8 = a−8 = 0.5

16

The result is an estimate of the deseasonalized data.

QUESTION 9.4.1. How are the parameters of a moving average determined ? 3

3The window size of a MA filter can be estimated by plotting the variance of the differenced time series ΔrYt. The
period of a deseasonalizing filter can be found with the periodogram. See [Weber-TS] Chapter 4.
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Figure 9.5: Symmetric moving average filter (deseasonalizing filter) applied to Example 9.2 on page 203.

QUESTION 9.4.2. What is the Slutzky-Yule effect ? 4

QUESTION 9.4.3. Give one line of S code for filtering a time series x into y, with the moving
average filter given in [Weber-TS] section 6.1. 5

THE “CLASSICAL” FITTING METHOD FOR MODELING BOTH TREND AND SEASONAL

COMPONENTS

Assume the periodic component has period s.

1. Estimate the trend m̂t by applying for example a de-seazonalizing filter, or any other filter
deemed appropriate to the problem.

2. Estimate the season component by using some projector of Yt − m̂t onto the set of periodic
sequences with 0 mean. For example, the orthogonal projector gives ŝ1, ..., ûs defined by

ûj = wj − w̄

with wj :=
∑

k(Ykd+j − m̂kd+j) and w̄ =
∑

j wj . Then ût is extended to all t by periodicity.
3. Fit a linear regression model with k parameters to Yt − ût.

This gives a regression model with k parameters instead of k + s.

There are other filters that act on the frequency domain.

4With some filters such as 1
6 [−1, 2, 4, 2,−1], a repeated filtering operation makes the filtered time series periodical.

This does not happen with the simple moving average filters that we used above – repeated operation simply removes
high frequencies.

5y <- filter (x, c(-2,3,6,7,6,3,-2)/21, sides=2)
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USE FOR PREDICTION Prediction is performed on the transformed data, using for example a
regression model. The final prediction is obtained by inverting the transformation.

APPLICATION TO EXAMPLE 9.2 ON PAGE 203 Figure 9.6 shows the application to Exam-
ple 9.2 on page 203. The confidence intervals are obtained assuming the iid noise model fits. The
residuals however show that this assumption does not seem to hold. For such cases, we may need
more sophisticated models, as in Section 9.7.
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Figure 9.6: Classical method for trend and season analysis applied to Example 9.2 on page 203. o =
actual value of the future (not used for fitting the model) – compare to the forecasts.
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9.4.2 DIFFERENCING

An alternative to regression models is to used the differencing filter is defined by

(ΔY )t = Yt − Yt−1

It is able to remove polynomial trends of any order (by repeated application). For example, if
Yt = Zt + at+ b and Zt is stationary, then (ΔY )t = (ΔZ)t + a does not have a trend anymore. Δ
is the discrete time equivalent of a derivative.

A seasonal component with period s can be removed with the lag s differencing filter defined by

(ΔsY )t = Yt − Yt−s

Differencing filters are high-pass filters and thus give an estimate of the noise εt. They can be used
as alternative to moving average filters for isolating trend and seasonal components. See Figure 9.8
for an example.

Differencing does not have the problems of Slutzky-Yule effect mentioned above. Also, it can be
inverted and the combination of several differencing filters does not have coefficients that depend
on the data.

APPLICATION TO PREDICTION With a simple differencing filter, the reverse filter is given by

Yt =
+∞∑
s=0

Zt−s

A one step predictor of Yt is Yt−1 + m̂t, where m̂t is the one step predictor of Zt. This is applied
on Figure 9.8.

The h-step ahead predictor is

(Yt+h|Y1, ...Yt) = Yt +
h∑

s=t+1

Ẑs

where Ẑs is a predictor of Zs. If Zs can be assumed iid white noise, then Ẑs = 0.

The confidence interval for (Yt+h|Y1, ...Yt) is obtained computing the distribution of the sum of h
variables. Thus it grows with h. Compare to pure regression methods where this does not happen.

APPLICATION TO EXAMPLE 9.2 ON PAGE 203 We difference at lags 1 and 16 to remove
trends and seasonal components, and fit the residuals to iid noise. Note the differences with Fig-
ure 9.2 and Figure 9.6:

• the confidence interval increases with the prediction horizon
• the prediction is more adaptive in that it starts from the exact value

QUESTION 9.4.4. Does the order in which differencing at lags 1 and 16 is performed matter ? 6

6No.
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Figure 9.7: Differencing filters Δ1 and Δ16 applied to Example 9.2 on page 203. The forecasts are made
assuming the differenced data is iid gaussian. o = actual value of the future (not used for fitting the model).
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QUESTION 9.4.5. Is there a difference between Δs, the lag s differencing filter and Δs, the re-
peated operation of the differencing filter ? 7

QUESTION 9.4.6. Give one line of S code for a differencing filter. 8

9.4.3 AD-HOC FILTERS

For data traffic, a common way to remove daily variations is to compute the daily peak (largest
value of Yt in a calendar day). One should be careful about aggregation of data; for very small
aggregation intervals and long range dependent data (see Chapter 10) the largest value increases
sharply as the aggregation interval decreases. The aggregation interval should be significant to the
performance metric we chose. For example, for Internet network engineering, it is of the order of
10 mn.

9.4.4 MULTI-RESOLUTION ANALYSIS

Very long time series may exhibit a mixture of trends and seasonal components at several time
scales. It then becomes difficult to define good filters, with the methods seen previously.

A tool of choice for such cases is multi-resolution analysis, based on perfect reconstruction filter
banks. First, the data is separated between a smooth part (using a low pass filter such as a moving
window average) and a residual. Then the same is applied to the smooth part, but at a double time
scale, and the process is continued for a number of steps. The original time series can be perfectly
reconstructed from the successive residuals and the last smooth part, using another family of filters.
Perfect reconstruction filter banks are built using the theory of wavelets. In many cases, and with
properly chosen wavelets, the method identifies the time scales at which a detailed modelling is
required, and can be done with independent models. At other time scales, the residuals can be
modelled as iid noise. For an example, see [Pappagiannaki03-Infocom] and Exercise 9.9. For
more details on multi-resolution analysis, see Chapter 13.

9.5 THE HOLT-WINTERS METHOD

Low pass causal filters can directly be used as heuristic for prediction, without explicit regres-
sion model transformation. We present here the Exponentially weighted moving average
(EWMA)(infinite windows), also called exponential smoothing. It is also known as the Holt-
Winters method.

9.5.1 SIMPLE EXPONENTIAL SMOOTHING

EWMA is a linear filter with infinite window in the past. It is used for smoothing the data, when
infinite window is adequate, and for simple one-step ahead forecast.

m̂t := α
+∞∑
s=0

(1 − α)sYt−s

7Yes, for example for s = 2: Δ2Yt = Yt − Yt−2 whereas Δ2Yt = Yt − 2Yt−1 + Yt−2.
8y <- filter (x, c(1,-1), sides=1) or y <- diff (x, lag=1, differences =1).
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where by convention we let Yt = Y1 for t ≤ 1. The implicit prediction model is

Yt = mt + εt (9.2)

and the one-step ahead prediction is (Yt+1|Y1, ...Yt) = m̂t.

QUESTION 9.5.1. What is the h-step ahead predictor ? 9

The main feature is the recursive computation of m̂t:

m̂t = αYt + (1 − α)m̂t−1 (9.3)

with initial condition m̂1 = Y1.

EWMA works well when the data has no trend or periodicity, see Figure 9.8.

Simple EWMA has one parameter α ∈ [0, 1]; its value can be determined so as to minimize the
one-step forecasting error on some training data.

QUESTION 9.5.2. What is EWMA for α = 0 ? α = 1 ? 10

c(tt, seq(tt[1] + n, tt[1] + n + k - 1, 1))
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Figure 9.8: First graph: simple EWMA applied to swiss population data Yt with α = 0.9. EWMA is
lagging behind the trend. Second graph: simple EWMA applied to the differenced series ΔYt. Third graph:
prediction reconstructed from the previous graph.

QUESTION 9.5.3. Give the formula for the prediction illustrated in Figure 9.8, third graph. 11

9(Yt+h|Y1, ...Yt) = m̂t, by recursive application.
10α = 0: a constant, equal to the initial value; α = 1: no smoothing, m̂t = Yt.
11Let Zt = (ΔY )t. The h-step ahead predictor for Zt+h is m̂t, obtained recursively by Equation (9.3). The h-step

ahread predictor for Yt+h is thus Yt + hm̂t.
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9.5.2 DOUBLE EXPONENTIAL SMOOTHING

It is used when the data has a slow varying trend, and when it is deemed important to keep a mem-
ory of the entire sequence. The idea is to apply EWMA to the trend itself. Double EWMA(α, β)
is defined as follows. The model is

Yt = at + bt + εt

where at represents the trend level and bt the trend slope. The filter is defined by

{
ât = αYt + (1 − α)(ât−1 + ât−1)

b̂t = β(ât − ât−1) + (1 − β)b̂t−1

and the h-step predictor is
(Yt+h|Y1, ..., Yt) = ât + hb̂t

See Figure 9.9 for an example. As for simple EWMA, the parameters are in [0, 1] and need to be
fitted on some training data.

QUESTION 9.5.4. How is double exponential smoothing defined ? When is it used ? 12

QUESTION 9.5.5. How are the parameters of an EWMA filter determined ? 13

c(tt, tt[1] + seq(n, n + k - 1, 1))
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Figure 9.9: Double EWMA with α = 0.8, β = 0.8. It gives a good predictor; it underestimates the trend in
convex parts, overestimates it in concave parts.

QUESTION 9.5.6. What would the forecast be if we do double EWMA on the differenced series in
Figure 9.8 ? 14

QUESTION 9.5.7. Show that simple EWMA(α1) applied to the differenced series is the same as
double EWMA with parameters to be identified. 15

12tbd. It is used as an alternative to moving averages and is able to model a trend, when it is important to keep a
memory of the entire sequence.

13By minimizing the forecasting error on the past data.
14The trend in the difference would be extrapolated; this is equivalent to assuming that the quadratic growth in the

last years will continue. In contrast, simple EWMA applied to the differences assumes that the over linear growth in
the last years is a random effect and will not be sustained.

15Same as double EWMA with α = 0, β = α1.



214 CHAPTER 9. FORECASTING

9.5.3 TRIPLE EXPONENTIAL SMOOTHING

is used when there is both trend and seasonal component. Triple EWMA(α, β, γ) is defined as
follows. The model is

Yt = at + bt + ct + εt

where at is the level of the trend, bt the slope of the trend, and ct the correction term for seasonal
variation, assumed to have a period s. The filter is

⎧⎨
⎩

ât = α(Yt − ĉt−d) + (1 − α)(ât−1 + b̂t−1)

b̂t = β(ât − ât−1) + (1 − β)b̂t−1

ĉt = γ(Yt − ât) + (1 − γ)ĉt−d

The h-step ahead prediction is

(Yt+h|Y1, ..., Yt) = ât + hb̂t + ĉt+h−d�h
d�

In the formula, ĉt+h−d�h
d� is the latest estimate of the seasonal component available at time t, taken

at a time instant with the same phase as t+ h.

As for simple EWMA, the parameters are in [0, 1] and need to be fitted on some training data.

APPLICATION TO EXAMPLE 9.2 ON PAGE 203. The application of triple EWMA is shown
on Figure 9.10. The coefficients are obtained by training the estimator over 230 data points. Con-
fidence intervals are obtained based on the fact that EWMA is a special case of seasonal ARMA
model, discussed in detail in Section 9.7.

  0.0E+00

  1.0E+08

  2.0E+08

  3.0E+08

  4.0E+08

210 215 220 225 230 235 240 245

Figure 9.10: Seasonal Holt-Winters prediction applied to Example 9.2 on page 203.



9.6. SELECTING A MODEL ORDER 215

9.5.4 EWMA AND STATE-SPACE APPROCHES

EWMA is in fact a simple example of Kalman filter. Kalman filters are themselves a special
case of state-space approach, where the idea is that the observable process is a combination of
non-observable ones, with known properties. For triple EWMA, the non-observable processes
are the trend and seasonal components at, bt, ct. The filter equations correspond to maximizing
the likelihood, under the assumption of iid, normal noise. The parameters α, β, γ determine the
variance matrix of the noise. For details, see [Harvey90-Book]. For a general presentation of
Kalman filters, see [Weber-TS] Chapter 8.

9.6 SELECTING A MODEL ORDER

9.6.1 PROBLEMS WITH OVER-FITTING

Common sense tells us that, for equivalent fits, we should pick the simplest model. If the models
are nested and are regular, normal with same variance, then we can used ANOVA (Section 4.5) to
decide which model explains the data best.

EXAMPLE 9.3: SWISS POPULATION. Figure 9.11 shows the Swiss population fitted
to a polynomial of degree 2. The model is Yt = f(t) + εt, with f(t) = 6240.8552 +
48.130583t − .033109825t2. The prediction at time t is f(t + 1).
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Figure 9.11: Swiss Population forecast for 2005.

We now go one step further: goodness of fit is not an absolute measure of goodness of model. To
see why, consider the model in Figure 9.12. A regression model with degree 8 gives a perfect fit.
However, its prediction power is ridiculous. At the extreme, a model with absolute best fit has 0
residual error – but it is no longer an explanatory model.
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Figure 9.12: Problems with overfitting. First graph: Swiss Population (dots), fitted to a polynom of degree
8 (line). Second graph: prediction based on the polynomial.

Therefore a fitting procedure should use some information criterion, which quantifies how much
information the model carries. In a parametric family of models, the model with smallest informa-
tion criterion is chosen.

Another family of methods for picking the right model is given by machine learning methods such
as artificial neural networks.

9.6.2 AKAIKE’S INFORMATION CRITERION

Akaike’s Information Criterion (AIC, ) is defined by AIC = −2l(θ̂) + 2k where k is the dimen-
sion of the parameter θ and l() is the log-likelihood.

[Weber-TS] section 7.3 gives an interpretation in terms of entropy, which can be summarized as
follows. Consider an independent replication X = (Xt)t of Z = (Zt)t. It can be shown that AIC
is an approximately unbiased estimator of Eθ(−2 log(f(X|θ̂(Z))). Call H(θ) the entropy of Z (or
X) and d(θ||θ̂) the Kullback-Leibler distance from the distribution of Z when the true parameter
is θ to the distribution with the estimated parameter θ̂. It is known that Δ := H(θ) + d(θ||θ̂) is the
number of bits needed by an optimal code to describe X , when the optimal code thinks that the
distribution of X is the one estimated from the sample Z (instead of the true one). Δ measures the
efficiency of our model to describe the data. We have

{
d(θ‖θ̂) :=

∫
(log f(x|θ) − log f(x|θ̂))f(x|θ)dx

H(θ) := − ∫ log f(x|θ)f(x|θ)dx

thus
Eθ(Δ) = Eθ(− log(f(X|θ̂(Z)))

and
Eθ(AIC) ≈ 2Eθ(Δ)

Thus AIC is a (biased) estimator of the expected value of 2Δ.

This analysis is approximate and the AIC is known to be slightly biased in favour of large model
sizes ks. Many variants of AIC exist, with bias corrections that depend on the parametric model.
See [BrockwellDavis02-book] or [ShumwayStoffer99-book].
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9.6.3 MALLOW’S Cp

This criterion is more specific than AIC. It is used in the context of normal regression models
with same variance, as defined in Section 4.3, when the models are not nested. Assume we have
a number of models that all are subsets of one same large model M0. Mallow’s Cp criterion is
defined for every model M by

Cp =
SSR(M)

s2
− (N − 2p)

where SSR(M) is the residual sum of squares for model M , s2 is the estimator of variance for the
full model M0, N is the total number of samples, p [resp. p0] is the dimension of model M [resp.
M0].

QUESTION 9.6.1. Relate SSR(M0) to s2 16

We can relate Cp to the F -statistic introduced in Theorem ??, and used to test whether M alone
explains the data. We have

F =
(SSR(M) − SSR(M0))/(p0 − p)

SSM(M0)/(N − p0)
=

SSR(M)

s2(p0 − p)
− N − p0

p0 − p

thus

Cp = (p0 − p)(F − 1) + p

If modelM is the true model, then F has a Fisher distribution with denominator degrees of freedom
n = N − p0. The expectation of Fisher (m,n) is n

n−2
. Thus

E(Cp|M) =
2(p0 − p)

N − p0 − 2
+ p ≈ p

where the approximation is for a large sample size N .

If model M is a poor fit, F is probably large and so is Cp. If M is a good fit, Cp is likely to be
close to p. Mallow’s method is to choose the model with the smallest Cp. Thus, if several models
fit well, we will pick the one with the smallest dimension.

9.7 THE LINEAR TIME SERIES METHOD

9.7.1 TESTS FOR STATIONARITY AND WHITE NOISE

Given some time series Yt, we apply the transformations mentioned earlier; the goal is to obtain a
new times series Xt which is stationary. We describe tests and tools that are commonly used for
assessing whether a sequence is stationary, or is iid.

16By Theorem ??: SSR(M0) = (N − p0)s2
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STATIONARITY

A sequence of random variablesXt is strictly stationary is the joint distribution of any finite subse-
quence (Xt+t1 , Xt+t2 , ..., Xt+tn) is independent of the time shift t. It is second-order stationary
or weakly stationary if the first and second moments of any finite subsequence are independent
of the time shift; this is equivalent to E(Xt) and cov(Xs, Xs+t) are independent of t. For gaussion
processes, both forms of stationarity the two are equivalent, but otherwise not.

ACF AND PACF

For a stationary process, the auto-covariance function is γt = cov(Xs, Xs+t). The auto-
correlation function (ACF) is ρt = γt/γ0.

We call White Noise a zero-mean, uncorrelated sequence, i.e., with ρt = 0 for t ≥ 1.

QUESTION 9.7.1. Compare γk and γ−k
17

QUESTION 9.7.2. What is γ0 ? 18

QUESTION 9.7.3. Is there a difference between this definition of auto-correlation and the one you
may have seen in other courses, for example in [Thiran02-LN] ? 19

The sample auto-covariance, for a sample X1, ..., Xn is defined, for t ≥ 0 by

γ̂t =
1

n

n−t∑
s=1

(Xn+t − X̄)(Xn − X̄)

where X̄ is the sample mean. The sample ACF is ρ̂t = γ̂t/γ̂0.

PARTIAL ACF The Partial Auto-Correlation Function (PACF) is defined in Chapter ?? as the
residual correlation of Xt+h and Xt, when Xt+1, ..., Xt+h−1 is known.

ACF OF AN IID SEQUENCE If X1, ..., Xn is iid with finite variance, then the sample ACF and
PACF are asymptotically centered normal with variance 1/n. ACF and PACF plots usually display
the bounds ±1.96/

√
n. If the sequence is iid with finite variance, then roughly 95% of the points

should fall within the bounds.

TESTS FOR STATIONARITY

• (Visual Test): Plot the sequence and look for trend or seasonal components
• If the sequence is stationary and is not long range dependent (Chapter 10), then ACF and

PACF decay fast within the ±1.96/
√
n bounds. If the sequence has a trend, then the sample

ACF and PACF may show a very slow decay.

17They are equal.
18γ0 = varXt for all t.
19There may be. In [Thiran02-LN], autocorrelation is defined as E(XsXs+t. It is a different thing. We use the

terminology of statisticians.
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• The difference sign test can be used to detect the presence of an increasing or decreasing
test in the data. Let Sn =

∑n
i=2 1{Xi>Xi−1}. If Xi is iid, then Sn is approximately normal

with mean μn = n−1
2

and variance σ2
n = n+1

12
. At confidence level 0.95, the difference sign

test rejects the hypothesis that the data is iid if |Sn − μn|/σn > 1.96.

TESTS FOR A NOISE SEQUENCE

If the transformed time series Xt can be considered as an iid sequence, then we stop the tranfor-
mations. Otherwise, we will model Xt as a more complicated process (see below).

The following tests are usually done [Brockwell-Davis02-book]:

TESTS FOR IID NOISE SEQUENCE. These tests evaluate the hypothesis H0 that the noise se-
quence is white and iid

• (Visual Test): lag plot: scatter plot (Xt+h, Xt) for various h fixed. If the data is iid, the plot
should show no structure. If it is slanted like an ellipsoid, this indicates a correlation in the
direction of the principal axis.

• Sample ACF and PACF should fall within the ±1.96/
√
n for most points (visual test). A

formal test of this is called Portmanteau. The statistic, due to Ljung and Box, is n(n +
2)
∑h

t=1 ρ̂
2
t/(n − t), the distribution of which under H0 is approximately χ2

h. The lag h
has to be chose appropriately (!). A variant is McLeod and Li’s portmanteau, where S′ =
n(n + 2)

∑h
t=1 r̂

2
t /(n − t), where r() is the sample ACF of X − t2. For large n, S ′ is also

χ2
h under H0.

• Turning Point Test: see [Weber-TS] Section 1.7
• Rank Test: S is the number of couples (s, t) with s < t such that Xi < Xj . Under H0,

and for large n, S ∼ N(μn, s
2
n) with μn = n(n − 1)/4 and s2

n = n(n − 1)(2n + 5)/72. If
|S−μn| is large, we reject H0. Further, if S is large, the sign of S is an indication of the size
of a trend.

The following tests evaluate H0: the noise is white and normal.

• Jarque-Bera’s test (Section 8.1.2)
• For small samples (up to 200), the correlation coefficient R2 of the QQ-plot can be used.

In a linear regression model Xi = aZi + b, the correlation coefficient is R2 = S2
ZX/SZZSZX

(see and Chapter ??). For normal data, it is related to a student statistic. If the regression is
valid, R2 should be close to 1. Here, we apply R2 to the regression of the ordered sample
X(1), ..., X(n) regressed on Zi = N−1(i − 0.5)/n, the quantiles of the normal distribution.
The distribution of R2 in this case, and under H0, is tabulated.

• another method is to fit the data to an ARMA model, defined below, and pick the best model,
according to an information criterion. If the best model is the trivial model, then noise is
declared white.

EXAMPLES

EXAMPLE 9.4: DOW JONES. Figure 9.13.
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Figure 9.13: Closing values of the Dow Jones utilities index for 78 days (from [BrockwellDavis02-book]).
(a) One value every day. (b) ACF and PACF.
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A visual inspection shows that the data is not stationary. The ACF has a very slow decay, which
confirms non-stationarity.
We transform the data by the classical method, using a polynomial fit of degree 2 (Figure 9.14).
The transformed time series does not look stationary or normal, and does not pass the Ljung - Box,
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Figure 9.14: Time series in Figure 9.13 transformed with classical method: (a) polynomial fit; (b) tran-
formed time series; (c) ACF and PACF of transformed time series; (d) QQ-plot of transformed time series.

McLeod - Li and Turning points tests:

============================================
ITSM::(Tests of randomness on residuals)
============================================

Ljung - Box statistic = .31969E+03 Chi-Square ( 20 ), p-value
= .00000

McLeod - Li statistic = .10240E+03 Chi-Square ( 20 ), p-value
= .00000

# Turning points = 20.000˜AN(50.667,sd = 3.6803), p-value =
.00000

# Diff sign points = 34.000˜AN(38.500,sd = 2.5658), p-value =
.07946

Rank test statistic = .15340E+04˜AN(.15015E+04,sd =
.11589E+03), p-value = .77914
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Jarque-Bera test statistic (for normality) = 1.3573 Chi-Square
(2), p-value = .50731

Order of Min AICC YW Model for Residuals = 1

Instead of the classical method, we difference at lag 1 (Figure 9.15). The transformed time series
now looks stationary. It passes some tests for iid but not all, which is compatible with the ACF and
PACF showing some correlations at small lags. The normality tests does not pass, but the normal
qq-plot looks OK.

============================================
ITSM::(Tests of randomness on residuals)
============================================

Ljung - Box statistic = 46.428 Chi-Square ( 20 ), p-value =
.00070

McLeod - Li statistic = 18.398 Chi-Square ( 20 ), p-value =
.56119

# Turning points = 44.000˜AN(50.000,sd = 3.6560), p-value =
.10077

# Diff sign points = 37.000˜AN(38.000,sd = 2.5495), p-value =
.69489

Rank test statistic = .15130E+04˜AN(.14630E+04,sd =
.11368E+03), p-value = .66006

Jarque-Bera test statistic (for normality) = 6.3217 Chi-Square
(2), p-value = .04239

Order of Min AICC YW Model for Residuals = 1

9.7.2 AR, MA, ARMA AND ARIMA MODELS

If we are convinced that, after initial transformations, the noise is not iid, then we can apply an
ARMA model, which is a generic family of processes. We assume here thatXt is a 0 mean process.
This can be achieved, if necessary, by differencing, or by removing the sample mean from X .

ARMA models are called linear models because the noise Xt is obtained by applying a linear
filter to a an iid noise sequence εt, under the generic form

Xt −
p∑

r=1

φrXt−r =

q∑
s=0

θsεt−s

where εs is a white noise sequence with variance σ2. We usually impose θ0 = 1.

Read [Weber-TS] Sections 1.4, 1.5 and Chapter 2 and answer the following questions.

QUESTION 9.7.4. What is the variance of an AR(1) process ? 20

20 σ2

1−φ2
1

for the process Xt = φ1Xt−1 + εt, with εt ∼ WN (σ2).
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(c)

Figure 9.15: Time series in Figure 9.13 transformed by differencing at lag 1. (a) tranformed time series;
(b) ACF and PACF of transformed time series; (c) QQ-plot of transformed time series.

QUESTION 9.7.5. What is the ACF of an AR(1) process ? 21

QUESTION 9.7.6. What is the PACF of an AR(1) process ? 22

QUESTION 9.7.7. What is the ACF of an MA(1) process ? 23

QUESTION 9.7.8. What can we say about the ACF if the process is AR or MA ? Same question
with PACF. 24

QUESTION 9.7.9. What is Levinson-Durbin’s recursion ? 25

QUESTION 9.7.10. Is an ARMA process stationary ? An ARIMA process ? 26

PARTIAL CORRELATION An AR(p) process is a Markov chain of order p, which explains that
the PACF is 0 at lags > p. We also know that the PACF can be computed from the inverse of the
covariance matrix. For a stationary process, the Toeplitz structure of the covariance matrix allows
to do this with the Levinson-Durbin algorithm presented in [Weber-TS] Section 2.6.

21ρk = φk
1 for k ≥ 1.

22ρ∗1 = ρ1 = φ1 and ρ∗k = 0for k ≥ 2.
23ρ1 = θ1/(1 + θ2

1), ρk = 0, k > 1.
24The ACF of an AR(p) process decays to 0 as the lag h goes to infinity. The ACF of an MA(q) process is 0 for

h > q. The PACF of an AR(p) process is 0 for h > p.
25An iterative algorithm to compute the PACF. For an AR model, a method to estimate the coefficients based on

moment fitting.
26ARMA yes, provided that the polynomial Φ(ξ) has all roots outside the unit disk; ARIMA no for d �= 1.
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(a) AR(2) Xt = −0.4Xt−1 + 0.45Xt−2 + εt
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(b) MA(2) Xt = εt − 0.4εt−1 + 0.95εt−2
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(c) ARMA(2,2) Xt = −0.4Xt−1 +0.45Xt−2 +
εt − 0.4εt−1 + 0.95εt−2

Figure 9.16: ACF and PACF of various ARMA processes.

WOLD’S DECOMPOSITION Wold’s lemma can be formalized as follows. Let (Xt)t∈Z be a
stationary, second-order time series with 0 mean, such that

∑
k |γk|2 < +∞. Define Pt as the

orthogonal projector on the set of linear combinations of Xs, s ≤ t and the constants. In other
words, for any random variable Y , PtY = b+

∑
s≤t csXs and E((Y −PtY )2) is minimum among

all possible values of the coefficients b and cs. PtY is called the best linear estimation of Y . In
signal processing, Pt is a Wiener-Hopf filter. A process is called deterministic if Xt = Pt−1Xt for
all t.

Call Zt = Xt − Pt−1Xt (the innovation). Let θj = E(XtZt−j)/E(Z2
t ). Then a general decompo-

sition is
Xt =

∑
j∈N

θjZt−j + Vt

where Vt is defined by this equation. Wold’s decomposition says that the above equation is well
defined, and that Vt is a deterministic process, i.e. PsVt = Vt for all s and t. Furthermore, Zs is a
white noise sequence with common variance.

Wold’s decomposition is invoked as a justification for the use of ARMA processes when the data
comes from a second-order process. Vt is obtained by transforming the process into a stationary
one, and an ARMA process is an approximation in the sense that rational fractions such as Θ(ξ)

Φ(ξ)

can approximate arbitrary power series such as
∑

s∈N
csξ

s.

MA(Q) PROCESSES are characterized by the fact that γ(k) = 0 for k > q. among all stationary
second-order processes. This is a reciprocal of [Weber-TS] Section 2.5.
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SIMULATED ARMA PROCESS. Look at Figure 9.19 for a simulated sample of the process

Xt = −0.4Xt−1 + 0.45Xt−2 + εt − 0.4εt−1 + 0.95εt−2

.

9.7.3 BARTLETT’S FORMULA

This formula gives an asymptotic distribution of the sample auto-correlation function rk for large
sample sizes. It is used to test a fitted model. The distribution of �r = (r1, ..., rn) is asymptotically
normal with mean �ρ = (ρ1, ..., ρn) and covariance matrix W/n with W = (wi,j given by

wi,j =
∑
k≥1

(ρk+i + ρk−i − 2ρiρk) (ρk+j + ρk−j − 2ρjρk)

See Figure 2.15 for an example.

QUESTION 9.7.11. What 95%-confidence interval does Bartlett’s formula give for ρk, k > 2, for
an MA(1) process ? 27

OPERATOR NOTATION

The traditional description of linear processes uses an operator notation. Call B the back-shift
operator, defined as the one that transforms a sequence y = (yt)t∈{1,...,n} into a new sequence By
defined by Byt = yt−s for t ≥ 2 and By1 = 0. B is a linear mapping, Bn = 0. For a polynomial
P (ξ) = p0 + p1ξ + ...+ p1ξ

q we define by convention P (B) :=
∑

i piB
i.

Polynomials in a fixed operator commute, i.e., for two polynomials P (ξ) and Q(ξ), P (B)Q(B) =
Q(B)P (B).

P (B) is invertible iff p0 �= 0, in which case the inverse P (B)−1 =
∑n

k=1(Id − P (B))k is
also a polynomial in B. This justifies denoting P (B)Q(B)−1 by P (B)

Q(B)
. This is also equal to

Q(B)−1P (B).

If we consider infinite sequences (yt)t∈Z the same holds provided that all zeroes ofQ(ξ) lie outside
the unit disk. Indeed, in such a case, there exists a power series expansion 1/Q(ξ) =

∑+∞
i=0 ciξ

i

valid for |ξ| < η with η > 1. The set of regular sequences yt is endowed with the l1 norm ‖y‖ =∑
i |yi| and it can easily be seen that the corresponding operator norm gives ‖B‖ = 1. Thus, under

the condition that all zeroes of P (ξ) lie outside the unit disk, the series
∑+∞

i=0 ciB
i converges and

satisfies Q(B)
∑+∞

i=0 ciB
i = Id. Thus we can also write P (B)Q(B)−1 = P (B)Q(B)−1 = P (B)

Q(B)
.

QUESTION 9.7.12. Write dth power of the differencing operator as a polynomial in B. 28

QUESTION 9.7.13. Write the lag-s differencing operator as a polynomial in B. 29

27wk,k = 1 + 2ρ2
1 thus a 95%-confidence interval for ρk is ±1.96

√
1+2ρ2

1
n .

28Δd = (1 − B)d

29Δs = 1 − Bs
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With this notation, an ARIMA(p, d, q) process is defined by

Φ(B)(1 −B)dYt = Θ(B)εt

where εt is iid, normal, with zero mean and finite variance σ2, and{
Φ(ξ) = 1 − φ1ξ − ...− φpξ

p

Θ(ξ) = θ0 + θ1ξ + ...+ θqξ
p

QUESTION 9.7.14. Can an AR(p) process be represented as infinite MA ? Conversely ? 30

If you are comfortable with linear system theory, read Chapter 5 and answer the following ques-
tions.

QUESTION 9.7.15. How can the auto-covariance of an ARMA process be computed ? 31

CONVENTION ON Φ AND Θ. We assume that

• Φ(0) = Θ(0) = 1. There is no loss of generality, as we can modify σ
• The zeroes of Φ(ξ) lie outside the unit disk; this is to guarantee that Yt is stationary when we

extrapolate the model to infinite sequences.
• The zeroes of Θ(ξ) should also lie outside the unit disk; this is to guarantee that εt is identi-

fiable.
• Both polynomials should have no zero in common; this is also to guarantee that the model

is identifiable.

9.7.4 THE BOX-JENKINS METHOD

It is a direct application of the scientific method ! Read [Weber-TS] Sections 7.1 and 7.2.

FITTING AN ARIMA MODEL

Once orders p, d, q are chose, we apply the general principle of MLE and maximize the log-
likelihood of the sample. This is a non-linear optimization problem and only approximate solutions
exist. The log-likelihood of an ARMA model is

Therefore, some heuristics are often used, with the goal of starting the optimization procedure
from an initial value which is not too far from the optimal. For this, we can use an AR model or
MA model to obtain an approximate solution first.

30Any ARMA process with our convention can be represented as an MA(∞) or AR(∞) process. For the former,
see [Weber-TS]. For the latter, write Φ(ξ)

Θ(ξ) as a power series with a convergence radius larger than 1:

Φ(ξ)
Θ(ξ)

= 1 +
+∞∑
i=1

eiξ
i

and the ARMA process can be represented as an AR(∞) process:

Xt =
∑
i=1

eiXt−i + εt

31Expand Θ(ξ)
Φ(xi) as a power series

∑+∞
n=0 cnξn. The auto-covariance is γt =

∑+∞
n=0 cncn+tσ

2.
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SPECIAL CASES.

AR models can be fitted using a Moment Fitting heuristic. The idea is based on the observa-
tion that the autoregressive coefficients θk for k = 1, ..., p are uniquely determined by the auto-
covariance function (if the auto-covariance matrix is non-singular) via the Yule-Walker equa-
tions: {

γk =
∑p

i=1 φiγ|k−i| for k = 1...p
σ2 = γ0 −

∑p
i=1 φiγi

The moment fitting method consists in replacing the ACF by the sample ACF in the Yule Walker
equations. This gives an estimator which is not the same as the MLE, but is also asymptotically
bias-free and consistent (its variance goes to 0).

The Yule-Walker equations can be solved using the iterative method called Levinson-Durbin
recursion, well known in signal processing, and given in [Weber-TS] Section 2.6. Note that
the moment fitting method is equivalent to finding the AR coefficients φ1 that minimize (Xt −∑p

i=1 φiXt−i)
2, a problem known as finding Wiener filtering (see [Thiran02-LN]).

Another method for AR models is Burg’s method; for MA models, there also exist some non-
MLE methods that are numerically simple: the innovation and Hannan-Rissanen algorithms
(see [BrockwellDavis02-book]). For MA models, these methods give non-consistent estimators.

Read [Weber-TS] Chapter 7 and answer the following questions.

QUESTION 9.7.16. What can we say about the sample ACF and PACF of an ARMA(p, q) process ?
32

QUESTION 9.7.17. What is AIC ? What is it used for ? 33

QUESTION 9.7.18. How can a confidence interval for the estimated model parameters be ob-
tained ? 34

QUESTION 9.7.19. What tests are performed to validate the model ? 35

EXAMPLES

APPLICATION TO EXAMPLE 9.4 ON PAGE 219. We applied the Box-Jenkins procedure to
Example 9.4 on page 219 except for the last 10 data points. We looked for the ARMA model
for model lagged-1 differenced data that has the least AIC, among all ARMA(p, q) models with
p, q ≤ 10. The result is an AR(1) model, as shown below and in Figure 9.17. The tests on residuals
all pass except the test for normality.

========================================
ITSM::(Maximum likelihood estimates)
========================================

32They decay exponentially for lags > max(p, q).
33AIC is −2× the log-likelihood, plus 2× the model order. It is used to select a model among many; it tries to avoid

overfitting.
34For large samples, confidence Intervals for the maximum likelihood estimators of the model can be found using

the Fisher information matrix, which can be computed but is complex to describe. See [BrockwellDavis02-book]
Section 5.2 for some details.

35The residuals are tested for independence and normality.
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Method: Maximum Likelihood

ARMA Model:
X(t) = .4475 X(t-1)

+ Z(t)

WN Variance = .138317

AR Coefficients
.447470

Standard Error of AR Coefficients
.109032

(Residual SS)/N = .138317

AICC = 62.008739
BIC = 61.422006
FPE = .142508

-2Log(Likelihood) = 57.821239

============================================
ITSM::(Tests of randomness on residuals)
============================================

Ljung - Box statistic = 27.996 Chi-Square ( 20 ), p-value = .10950

McLeod - Li statistic = 18.682 Chi-Square ( 21 ), p-value = .60551

# Turning points = 41.000˜AN(43.333,sd = 3.4042), p-value = .49308

# Diff sign points = 33.000˜AN(33.000,sd = 2.3805), p-value = 1.00000

Rank test statistic = .12360E+04˜AN(.11055E+04,sd = 92.395), p-value = .15783

Jarque-Bera test statistic (for normality) = 11.917 Chi-Square (2), p-value = .00258

Order of Min AICC YW Model for Residuals = 0

Then we looked for the ARMA model for model lagged-2 differenced data that has the least AIC,
among all ARMA(p, q) models with p, q ≤ 10. The result is an AR(1,1) model, as shown below
and in Figure 9.18. The tests on residuals all pass. This may be interpreted as a better model.

========================================
ITSM::(Maximum likelihood estimates)
========================================

Method: Maximum Likelihood

ARMA Model:
X(t) = .3772 X(t-1)

+ Z(t) - .9297 Z(t-1)

WN Variance = .140684
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(a) Residuals.
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(b) ACF and PACF of residuals.

Figure 9.17: Residuals of best ARMA model for lagged-1 differenced time series in Example 9.4 on
page 219 (Dow Jones).
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AR Coefficients
.377236

Standard Error of AR Coefficients
.166161

MA Coefficients
-.929743

Standard Error of MA Coefficients
.112450

(Residual SS)/N = .140684

AICC = 65.535640
BIC = 64.791045

-2Log(Likelihood) = 59.148544

============================================
ITSM::(Tests of randomness on residuals)
============================================

Ljung - Box statistic = 27.726 Chi-Square ( 20 ), p-value = .11606

McLeod - Li statistic = 15.466 Chi-Square ( 22 ), p-value = .84148

# Turning points = 41.000˜AN(42.667,sd = 3.3780), p-value = .62174

# Diff sign points = 32.000˜AN(32.500,sd = 2.3629), p-value = .83242

Rank test statistic = .95200E+03˜AN(.10725E+04,sd = 90.349), p-value = .18230

Jarque-Bera test statistic (for normality) = 3.3661 Chi-Square (2), p-value = .18581

Order of Min AICC YW Model for Residuals = 0

9.7.5 FORECASTING

FORECASTING WITH A GENERAL SECOND-ORDER STATIONARY PROCESS

Consider a general second order stationary process. Assume that E(Xt) = 0 (if this is not the
case, we assume that the mean μ is known and replace Xt by Xt − μ). We want to compute
an h-step ahead forecast X̂t(h) := (Xt+h|X1, ..., Xt). In general, the best one, in least square
sense, is the conditional expectation of Xt+h given X1, ..., Xt. In practice, it is hard to find except
for normal processes. We take instead the best linear predictor X̂t(h) = PtXt+h, defined as
the linear combination of X1, ..., Xt and constants that minimize the mean square forecast error
E((X̂t(h) −Xt+h)

2).

THEOREM 9.7.1. Consider a second-order stationary process Xt with zero mean. Let γk be the
auto-covariance of Xt at lag k. Let Ω(t) be the covariance matrix of the vector (X1, ..., Xt)

T , i.e.
Ω(t) is the t × t symmetric Toeplitz matrix defined by Ω(t)i,j = γ(|i − j|). Assume that Ω(t) is
invertible.
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(a) Residuals.
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(b) ACF and PACF of residuals.

Figure 9.18: Residuals of best ARMA model for lagged-2 differenced time series in Example 9.4 on
page 219 (Dow Jones).
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1. The best linear predictor at time t and horizon h is

X̂t(h) =
t∑

i=1

ui(h, t)Xi (9.4)

with
u(h, t) := (u1(h, t), ..., ut(h, t)) = (γt+h−1, ..., γh)Ω(t)−1

2. The mean square prediction error MSEt(h) := E

(
(Xt+h − X̂t(h))

2
)

is given by

MSEt(h) = γ0(1 −R2
t (h))

with R2
t (h) defined by

γ0R
2
t (h) := (γt+h−1, ..., γh)Ω(t)−1(γt+h−1, ..., γh)

T

3. If the process is gaussian, then (Xt+h − X̂t(h)) ∼ N(0,MSEt(h))

PROOF: Item 1: from the properties of orthogonal projection (Chapter ??), the coefficients
ui(h) are obtained by expressing that E((X̂t(h) −Xt+h)Xj) = 0 for all j ≤ t.

Item 2: first note that by Pythagoras

MSEt(h) = E(X2
t+h) − E((u(h, t)(X1, ..., Xt)

T )2)

and by Section 12.5.1:
MSEt(h) = γ0 − u(h, t)Ω(t)u(h, t)T

thus
MSEt(h) = γ0 − (γt+h−1, ..., γh)Ω(t)−1(γt+h−1, ..., γh)

T

as required.

Item 3. If the process is gaussian, then by linearity, Xt+h − X̂t(h) is a centered normal random
variable.

REMARKS.

• The forecast at time t depends on the complete past sequence X1 . . . Xt and the coefficients
ui(h, t) also depend on t. However, for large t, they can be replaced by their limits (see more
details for ARMA processes below).

• As h → +∞, X̂t(h) → 0 (the process mean). Further, R2
t (h) → 0 and MSEt(h) → γ0 (the

process variance).
• If Ω(t) is not invertible, more complex formulae exist. We will not need them, since for a

stationary ARMA process with 0 mean, Ω(t) is always invertible
QUESTION 9.7.20. Prove this statement. 36

36From Section 12.5.3, the dimension of the space generated by X1, ...,Xt is the rank of Ωt. Now Xt is a linear
combination of X1, ...,Xt−1 and εt (MA representation of the ARMA process). εt is orthogonal to X1, ...,Xt−1, thus
the dimension of the space generated by X1, ...,Xt is 1 plus the dimension of the space generated by X1, ...,Xt−1.
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• We interpret R2
t (h) as the proportion of variance which is predictable. Note that necessarily

0 ≤ R2
t (h) ≤ 1. For a non-correlated process, we have R2

t (h) = 0 and no prediction is
possible.

• Instead of the above formula, the coefficients ui(h, t) can be computed more efficiently
using the innovation algorithm. We give the details of this algorithm in the case of ARMA
processes in the following sections.

• There exist similar formulae for a non-stationary process [BrockwellDavis02-book].

FORECASTING WITH AN AR MODEL

For an AR process the general method gives simple formulae. By a direct application of the method
in Section 9.7.5, we find that the one-step ahead forecast is X̂t(1) := (Xt+1|X1, ..., Xt) is

X̂t(1) =

p∑
i=1

φiXt+1−i

and the 1-step ahead mean square error is

MSEt(1) = σ2

The variance non explained by the prediction is that of the white noise.

QUESTION 9.7.21. What is Rt(1) for an AR(1) process ? 37

FORECASTING WITH AN ARMA MODEL

For an ARMA process, the method in Section 9.7.5 can be made recursive by the innovation
algorithm. It is simpler to compute, and is incremental, giving new forecasts as new data be-
comes available. It computes the one step ahead forecast as a function of past forecast errors
[BrockwellDavis02-book].

ONE-STEP AHEAD PREDICTION.⎧⎨
⎩

X̂t(1) =
∑t

j=1 θt,j

(
Xt+1−j − X̂t−j(1)

)
for 1 ≤ n < max(p, q)

X̂t(1) =
∑p

i=1 φiXt+1−i +
∑t

j=1 θt,j

(
Xt+1−j − X̂t−j(1)

)
else

(9.5)

where θs,t are computed by solving for θs,., νs in the equations⎧⎪⎨
⎪⎩

r0 = Γ1,1

rkθt,t−k =
(
Γt+1,k+1 −

∑k−1
j=0 θk,k−jθt,t−jrj

)
for 0 ≤ k ≤ n

rt = Γt+1,t+1 −
∑t−1

j=0 θ
2
t,t−jrj

(9.6)

and Γ is the covariance matrix of σ−2Φ(B)Xt, given by

σ2Γi,j =

⎧⎪⎪⎨
⎪⎪⎩

γ(i− j) for 1 ≤ i, j ≤ max(p, q)
γ(i− j) −∑p

r=1 φrγr−|i−j| for min(i, j) ≤ max(p, q) < max(i, j) ≤ 2 max(p, q)∑q
r=0 θrθr+|i−j| for max(p, q) < min(i, j)

0 else
(9.7)

37 |φ1|√
1−φ2

1
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An iterative solution of Equation (9.6) is straightforward, solving in this order for θ1,1, r1, θ2,., r2, ....

The 1-step ahead mean square error is

MSEt(1) = σ2rt

For predictions based on large sample sizes, the values can be approximated by their limits:{
limt→+∞ θt,j = θj

limt→+∞ rt = 1

This corresponds to backcasting, at the end of [Weber-TS] Section 7.6. Alternatively, we can
derive the forecasting equations from an infinite past from the AR(∞) representation of an ARMA
process. From Question 9.7.14 we can write Xt =

∑
i=1 eiXt−i + εt. The forecast of Xt based on

the infinite past before t is then
∑

i=1 eiXt−i.

h-STEP AHEAD PREDICTION. The h-step ahead forecast X̂t(h) := (Xt+h|X1, ..., Xt) is given
by

X̂t(h) =

{ ∑t+h−1
j=h θt+h−1,j(Xt+h−j − X̂t+h−j−1(1)) for t+ h ≤ max(p, q)∑p
i=1 φiX̂t(t+ h− i) +

∑q
j=h θt+h−1,j(Xt+h−j − X̂t+h−j−1(1)) else

(9.8)

The h-step ahead mean square error is

MSEt(h) = σ2

h−1∑
j=0

(
j∑

r=0

χrθt+h−r,j−r

)2

rt+h−j−1 (9.9)

where χ0 = 1 and χj =
∑min(p,j)

k=1 φkχj−k. For large sample sizes, we have

lim
t→+∞

MSEt(h) = σ2

h−1∑
j=0

c2j

where Xt =
∑+∞

j=0 cjεt−j is the MA(+∞) representation of the ARMA process, i.e., the coeffi-

cients of the Taylor series expansion of Θ(ξ)
Φ(ξ)

around ξ = 0.

REMARK. The confidence intervals obtained with this method do not account for the uncertainty
on the parameters φi, θi, which usually have to be estimated. There does not seem to be a simple
way to account for both in this framework.

NUMERICAL EXAMPLE. Figure 9.19 shows a numerical example. The values of X̂t(h) and
MSEt(h), with t = 100 and h = 1 . . . 25 are given below. We see that the forecast rapidly
converges towards the mean (0) of the process, while the mean square prediction error converges
from the white noise variance towards the variance of the process.

====================
ITSM::(ARMA Forecast)
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Figure 9.19: Simulated ARMA(2,2) process in Figure 9.16, with white noise variance σ2 = 1. Right part:
prediction with confidence interval.

====================

Approximate 95 Percent
Prediction Bounds

Step Prediction sqrt(MSE) Lower Upper
1 1.53498 1.00028 -.42553 3.49550
2 -2.46289 1.28092 -4.97344 .04766
3 1.67590 2.14444 -2.52712 5.87892
4 -1.77866 2.38684 -6.45678 2.89945
5 1.46562 2.66841 -3.76438 6.69562
6 -1.38664 2.83212 -6.93750 4.16421
7 1.21419 2.97669 -4.62001 7.04838
8 -1.10966 3.08067 -7.14766 4.92833
9 .99025 3.16593 -5.21486 7.19536
10 -.89545 3.23178 -7.22961 5.43872
11 .80379 3.28484 -5.63439 7.24197
12 -.72447 3.32689 -7.24505 5.79611
13 .65149 3.36071 -5.93539 7.23837
14 -.58661 3.38778 -7.22654 6.05332
15 .52782 3.40960 -6.15488 7.21051
16 -.47510 3.42714 -7.19217 6.24197
17 .42756 3.44130 -6.31726 7.17238
18 -.38482 3.45272 -7.15202 6.38239
19 .34633 3.46194 -6.43895 7.13160
20 -.31170 3.46940 -7.11160 6.48820
21 .28053 3.47542 -6.53117 7.09222
22 -.25248 3.48030 -7.07374 6.56879
23 .22723 3.48424 -6.60175 7.05620
24 -.20450 3.48743 -7.03974 6.63073
25 .18405 3.49001 -6.65624 7.02435
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FORECASTING WITH AN ARIMA MODEL

Consider an ARIMA process Yt: Φ(B)(1−B)dYt = Θ(B)εt. CallXt = (1−B)dYt the underlying
ARMA process. The differencing filter can be inverted to

Yt = Xt −
d∑

j=1

(
d
j

)
(−1)jYt−j

from where the predictor equations follow:

Ŷt(h) = X̂t(h) −
d∑

j=1

(
d
j

)
(−1)jŶt(h− j)

The predictors can be recursively computed from the above, taking into account that Ŷt(h − j) =
Yt+h−j for h− j ≤ 0. It follows that Ŷt(1)− Yt = X̂t(1)−Xt. This can be used to get innovation
formulae, similar to the ARMA case:

Ŷt(h) =

p+d∑
j=1

φ∗
j Ŷt(h− j) +

t+h−1∑
j=h

θt+h−1,j(Yt+h−j − Ŷt+h−j−1(1)) (9.10)

where θs,j is defined by Equation (9.6) and φ∗
j is the jth coefficient of Φ∗(ξ) := (1 − ξ)dΦ(ξ).

Confidence intervals are computed with formulae similar to the Equation (9.9), with φ replaced by
φ∗.

For Seasonal ARIMA models, there are analog formulae, see [BrockwellDavis02-book] Section
6.5.1.

QUESTION 9.7.22. Consider the forecasting equation X̂t(1) = 1/p(Xt + ... + Xt−p+1). What
process model does this correspond to ? 38

APPLICATION TO EXAMPLE 9.4 ON PAGE 219.

We applied the two ARIMA models (with differencing at lags d = 1 and d = 2) for the Dow
Jones trace identified in Section 9.7.4. The models are identified over the first 68 data values. The
forecasts for times 69 to 78 are plotted on Figure 9.20, together with the actual data. Both models
give similar forecasts, and both have the actual data in the 95% confidence intervals.

38It is the forecasting equation for the AR(p) model with polynomial Φ(ξ) = 1 − 1/p
∑p

i=1 ξp. However, Φ has
root 1, thus this AR model is not stationary and does not fit our framework. Since 1 is root of Φ, we can factor by
1 − ξ and write

Φ(ξ) = (1 − ξ)Ψ(ξ)

After some algebra it comes

Ψ(ξ) = cst × (1 −
p−1∑
i=1

uiξ
i)

with ui = (−1)i+1 2
(i+1)(i+2)

(
p − 1

i

)
. It can be seen that Φ does not have any other root in the unit disk than 1, by

convexity arguments, and 1 is a root with multiplicity 1 (because Φ′(1) �= 0). Thus Ψ has no root in the unit disk. By
Equation (9.10), we have the forecasting equation of an ARIMA((p − 1, d, 0) model with regression coefficients ui.
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Figure 9.20: Forecasts obtained by both ARIMA models (d = 1, d = 2) for Example 9.4 on page 219 (Dow
Jones), with confidence intervals. The ARIMA forecasts with d = 1 are slightly less than for d = 2. The
actual data, not used at time of forecasting, is shown with circles
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VALIDATION

As usual, the model must be validated if confidence intervals based on the normal noise assumption
are used. Validation uses the tests in Section 9.7.1. See Section 9.7.4 for some examples

There is a fundamental difference with the principles applied in Chapter 2. There, we want
confidence intervals for the parameters of a model assumed to explain the data. The confidence
intervals, and the resulting diagnostic, are valid only if the model assumption are correct.

In contrast, when we forecast some data, the formulae for prediction are valid as long as the noise
is white, even if the noise is not normal. If the noise is not normal, they do not correspond to the
best predictors, but simply to the best linear predictors, as explained above. The variance of the
prediction error is still valid, but cannot be used to obtain confidence intervals from the normal
distribution.

The following method can be used to obtain confidence intervals. First, note that prediction based
on large samples, the prediction formulae can be interpreted as follows: the noise εt is estimated
by the one-step prediction error rt = Xt − X̂t(1), also called residuals. Second, the distribution
of the noise can be approximated by the empirical, observed distribution of the residuals. See
[Basu96-infocom] for an example with non gaussian noise.

One can even go further by using the bootstrapping methods. This method consists in sampling
random values from the distribution of the residuals, in order to obtain a confidence interval for
the prediction. Consider Equation (9.8), which, for large sample sizes, can be written as

X̂t(h) =

p∑
i=1

φiX̂t(h− i) +

q∑
j=h

θj(Xt+h−j − X̂t+h−j(1)) =

p∑
i=1

φiX̂t(h− i) +

q∑
j=h

θjrt+h−j

Assume the residuals rt are iid. We can easily check this with the standard methods. The distri-
bution of rt is independent of t; we obtain its empirical value by keeping a database of all values
rt (there are N such values). Now we do a simulation as follows. We pick N numbers out of the
database, with replacement, and re-construct the time series and the forecast, using the ARMA de-
finition, starting from arbitrary initial values, and the prediction equation. We repeat this M times;
this gives M values of the forecast. We compute the lower and upper percentiles of this set of M
values and use them as confidence interval.

9.7.6 SEASONAL ARIMA MODELS

ARIMA models are able to fit seasonal behaviour, depending on the ACF. See Figure 9.19 for an
example. Thus, we can model time series with seasonal components with ARIMA processes. An
MA(q) process can thus model a time series with period q.

However, if the period is not very small, we may need a large model order, which is not good. A
Seasonal ARIMA can be used instead. It is a subset of ARIMA, where we impose constraints on
the parameters, in order to reach high model orders, while having few parameters in total. The gen-
eral model, called Seasonal ARIMA or Multiplative ARIMA, with parameters (p, d, q, P,D,Q, s)
is

Φ(B)Ψ(Bs)(1 −B)d(1 −Bs)DYt = Θ(B)Λ(Bs)εt

where Φ,Θ,Ψ and Λ are polynomials of degree p, q, P and Q. This allows to model the process as
a superposition of a seasonal components with period s and a general trend component.
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In order to apply Seasonal ARIMA model, the Box-Jenkins method needs to be complemented
with

• identification of period s
• make the process stationary by differencing at lags 1, 2, .. and s, 2s, ...

Seasonal ARIMA models allow for randomness in both the seasonal pattern, unlike the classical
method approach based on linear regression.

APPLICATION TO EXAMPLE 9.2 ON PAGE 203 The ACF and PACF of the Sprint time series
(Figure 9.21) show some correlation at lags up to 5, around 16 and 32. This suggests a SARIMA
model with p, q ≤ 5, P,Q ≤ 2, d = D = 1. We fitted on the first 224 data points, using
the AIC criterion, and obtained that the best model is for p = 4, q = 0, P = 2, Q = 2. The
resulting forecasts are shown on Figure 9.22. Compare to the model based on white noise given
in Figure 9.7: the SARIMA model fits slightly better and gives a smaller confidence interval. The
model diagnostic on the figure shows that the residues do not pass the test for normality (p-value in
Box-Ljung portmanteau test is small) and there is one large residual correlation at lag ≈ 140. Thus
the model cannot be invoked as an explanation for the data, but it may be used for forecasting.

 Series : y

 Series : y

Figure 9.21: ACF and PACF of Sprint data (Example 9.2 on page 203), differenced at lags 1 and 16.
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Figure 9.22: SARIMA model with best AIC for Example 9.2 on page 203 (Sprint).



9.8. CASE STUDIES 241

9.8 CASE STUDIES

9.8.1 WEB SITE PLANNING

CAPACITY PLANNING

The problem is to plan for adequate capacity. Here, in addition to a prediction model, as defined
above, we need a capacity model, which links the predicted load to some required hardware and
software. A capacity model can be derived from a queuing or bottleneck analysis of the system.

For example, assume you are planning a video on demand center and we look in detail at the
server hardware. A prediction model gives us the forecast penetration in number of residential and
business users. A capacity model could be as described in Chapter ??:

For your video on demand application, the number of required servers is given by
N1 = � R

59.3
+ B

3.6
� and the number of disk units by N2 = � R

19.0
+ B

2.4
�, where R [resp.

B] is the number of residential [resp. business] customers.

WEB SITE CAPACITY PLANNING

Read [Gunther01-LNCS] and answer the following questions.

QUESTION 9.8.1. What is the performance metric ? How is it measured ? Were there any difficul-
ties ? 39

QUESTION 9.8.2. What data transformations are applied ? 40

QUESTION 9.8.3. What is the prediction model ? 41

QUESTION 9.8.4. What is the window used to produce a forecast 42

QUESTION 9.8.5. What is the capacity model ? 43

QUESTION 9.8.6. How are both models validated ? 44

QUESTION 9.8.7. What is the doubling period ? 45

QUESTION 9.8.8. What confidence intervals are given ? 46

39CPU utilization, measured every “few minutes”. It was collected using a data collection tool installed by the
server vendor. Another system was put in place by the site operators, but it aggregated all data into 8 hour summaries,
which made it impossible to do peak dimensioning.

40First, the effective server demand is derived. It is defined as the hypothetical CPU utilization if there would be
enough capacity. The idea is to use indicators of non saturated resources, model the CPU utilization as a breakpoint +
linear model (as we did with Example 4.3 on page 94), and keep only the first linear part. It is deduced from a linear
regression model, with 6 unspecified factors. Further research in the references tells us that these factors are related to
queue lengths. Second, the peak effective server utilization is used, which leaves one data point per day

41log Yt = log Y0 + b(t − t0) + εt. An implicit assumption is that εt is centered normal iid.
425 weeks.
43The number p of CPUs is related to the effective demand C by

C(p) =
p

1 + σ(p − 1) (1 + λp)

where σ and λ are parameters, estimated from previous experience, that account for contention and stale cache delays.
44The prediction model is not validated. The capacity model seems to be validated in previous references.
45The time it takes to double the load, according to the prediction model. Here: log b

2 .
46None.
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9.8.2 SOFTWARE REJUVENATION

SOFTWARE AGING

Due to imperfections, some (if not all) server programs do not always release all resources they
used, such as memory, kernel data objects (“committed bytes”), or processes in zombie state. As
such programs are meant to be running by all times, it is not possible to simply restart when
needed as you do with you PC. Restarting the program (rejuvenation) is the solution, but it has a
cost (service interruption), therefore it should be performed only when necessary. Some software
aging systems predict when a restart is necessary.

The framework is the same as with capacity planning, except that a capacity model is not needed.
Instead, we use exhaustion thresholds.

PROACTIVE MANAGEMENT OF SOFTWARE AGING

Read [Castelli01-IBM] Sections 1, 3 from “Predictions Algorithm” to Appendix A. Then answer
the following questions.

QUESTION 9.8.9. What is the performance metric ? 47

QUESTION 9.8.10. What transformation is applied to the data ? 48

QUESTION 9.8.11. What is the prediction model ? 49

QUESTION 9.8.12. How is a model selected ? 50

QUESTION 9.8.13. Why is the breakpoint model appropriate ? 51

QUESTION 9.8.14. Are there implicit assumptions in the model ? 52

QUESTION 9.8.15. Is the model validated ? 53

QUESTION 9.8.16. What is the window used for prediction ? 54

9.8.3 DYNAMIC LOAD SCHEDULING IN DISTRIBUTED SYSTEMS

Read [Dinda99-HPDC] and answer the following questions.

47Memory (available bytes), committed bytes, used I-nodes.
48The data is smoothed by an ad-hoc filter: the medians over non overlapping time windows are taken. This removes

outliers and reduces the size of the time series.
49There are six models: linear regressions with 1, 2 or 3 breakpoints; same with the log of the data. The breakpoint

models are the same as Example 3 in Chapter ??.
50Two methods are presented: one is Mallow’s Cp, the other is ad-hoc (based on the prediction capability tested on

recent data).
51It removes transients.
52Yes, regular normal model with same variance.
53Not directly, but the complete system is validated experimentally. In particular, the regular normal model assump-

tion is indirectly checked by comparing the impact of the two model selection methods.
54One third of the time horizon over which a prediction is required. It is of the order of one day.
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QUESTION 9.8.17. What is the goal of host load prediction ? 55

QUESTION 9.8.18. What is the general method ? 56

QUESTION 9.8.19. How is host load measured ? 57

QUESTION 9.8.20. How does this load measure relate to execution time. 58

QUESTION 9.8.21. What is the time horizon of the prediction ? 59

QUESTION 9.8.22. What are the prediction models used ? 60

QUESTION 9.8.23. Is the BM model a regular AR(p) model ? 61

QUESTION 9.8.24. What is the criterion of fit ? 62

QUESTION 9.8.25. What is the criterion of evaluation ? 63

QUESTION 9.8.26. What is the fit interval ? The test interval ? 64

QUESTION 9.8.27. What does stepping the model mean ? 65

QUESTION 9.8.28. How are the various models evaluated ? 66

QUESTION 9.8.29. What are the best models for prediction ? 67

QUESTION 9.8.30. Why is AR(p) preferred by the authors ? 68

QUESTION 9.8.31. What is a fractional ARIMA model ? 69

QUESTION 9.8.32. What are the tools used in the factorial analysis ? 70

55In a distributed system, schedule a task on a processor that is less loaded, in order to improve response time.
56Host load is monitored and predicted. For a given task, the host with a predicted load compatible with the delay

requirement is selected.
57The load figure is the number of UNIX processes ready to run. It is smoothed by the UNIX OS. It is polled by the

prediction application every second.
58Almost linearly (from empirical measurements), which is interpreted as an indication that the system behaves

roughly in processor sharing mode.
59One step is one second. The prediction horizon h is 1 to 30 seconds.
60Simple models: MEAN is the sample mean, used as predictor. BM is the predictor of an AR(p) model with fixed

coefficients φi = 1/p, namely X̂t(1) = 1/p
∑t

s=t−p+1 Xs. It is a moving average of the data, causal, with window
size p and equal coefficients. Other models are AR(p) models with p = 1...32, MA(q) with q = 1...8, ARMA(p,q)
with p = 1...4, q = 1...4, ARIMA with same p, q and d = 1, 2 and fractional ARIMA with same p, q and d in the
interval (0, 0.5).

61No, see Question 9.7.22 on page 236.
62Models are fitted using the standard method in this lecture.
63The 1-, 15- and 30-step-ahead prediction errors. They are analyzed visually with box-plots.
64The fit interval is a subset of the data used for fitting the model. We could call it a training sequence. The test

interval is the subset of data, following the fit interval, that is used for doing predictions and comparing with the real
value.

65Once a model is fitted, keep the model constant but apply the forecasting formulae such as Equation (9.5) to new
data.

66A randomized set of experiments is done, with the following factors. The fit and test intervals are between 5mn
and 3 hours. The model is as described before.

67All models give equivalent results for one-step ahead prediction. For larger prediction horizon, ARMA, AR,
ARIMA and BM are doing well. MA and MEAN are doing poorly. BM is slightly less good in some cases.

68Because model identification is simpler, due to the Levinson-Durbin algorithm
69A long range dependent linear model, which is not a second order process in the sense of the Wold decomposition.

See Chapter 10.
70Box-plots of the results for every model and every time horizon.
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9.9 AN OUTLOOK ON FORECASTING METHODS

In this chapter, we have seen both simple heuristic methods and the classical methods based on
fitting a linear time series model. Again, it is important to notice the difference between fitting a
model for explanatory purposes, or for prediction. In the former case, the fit has to be correct for
the interpretation to be valid. In the latter case, the fit has to be best in the sense of prediction – an
impossible challenge in all rigor.

Cross-correlation between time series can often be used for prediction, if we believe that one time
series anticipates the others. Joint, multi-dimensional ARIMA models are used, as an extension of
teh one-dimension ARIMA models seen in this chapter, see [BrockwellDavis02-book] for some
examples. A simpler alternative is regressing on a lagged time series. For example, if Yt is the
mortgage rate of your bank on day t, take xt to be the stock market index at times (t − 2, t − 1)
and assume the model YT = xt−1β1 + xt−2β2 + εt.

The GARCH family of models aims at capturing the fact that some time series have a very large
volatility, which is expressed by the fact that the variability is much larger than for ARIMA models.
A GARCH(p, q) model has the form Zt =

√
Htεt where εt is iid, white noise with a specified

distribution (normal or other), and Ht = α0 +
∑p

i=1 αiZ
2
t−i +

∑q
j=1 βjH

2
t−j . GARCH models

can be fitted numerically using MLE. See [Davison02-book] for some examples. GARCH models
were applied primarily to financial data; such models are not able to forecast sudden changes, but
they do account for the extreme volatility that follows such events.

An alternative set of methods consists in keeping some of the data as training data, and fit the
model that gives the least prediction error on that data (in contrast to the method seen in this
chapter which uses the complete set of data for fitting the model). This poses many problems on
how to choose the training data, but simplifies the fitting problem, and opens up new heuristic
methods, like artificial neural networks or genetic algorithms.

Last but not least, we considered only “forecasting what can be forecast”. A complete forecasting
method requires the qualitative analysis of external factors.

9.10 EXERCICES

USEFUL MATLAB COMMANDS :

• Y = filter(P,Q,X) computes the output Y = [y1 y2 y3...yn] of the filter, where P =
[P0 P1 P2...Pp], Q = [1 Q1 Q2...Qq] are the filter coefficients and X = [x1 x2 x3...] is the
input. The filter is defined by the relation

yk +Q1yk−1 + ...+Qqyk−p = P0xk + P1xk−1 + ...+ Pqxk−q

where we set xi = 0 and yi = 0 when i < 0 or i > n.
The polynomial P (ξ) = P0ξ

p + P1ξ
q−1 + ...+ Pq is called the numerator polynomial and

Q(ξ) = ξq +Q1ξ
q−1 + ...+Qq the denominator polynomial.

In our terminology, this filter is the mapping

R
n → R

n

X → Y =

∑p
i=0 PpB

p

Id+
∑q

j=1QjB
(X) =

P (B)

Q(B)
·X
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i.e. the filter is the mapping P (B)
Q(B)

(where B is the back shift operator).
• The reverse filter is always defined (because we have a finite n and we impose the first

coefficient of Q to be non zero). The reverse filter is obtained by transposing P and Q:

X = filter(Q,P,X)

Although always defined, the reverse filter might be numerically unstable; this happens when
the corresponding infinite discrete filter (i.e. defined for infinite input sequences) is unstable.

• A filter of this form is stable if and only if all its poles are inside the unit disk (their modulus
is less than 1). The poles are the (usually complex) roots of the denominator polynomial
Q(ξ) = ξq + Q1ξ

q−1 + ... + Qq. The zeroes of the filter are the roots of the numerator
polynomial P (ξ) = P0ξ

p + P1ξ
q−1 + ...+ Pq. They are the poles of the reverse filter. Thus,

the reverse filter is stable if the zeroes of the original filter are all inside the unit disk.
zplane(P,Q) plots the zeroes and the poles of the filter, together with the unit circle.

• The impulse response of the filter is h = [h0 h1 ... hn] such that

yk =
k−1∑
i=0

xk−ihi

It is obtained by applying the filter to the impulse sequence imp =[1 0 0 ...]:

h = filter(P,Q,imp)

• filter: Y = filter(P,Q,eps) simulates an ARMA process when eps is iid white
noise; c = filter(P, Q, imp) with imp=[1 0 0 0 0 ...] computes the coeffi-
cients ck of the MA(∞) representation of the ARMA process

• The convention in Matlab is different from others. Matlab uses: Φ(ξ) = 1+φ1ξ+ ...+φpξ
p.

• predict (system identification toolbox): gives predictors for ARMA models
• armax (system identification toolbox): fits an ARMA model

USEFUL S-PLUS COMMANDS :

• x <- arima.mle() MLE fit of a seasonal ARIMA model, the resulting object x con-
tains all information. x$loglik is −2× the log-likelihood.

• arima.diag(): plots diagnostics
• arima.sim simulate an ARIMA process
• acf() computes covariance at all lags
• The convention in S-PLUS is different from ours and from Matlab’s. S-PLUS uses: Θ(ξ) =

1 − θ1ξ − ...− θqξ
q.

EXERCISE 9.1. Assume Xt = at+Zt where Zt is stationary. What is the asymptotic behaviour of
the sample ACF of Xt ?

EXERCISE 9.2. Homework to be designed in detail

1. propose a forecasting method for one month ahead that works on the trace epfl.
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Figure 9.23: Top : time plot of X (thin line) and Y (thick line) for P and Q as indicated, i.e. for Yk =
0.1Xk + 0.2Xk−1 + 0.3Xk−2 + 0.2Yk−1. Z = filter(Q,P, Y ) (dots) is equal to X in theory, but for large
values of the time, the accumulated numerical errors make a difference. Next panels: the zeroes (o) are
outside the unit disk, so the inverse filter is unstable; impulse response of filter and of inverse. Bottom:
same with the filter Yk = 0.5Xk + 0.3Xk−1 + 0.2Xk−2. The inverse is stable.
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2. apply your prediction algorithm to predict the traffic in the month of the exam. Give a
confidence interval. The best prediction is the one which is closest to the true value, while
having the smallest confidence interval (details to be finalized).

EXERCISE 9.3. Homework to be designed in detail

1. propose a forecasting method for one step ahead that works on the traces dinda1a, dinda2a,
dinda3a and dinda4a. Try: AR, MA, ARIMA, and Holt-Winters.

2. Select the best prediction algorithm by testing your model on dinda1b, dinda2b, dinda3b
and dinda4b What is the best model in each case ?

3. Apply your best algorithm to predict the load 30 steps after the end of each test sequence.
Compare your result to the real value. (we need to find a way such that you can do it only
once). The best prediction (maximum error, mean square error) wins.

EXERCISE 9.4. • Show that simple EWMA is equivalent to long-range forecasting with an
ARIMA(0,1,1) model.What is the correspondence between α and the ARIMA parameters ?

• Show that double EWMA is equivalent to long-range forecasting with an ARIMA(0,2,2)
model. What is the correspondence between α, β and the ARIMA parameters ?

EXERCISE 9.5. (Homework) Simulation study of the power required for a short file transfer. Do a
long simulation. Remove transients. Compute confidence interval using sub-sampling.

EXERCISE 9.6. Complete Exercises 9.9 and 9.10 before this one.

1. Read [Pappagiannaki03-Infocom]. What are the ARIMA models used for forecasting l(t)
and dt3(t) ?

2. Fit the best ARIMA models to traces sprint1a, sprint5a and sprint6a. Do you
confirm the conclusions of the paper ?

EXERCISE 9.7. (Theory)

1. What is the orthogonal projection on the set of periodical sequences, with period s ? What
is the corresponding de-seasonalizing filter ?

EXERCISE 9.8. In TCP, the round trip time is estimated by the following code.

sampleRTT = last measured round trip time
estimatedRTT = last estimated average round trip time
deviation = last estimated round trip deviation

initialization (first sample):
estimatedRTT = sampleRTT + 0.5s; deviation = estimatedRTT/2

new value of sampleRTT available ->
Err = sampleRTT - estimatedRTT
estimatedRTT = estimatedRTT + 0.125 * Err
deviation = deviation + 0.250 * (|Err|- deviation)
RTO = estimatedRTT + 4*deviation
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What kind of filter is used for estimatedRTT ? for deviation ?

EXERCISE 9.9. Reading Assignment. Read [Pappagiannaki03-Infocom] and answer the following
questions.

1. What is the goal of the forecasting study ?
2. Are seasonal variations modeled ?.
3. What are the long and short term effects that affect capacity ?
4. How is data collected ?
5. How many traces are analyzed ?
6. Are there seasonal components ?
7. What does the 1st, 3rd and 4th time scales correspond to ?
8. How are outliers excluded ?
9. What is the model resulting from the wavelet analysis ? An empirical statement that an upper

bound on used capacity is l(t) + 3dt3(t) where l(t) is the weekly average of c6(t) and dt3(t)
is the weekly standard deviation of d3(t).

10. What is the forecasting method ?
11. Do the forecasting models depend on the traces ?
12. How are the models validated ?
13. What is the filter that maps cj−1 to cj ?

EXERCISE 9.10. Homework: traces to be taken from Dina’s email (part a is all but last 6 months.
Wavelet analysis to be checked with WaveThresh.

1. Implement the a-trou wavelets on the trace sprint1a, sprint5a and sprint6a. Apply
Holt-Winters to the two series c6 and dt3.

2. apply your prediction algorithm to sprint1b, sprint5b and sprint6b. How does the
forecast compare to the one in [Pappagiannaki03-Infocom] for the first trace ?



CHAPTER 10

LONG RANGE DEPENDENCE

10.1 INTRODUCTION

Since [Leland94-ToN], models for data traffic have to incorporate an important feature called long
range dependence, which we introduce now. Consider a stationary second-order process Xt with
auto-covariance function γk. In Chapter 9 we saw that, if the series γk is absolutely summable, then
Wold’s decomposition applies and we can reasonably hope to fit an ARMA model. We call such
processes short range dependent. In this chapter, we examine the case where this assumption
does not hold, i.e.

∑
k∈N

|γk| = +∞. It turns out that this has many practical implications that
hold for traffic data sets that both have a high resolution (of the order of seconds) and a very long
time span.

The general theory of processes such that
∑

k∈N
|γk| = +∞ is well beyond the scope of this

course. Instead, we consider processes fro which |γk| decays hyperbolically, i.e., is of the order of
1

kα , with 0 < α < 1.

10.2 LONG RANGE DEPENDENCE

10.2.1 DEFINITION

Consider a stationary second-order process Xt, t = 1, 2, .... We say that Xt is Long-Range
Dependent or has Long Memory with order 0 < α < 1 iff there exists some constant c1 such
that

γk ∼ c1
kα

(10.1)

where the equivalence means that the limit of the ratio is 1 when k grows to +∞.

For reasons that become obvious later, the parameter H = 1 − α
2

(the Hurst parameter) is used
instead of α. We consider only cases with 1

2
< H < 1. The value 1

2
is the boundary between long

and short range dependence. The effect of long range dependence is higher for H close to 1.

249
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10.2.2 EXAMPLES

EXAMPLE 10.1: NILE RIVER MINIMA AND THE JOSEPH EFFECT. There exist statis-
tics for the level of the for the period 622–1284. See Figure 10.1 and Figure 10.2.
The time series shows periods of increase followed by periods of increase. The se-
ries seems non-stationary. These apparent trends are called the Joseph Effect, from
[Bible, Genesis 41]:

Joseph said to Pharaoh [..] “Behold, there come seven years of great plenty
throughout all the land of Egypt. There will arise after them seven years of
famine, and all the plenty will be forgotten in the land of Egypt.”
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Figure 10.1: Nile River Minima.

EXAMPLE 10.2: ETHERNET DATA. Figure 10.3 and Figure 10.4 . The number
of bytes (Figure 10.3) or packets Figure 10.4 also shows a very irregular pattern.
The ACF decays slowly. The figures show aggregation at different time scales. The
aggregate data does not seem to look more like normal iid noise, as the central limit
theorem would say. See also Figure 10.5 and Figure 10.6.

EXAMPLE 10.3: Counter-Example: for an ARMA process, it can be shown that there
always exists some r > 0 such that ρk = o(rk), thus an ARMA process is always
short-range dependent. See Figure 10.7 and Figure 10.8.
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Figure 10.2: Top row: ACF of Nile data in natural scale (with 95% confidence limits about zero) and in log-
scale. Bottom row: variance time plot with slope α; estimation of Hurst parameter is H = 1− α

2 (H = 0.865);
and periodogram.

Figure 10.3: Ethernet Data, in Bytes, aggregated at different time scales. All graphs are truncated to have
the same number of points except the top one which is the original data. [Leland94-ToN]
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Figure 10.4: Ethernet Data, in Packets.

Figure 10.5: ACF, variance time plot, and periodogram of Ethernet byte data (confidence interval about 0
is indistinguishable from 0). Estimated H = 0.740.
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Figure 10.6: ACF, variance time plot, and periodogram of Ethernet packet data. Estimated H = 0.814

10.2.3 PROPERTIES

VARIANCE OF SAMPLE MEAN. For a short range dependent process, the variance of the
sample mean X̄n = 1/n

∑n
t=1Xn decays as 1/

√
n. For a long range dependent process, the decay

is slower:

THEOREM 10.2.1 (Beran94-book). Let Xt be long range dependent. For n→ +∞:

varX̄n ∼ c1
H(2H − 1)

1

n2(1−H)

QUESTION 10.2.1. What is the order of the variance of the partial sum Sn =
∑n

t=1Xt ? 1

SPECTRAL DENSITY. The spectral density f() of the time series Xt is defined as the Fourier
transform of the auto-covariance:

f(ω) =
∑
k∈Z

γke
−ikω

(This is well defined only if we accept f to be a Distribution rather than a standard function).
Since γ−k = γk, the spectral density is even and real: f(ω) = f(−ω) ∈ R. Conversely, the
autocovariance is retrieved by the inverse Fourier transform:

γk =
1

2π

∫ π

−π

f(ω)eiωkdω =
1

π

∫ π

0

cos(ωk)f(ω)dω

1 c1
H(2H−1)n

H
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Figure 10.7: An ARMA process with p = 1, q = 0, φ1 = 0.95. The top two graphs are the original time
series. Other graphs are aggregated and re-scaled. The time series has some local trends at the original
time scale, due to the auto-regressive component, but they disappear by aggregation. In the aggregation
limit, we have white noise.
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Figure 10.8: ACF, variance time plot, and periodogram of simulated ARMA data. Estimated H = 0.5

Long range dependence is visible in the frequency domain by a pole at the origin (“1/f -noise”).

THEOREM 10.2.2 (Spectral Density of LRD). If Xt is long range dependent, the spectral density
f(ω) is defined for ω �= 0; for ω in the neighbourhood of 0:

f(ω) ∼ c2|ω|1−2H

Conversely, this property implies long range dependence. The constants c1 and c2 are related by

c2 = 2c1Γ(2H − 1) sin((1 −H)π)

In contrast, with short range dependence, the spectral density is defined and continuous for ω = 0.
In the theorem, Γ() is Euler’s integral, defined by Γ(x) =

∫ +∞
0

tx−1e−t. If x is a positive integer,
then Γ(x) = (x− 1)!. Γ is defined everywhere except at negative integers and 0.

10.2.4 HURST PARAMETER

Hurst is a famous hydrologist who, like many, was interested in Egypt and The Nile. Hurst found in
1951 that the level of the Nile was a long range dependent sequence. He formulated it as follows.
Assume you build a reservoir of capacity B1. At time t0, the reservoir has initial content B0.
Hurst was interested in the value of B1 that, over some time interval [t0, t0 + h] would guarantee
a constant output rate and no overflow. Call Ys the cumulative input of water into the reservoir,
minus evaporation and leaks. The conditions are⎧⎨

⎩
c =

Yt0+h−Yt0

h

B0 + Ys − Yt0 − cs ≥ 0 for all s ∈ [t0, t0 + h]
B0 + Ys − Yt0 − cs ≤ B1 for all s ∈ [t0, t0 + h]
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It can easily be shown that it is necessary and sufficient that

B1 ≥ R(t0, h) = max
s∈[t0,t0+h]

(Ys − Yt0 − cs) − min
s∈[t0,t0+h]

(Ys − Yt0 − cs)

R(t0, h) is called the “range statistic”. It is the required capacity of the reservoir. A scale-free
version of it, called rescaled range statistic is R(t0, h)/S(t0, h), with

S(t0, h)
2 =

1

k

∑
s∈[t0,t0+h]

(Xs − X̄(t0, h))
2

with Xs = Ys − Ys−1 and X̄(t0, h) is the sample average of Xs over [t0, t0 + h].

It turns out that for short range dependent processes, for large h, R(t0, h)/S(t0, h) should be of the
order of

√
h. Hurst plotted R(t0, h)/S(t0, h) in log-log scale for various values of t0 and h and, in

contrast, found that the regression line always tended to have a slope greater than 1/2. For a long
range dependent process with order α, the slope of this line is precisely H = 1 − α

2
, hence the

name.

10.2.5 REMARKS ON TERMINOLOGY.

A slightly more general definition is that γk = L(k)
kα , where L() is a slow varying function at infinity,

which means that limk→+∞ L(kx)/L(k) = 1 for any fixed x > 0. This allows more general decays
than exponential, for example γk = log k

kα . We do not use this slightly more general definition for
simplicity, as this does not impact the results in this chapter.

Some authors call fractional process a stationary process that satisfies our definition or its variant
with slowly varying functions, leaving the concept of long range dependence for the general case∑

k∈N
|γk| = +∞.

Finally, note that we focus on processes with finite variance γ0.

10.3 FRACTIONAL ARIMA PROCESSES

Fractional ARIMA processes (FARIMA) are generalizations of ARIMA processes that have
long range dependence.

FRACTIONAL DIFFERENCE OPERATOR. An ARIMA process is defined by (Section 9.7.2)

Φ(B)(Id−B)dYt = Θ(B)εt

First note that

(Id−B)d =
d∑

k=0

(
d
k

)
(−1)kBk

with (
d
k

)
=

d!

k!(d− k)!
=

Γ(d+ 1)

Γ(k + 1)Γ(d− k + 1)
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The function Γ is defined in Section 10.2.3. Γ is defined and �= 0 for all real numbers except for

integers that are ≤ 0. The binomial coefficient

(
d
k

)
can thus be extended by the above formula

to all positive, real values of d and all integer values of k. If d is integer and k ≥ d + 1 then

Γ(d− k + 1) = ∞ and

(
d
k

)
= 0. Thus, we can define, at least formally,

(1 − ξ)d =
+∞∑
k=0

(
d
k

)
(−1)kξk

and the definition coincides with the usual one if d ∈ N. We call it the fractional difference
operator. It is well defined for finite time series, and it can be shown that the convergence occurs
in l2 sense for infinite time series.

(Id−B)d =
+∞∑
k=0

(
d
k

)
(−1)kBk (10.2)

Note that

(
d
k

)
(−1)k is also simply equal to

∏k
j=1

j−1−d
j

. The z-transform of the fractional

difference operator is H(z) =
∑+∞

k=0

(
d
k

)
(−1)kBk = (1 − z)d. The linear filter theorem

continues to apply: if Yt = (Id − B)dXt with −1/2 < d < 1/2 then the spectral density relation
holds

fY (ω) =
∣∣1 − eiω

∣∣2d
fX(ω)

It follows that, if a process Xt is LRD with Hurst parameter H , then Y = (1−B)dX is SRD (with
d = H − 1

2
). See Figure 10.9. This suggests the following family of models.

FRACTIONAL ARIMA. A fractional ARIMA process Yt has parameters p, d, q,Φ,Θ, F , where
p, q are integers, −1/2 < d < 1/2, Φ,Θ are polynomials with the same restrictions as for ARMA
processes, and F is a probability distribution with 0 mean. It is defined as the stationary solution
to

Φ(B)(Id−B)dYt = Θ(B)εt

where εt ∼ iid F . Unless otherwise specified, we take F = N(0, σ2).

For d = 0, the process is simply ARMA.

The definition is equivalent to

Φ(B)Yt = (Id−B)−dΘ(B)εt

which shows that the process is well defined. The commutativity of power series in B also implies
that

Φ(B)Yt = ΘtWt

where
(Id−B)dWt = εt (10.3)
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Figure 10.9: Fractional Difference Operator (Id − B)d applied to the mean corrected time series “Nile” Yt

(d = 0.36) (bottom), compared to original time series (top) The transformed time series is SRD.

We can interpret Yt as an ARMA process where the noise is Wt. Such a noise is called fractionally
integrated white noise. Its variance is

γW (0) = σ2 Γ(1 − 2d)

Γ2(1 − d)

Its spectral density is

fW (ω) =
∣∣1 − eiω

∣∣−2d σ2

2π

Thus, by Theorem 10.2.2, it is long range dependent for 0 < d < 1/2, with

H =
1

2
+ d

The same holds for FARIMA processes in general.

For −1/2 < d < 1/2 the operator (Id − B)d can be inverted and its inverse is (Id − B)−d. Thus,
following Equation (10.3):

Wt = (Id−B)−dεt

It can be shown that for 0 ≤ d < 1
2
, the FARIMA model can be assumed stationary, just like an

ARMA process (i.e. if the auto-regressive polynomial has all roots outside the unit disk, and we
pick as initial condition the stationary distribution).

The ACF of fractionally integrated white noise is

ρW (k) =
Γ(k + d)Γ(1 − d)

Γ(k − d+ 1)Γ(d)
=

k∏
j=1

j − 1 + d

j − d
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The autocovariance of a FARIMA process is

γh =
∑
j,k∈N

ψjψkγW (h+ j − k)

where
∑

j∈N
ψjξ

j = Θ(ξ)/Φ(ξ). It can also be computed from the spectral density relation

fY (ω) =

∣∣∣∣Θ(eiω)

Φ(eiω)

∣∣∣∣
2

fW (ω) =

∣∣∣∣Θ(eiω)

Φ(eiω)

∣∣∣∣
2 ∣∣1 − eiω

∣∣−2d σ2

2π

See Figure 10.10, Figure 10.14 and Figure 10.7 for simulations of FARIMA processes.
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Figure 10.10: Simulations of fractionally integrated white noise, with unit variance. Top: H = 0.5 (iid
normal noise). Long range dependence increases as H becomes close to 1. We see that for H close to 1
the time series exhibits apparent local trends, typical of long range dependence.

QUESTION 10.3.1. Is a FARIMA process stationary for 0 < d < 1/2 ? Same question for an
ARIMA process with d ∈ N. 2

2FARIMA is stationary for 0 < d < 1/2, unlike ARIMA which is not stationary, except for d = 0.
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10.4 LRD AND SELF-SIMILARITY

10.4.1 SELF-SIMILAR TIME SERIES

Self-similarity was introduced by Kolmogorov and Mandelbrot. A deterministic geometrical ob-
ject is self-similar if it repeats the same pattern, independent at the distance from which we look
at it. A stochastic process is self-similar if the sample paths “look the same”, independent of the
distance, but are not a repetition of a pattern.

Formally, consider a stationary time series Xt. For all m, define

X
(m)
t =

1

m

(
X(t−1)m+1 + ...+Xtm

)
X

(m)
t is obtained by aggregating the data in Xt by blocks of size m, and averaging.

DEFINITION 10.4.1. Xt is a self-similar time series iff for all m, Xt and X(m)
t have the same

distribution, up to a scaling factor.

If a time series is the limit of normalized partial sums of a stationary time series, then it is self-
similar. Thus the role of self-similar time series among stationary time series is the same as stable
distributions among univariate distributions (Section 8.2).

The factor in Definition 10.4.1 necessarily has the form 1
m1−H for some H (called the Hurst para-

meter). If we assume that the time series has second moments and the autocorrelation decays to 0
then the only possible cases are 0 < H < 1. For 0 < H < 1

2
the process is short-range dependent

and has the property that all correlations are negative and
∑

k≥1 ρk = −1
2

– a case that we will not
consider in practice. Thus we will consider only the case H ∈ [1/2, 1). The only self-similar time
series we will encounter is a Gaussian times series called fractional Gaussian noise, defined later.

A second order stationary time series is called a (second order) self-similar time series with Hurst
parameter H ∈ [1/2, 1) if for all m, Xt and 1

m1−HX
(m)
t have the same second order characteristics

(mean and auto-covariance).

A second order stationary time series has the following properties.

• Its ACF is

ρk =
1

2

(
(k + 1)2H − 2k2H + (k − 1)2H

)
• For H = 1/2, the time series is non correlated. For H > 1/2, a limited development of

(1 + x)2H shows that, for large k

ρk ∼ H(2H − 1)k2H−2

thus
∑

k>0 ρk = +∞ and the series is long range dependent.
• the spectral density for ω �= 0 is

f(ω) = c(1 − cosω)
∑
j∈Z

|2πj + ω|−2H−1

with c = 2σ2 sin(πH)Γ(2H + 1). Further, for ω → 0:

f(ω) ∼ c

2|ω|2H−1
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Iid time series are self-similar iff the distribution of Xi is p-stable. Iid normal time series are
self-similar with Hurst parameter H = 1/2.

QUESTION 10.4.1. What is the Hurst parameter of a stable iid time series ? 3

The only other example we will encounter is Fractional Gaussian noise. Fractional ARIMA
processes are long range dependent but not self-similar.

QUESTION 10.4.2. Show that FARIMA(0, d, 0) is not self-similar. 4

10.4.2 FRACTIONAL GAUSSIAN NOISE

DEFINITION 10.4.2. Fractional Gaussian noise (fGn) is the only self-similar time series Xt,
t ∈ N, that is gaussian and such that

• E(Xt) = 0
• var(Xt) = σ2 for some fixed σ2 > 0
• It is second order stationary and its auto-covariance function is

γk =
σ2

2

(
(k + 1)2H − 2k2H + (k − 1)2H

)
where H ∈ [1

2
, 1) is a fixed parameter (called the Hurst parameter).

For H = 0.5, γk = 0 and fractional Gaussian noise is the usual normal white noise. For H > 0.5,
fGn is not white noise.

QUESTION 10.4.3. Is fGn stationary ? 5

.

QUESTION 10.4.4. How would you simulate fGn ? 6

Efficient simulations of fGn are based on the fact that the discrete Fourier transform X̂(ω) of a
stationary time series Xt with auto-covariance γk is non-stationary white noise (i.e. E(X̂(ω)) = 0
and X̂(ω), X̂(ω′) are independent) with variance v(ω) = discrete fourier transform of γk. See
Figure 10.11 for an example.

QUESTION 10.4.5. Trouvez l’intrus. Three simulated and aggregated time series are shown on
Figures 10.12 to 10.14. The first two graphs are the original time series (all samples, 250 first
samples), the following graphs are 250 samples of the aggregated time series, aggregated 4 times
each.
The three time series are one of the following:

3H = 1/p.
4Plot the auto-covariance function and see that it does not have the proper form.
5Yes: it is second order stationary and normal
6For t = 0, draw a normal random variable with variance σ2; this gives a number x0. For t = 1, compute the

conditional distribution of X1 given X0 = x0. From Theorem 12.5.4, it is normal with mean ρ1x0 and variance
σ2(1 − ρ2

1). Draw a random normal variable with these parameters and obtain x1. Iterate: x2 is obtained by sampling
the distribution of X2 conditional to X=0 = x0,X1 = x1, and so on.
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• ARIMA process with p = 1, d = 0, q = 0,φ1 = 0.95
• FARIMA process with H = 0.9, p = 1, q = 0, φ1 = 0.95,
• fractional gaussian noise with H = 0.9,
• fractional gaussian noise with H = 0.5.

Say which is what. 7

The rest of this section explains how fractional Gaussian noise can be mathematically constructed
from a continuous time process called Fractional Brownian motion (fBm). You can skip it a first
reading.

DEFINITION 10.4.3. A continuous time process Yt is self-similar with stationary increments iff

• For any stretching factor c, the process Y (ct) has the same distribution as Y (t), up to some
scaling factor (which depends on c).

• The distribution of Y (t+ k) − Y (t) is independent of t.

Necessarily (apart from pathological processes), the scaling factor must be of the form c−H for
some H > 0. If the process has finite second moments then 0 < H < 1. We consider in this
lecture only the case 1

2
≤ H < 1.

A zero mean self-similar process with stationary increments and with second moments necessarily
has a covariance function given by

Γs,t =
σ2

2

(
t2H − (t− s)2H + s2H

)
(10.4)

where σ2 = var(Y (1)). Thus for H = 1
2

the process is uncorrelated.

DEFINITION 10.4.4. Fractional Brownian motion BH,σ2(t), with Hurst parameter H ∈ [1/2, 1)
and variance parameter σ2 is the only process with the following properties.

1. BH(t) is gaussian with 0 mean.
2. BH(t) is a self-similar process with stationary increments.
3. BH(0) = 0 a.s.
4. var(BH(1)) = σ2

For σ2 = 1 we call it the standard fractional Brownian motion BH(t) = BH,1(t)

The covariance function of the fractional Brownian motion is given by Equation (10.4). BH(t)
is a convenient mathematical abstraction, but it has non smooth properties: its sample paths are
continuous but nowhere differentiable.

Note that BH(t) is not stationary.

For H = 1
2
, we have the ordinary Brownian motion. It is the only one for which the increments

are independent.

DEFINITION 10.4.5. Fractional Gaussian noise is the time series of increments of a Fractional
Brownian motion: Xt = BH(t) −BH(t− 1), for t = 1, 2, ....

7(a)=fGn 0.5, (b)=fGn 0.9, (c)=FARIMA.
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Figure 10.11: Simulated fractional Gaussian noise for H = 0.5 (top) to H = 0.99 (bottom) with sample
ACF.
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Figure 10.12: Series (a) of the game in Question 10.4.5
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Figure 10.13: Series (b) of the game in Question 10.4.5



10.4. LRD AND SELF-SIMILARITY 265

Figure 10.14: Series (c) of the game in Question 10.4.5

Fractional Gaussian noise is a Gaussian time series with the following properties:

• it has zero mean
• it is stationary
• it is self-similar
• For H = 1

2
, fGn is the ordinary sequence of iid noise: Xt ∼ iidN(0, σ2). In all other cases,

it is not iid and is long range dependent

This gives a useful intuitive representation of fractional Gaussian noise. For H = 1/2 we have the
usual Brownian motion

The definition of fGn can be extended to other self-similar time series, with stable marginal distri-
bution. Such time series have infinite variance and no auto-covariance function can be defined.

10.4.3 ASYMPTOTIC SELF-SIMILARITY AND LRD

Long range dependence and fractional Gaussian noise are related as follows. A general result is
that (under some mild conditions), the partial sums of a long range dependent time series, re-scaled
by 1/nH , converges in distribution to a fractional Gaussian noise. For a short range dependent time
series, this is the usual central limit theorem. See Figure 10.7 and Figure 10.14

This illustrates an important visual aspect of long range dependence. For a short range dependent
time series with finite variance, the partial sums converge to a memoriless process. In contrast, with
long range dependence, the limits of partial sums are still correlated: short memory disappears with
aggregation, while long memory resists.

This also gives a useful intuitive representation of fractional Brownian motion. For H = 1/2 we
have the usual Brownian motion B(t). Intuitively, think of the Brownian motion as the limit of a
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random walk when the time step is very small: B((t + 1)δ) = B(tδ) + εt+1 where εt is iid white
noise. By the central limit theorem, the increments of B(t) are normal. Thus the random walk
ARIMA(0, 1, 0) gives an approximation of brownian motion.

In contrast, for H ∈ (1/2, 1), think of BH(t) as the limit of a random walk where the increments
εt are long range dependent, with Hurst parameter H .

10.5 STRUCTURAL MODELS WITH LRD

Structural models try to reproduce the essential features of a system (as opposed to black-box
models such as time series or regression models). Some models are able to explain long range
dependence by heavy tails.

FLUID MODEL WITH HEAVY TAILED INTER-ARRIVAL TIMES. The following model is
adapted from [Grossglauser96-sigcomm]. It represents traffic intensity on a network link or a
web server, as follows. There is a sequence of rate change epochs τn, such that the sequence
Tn = τn+1 − τn is iid, with complementary distribution function F (t) = P(Tn > t). At time τn,
a rate λ(n) is picked at random, independently of the past and present of the system, from a finite
set of rates {λ1, ...λI}. Let πi = P(λ(n) = λi). Let X(t) be the rate at time t. We assume that
the system has been running for a long time and is in stationary regime, which means that Xt is a
stationary sequence.

Assume that the distribution of Tn is heavy tailed and has a finite mean, i.e.

F (t) ∼ ct−p

with 1 < p < 2.

We now compute the auto-covariance of Xt. The mean is

μ = E(Xt) =
I∑

i=1

πiλi

and for h ≥ 1 we compute

r(h) = cov(Xt+h, Xt) = E((Xt+h − μ)(Xt − μ))

We condition with respect to the event

A(t, h) := {No arrival occurs in[t+ 1, t+ h]}

Conditional to A(t, h), Xt+h = Xt, and conditional to non-A(t, h), the rates Xt and Xt+h are
independent, by construction. Thus

r(h) = E((Xt − μ)2|A(t, h))P(A(t, h))

Now by construction, Xt is independent of A(t, h). Thus

r(h) = E((Xt − μ)2)P(A(t, h)) = r(0)P(A(0, h))
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By Palm’s inversion formula (Section 11.3):

P(A(0, h) =
1

E(Tn)

∫
t≥h

F (t)dt ∼ c′h−(p−1)

Since 0 < p− 1 < 1, it follows that Xt is LRD.

Conversely, if F (t) ≤ ct−p for some p > 2 and for t large enough (fast decay), then Tn is light
tailed and

∑ |r(h)| <∞ and the process Xt is short range dependent.

This example provides an intuitive explanation for long range dependence, rooted in heavy tail.
It remains to see whether this is really an explanation, and whether we need an explanation at all
(the quest for an explanation lies on the assumption that SRD would be normal). For an attempt to
explain heavy tail in session duration and in file size distributions, see [Downey01-IMW].

OTHER STRUCTURAL MODELS. A similar structural model is the ON-OFF source model,
where the on and off periods are iid and mutually independent. Consider the superposition of M
such sources and let Xt be the number of sources that are ON at time t. This represents traffic
generated by the superposition of unit rate sources. It is shown in [Leland94-ToN] that if either the
ON or the OFF period is heavy tailed, then Xt is LRD. This holds for any value of M .

Another class of structural models tries to explain LRD by fractal processes, namely, patterns that
are reproduced identically at every scale. For an introduction to such constructions, see [Cappe02-
SPM] and [Abry02-SPM].

STRUCTURAL MODELS FOR SRD. For user level sessions, i.e., on-off models of human be-
haviour, there are some indications that simple, SRD models such as Poisson processes fit well
[Paxson95-ToN]. In fact, such models were (successfully) used for dimensioning telephone net-
works for almost a century.

10.6 TESTS FOR LRD

LRD is tested by estimating the Hurst parameter. A large number of methods exist, see [Taqqu02-
html] for an exhaustive list with examples. Many of the methods do not work well. We focus here
on two, which do work.

10.6.1 VARIANCE TIME PLOT

This is a simple method, which is easy to understand, but may give some rough results. It con-
sists in verifying asymptotic self-similarity by plotting an estimator v(m) of the variance of the
aggregated process:

v(m) :=
m

N

N/m∑
t=1

(
X

(m)
t − X̄)

)2

For large enough m, we should find v(m) ∼ c×m−2(1−H), for some constant c. This can easily be
verified in log-scale. The corresponding diagram is called a variance time plot. See Figures 10.2,
10.5, 10.6 and 10.8.
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In practice, the plot may be difficult to interpret because, for large m, where the scaling occurs, we
have few data blocks. For example, on Figure 10.18 we find a slope largely less than 1, which is
impossible in theory.

10.6.2 LOG-SCALE DIAGRAM

The Log Scale Diagram is based on a wavelet analysis of the time series. See Section 13.2
for background information on wavelets. Roughly speaking, for a fixed j, the series of wavelet
coefficients dj, k represent the difference between the time series aggregated by factors of 2j−1

and 2j . The method is based on the fact that wavelet coefficients are short range dependent, even
for LRD time series. More precisely, we have [Abry00-book]

THEOREM 10.6.1. Let Xt be a long range dependent time series. Let dj,k be the wavelet coeffi-
cients at octave j (as defined in Section 13.2). If the mother wavelet has N vanishing moments
and its Fourier transform is N times differentiable at the origin, then

• For any fixed j, dj,k is 2nd order stationary
• E(dj,k) ∼ c′12

j(2H−1) as j → ∞
• For any fixed j, the auto-correlation function of dj,k, γj satisfies γj(h) ∼ h2(H−N−1)

The second item expresses that the wavelet coefficients reproduce a power law behaviour. Since
the number of vanishing moments N is at least 1, the third item means that the wavelet coefficients
are short range dependent. The assumption in the theorem are true for all the wavelets usually
used.

The log-scale diagram is as follows [Abry00-book]. Let nj be the number of wavelet coefficients
available at octave j. An estimator of E(dj,k) is

μj =
1

nj

nj∑
k=1

d2
j,k

An estimator of log E(dj,k) is

sj = log μj − 1

nj log 2

where the last term is an attempt to cancel the bias due to the non-linearity of log. A plot of j
versus sj is called the log-scale diagram. If the points are close to aligned for large j, the slope is
an estimate of α = 2H − 1.

A confidence interval may be obtained as follows. If the data comes from a normal process (such
as FARIMA) the estimator α̂ obtained by a least square fit of the sj to a straight line, over the range
[j1, j2] where scaling occurs, is approximately normal, with zero mean and variance

v ≈ 1

n

1 − 2−J

F

with J = j2 − j1 + 1, n =
∑j2

j=j1
nj and F = (log 2)221−j1(1 − (J2/2 + 2)2−J + 2−2J).

See Figure 10.15 for an application to Ethernet and Nile examples.

QUESTION 10.6.1. Compare the log-scale diagram estimates to the variance time plot estimates
in Figures 10.2, 10.5 and 10.6. 8

8
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Figure 10.15: Logscale Diagram for (a) Nile data, (b) Ethernet byte data and (c) Ethernet packet data.
LRD is found with confidence intervals for Hurst parameter as shown.
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10.6.3 NON-STATIONARITY VERSUS LRD

Non-stationarity and LRD look the same in some respects.

ERRATIC TRENDS that remain after aggregation are a common feature of LRD time series, but
also of integrated, non stationary processes such as ARIMA. For example, consider an ARIMA(0, 1, 0)
process, which is not stationary (Figure 10.16). The original time series is

Xt =
t∑

n=1

εt

where εt is iid centered normal with variance σ2. We have var(Xt) = tσ2 and XT is not stationary.
For the aggregated time series, we have

var
1√
m
X

(m)
t =

1

m
mtσ2 = tσ2

thus the aggregated time series remains non-stationary at all aggregation time scales. See also
Figure 10.17) for a more sophisticated ARIMA example.

NON-STATIONARITY MAY BE INTERPRETED AS LRD . Remember that LRD is defined for
a stationary process.

Consider the Sprint data in Example 9.2 on page 203, (with 6400 data points instead of 250).
Figure 10.19 shows the data, the variance and ACF diagrams. The slow decay in ACF and the
slope of the variance time plot suggest that LRD is present. Consider now the differenced time
series, at lags 1 and 16 (Figure 10.19). The diagrams clearly indicate short range dependence.

Thus, if we have a data set that obviously does not look stationary, considering it as a sample path
generated by a stationary process may lead to the conclusion that the process is LRD. If we remove
trends from the data set (by differencing), the conclusion may be opposite. Always analyze trends
and seasonality before anything else !

WAVELET COEFFICIENTS have the property that polynomial components of degree ≤ N − 1
are cancelled (but not in the coarse approximations). More precisely, if Xt = Yt + P (t), where
P (t) is a deterministic polynomial of degree ≤ N − 1 and Yt is stationary, then for any j, dj,k is a
stationary sequence. The same holds if ΔdXt = Yt, with d ≤ N − 1.

The number of vanishing moments is N = 1 for the Haar wavelet and ≥ 2 for other wavelets used
in practice. Thus for all j dj,k is a zero mean time series, even if Xt is not. See Figure 10.20.

Thus wavelet based methods are more robust against trends. The same holds for seasonal com-
ponents, which are removed by the low pass filtering performed when computing the coefficients.
Indeed, the log-scale diagram method does not find LRD even if the Sprint data is not differenced
(Figure 10.21).

Log scale diagram estimate variance time plot estimate
Nile [0.722, 0.998] 0.865

Ethernet Byte [0.815, 0.819] 0.740
Ethernet Packet [0.876, 0.881] 0.814

The estimates are not too far away, but the point estimates are not in the confidence intervals.
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Figure 10.16: Simulation of an ARIMA(0, 1, 0) model (random walk, discrete time approximation of stan-
dard brownian motion. The process is non stationary and remains so after multiple aggregations. It is a
self-similar non stationary (short range dependent) process.
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Figure 10.17: Simulation of a (non-stationary) ARIMA(3, 1, 3) model fitted to the (stationary) fractional
ARIMA series of Figure 10.14, aggregated at several time scales. We see that the non-stationary time
series exhibits the same apparent trend behaviour that resists aggregation.
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Figure 10.18: Sprint data in Example 9.2 on page 203, original and differenced at lags 1 and 16. The
variance analysis of the original time series suggests LRD with H = 0.905.
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Figure 10.19: Variance analysis of Sprint data in Example 9.2 on page 203, differenced at lags 1 and 16.
shows that the time series is not LRD. The data in Figure 10.18 should not be assumed to come from a
stationary model.

STATIONARY OR NOT ? For a given data set, it often possible to fit a stationary model or a
non-stationary one. Consider for example Figure 9.11. We fit a non stationary data model, and this
gives us useful information about the growth pattern. In fact, we are interested there in the non
stationary part of the data.

In contrast, if the data shows erratic trends, we may not be interested in modeling the trends
explicitly, but rather, have a model that will incorporate such trends as random events. ARIMA
processes are such models, as well as LRD processes (Figure 10.16).

Distinguishing between ARIMA and LRD models is not easy if the number of points is small. In
contrast, if it is large, then we can apply log-scale diagrams. Indeed, polynomial non-stationary
components are mostly cancelled by wavelet analysis. If the estimated Hurst parameter is not equal
to 0.5, then a long range dependent model should be assumed.

Remember that stationarity is a property of an abstract process, not of the data itself...

10.7 APPLICATIONS

10.7.1 SIMULATION AND CONFIDENCE INTERVALS

REFAIRE EN UTILISANT MON TUTORIAL SIGMETRICS

Assume we want to compute a confidence interval of the mean of some stationary process in one
long run, and the data appears to be long range dependent. We cannot apply the sub-sampling
method described in Section ?? since correlation persists across long time intervals.

A possible method uses the ACF. We can estimate the ACF by the sample ACF for small lags,
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Figure 10.20: Wavelet and scaling coefficients of a process with polynomial trend. First graph: Haar
wavelet, which has 1 vanishing moment. The wavelet coefficients are zero mean, but not stationary. Second
graph: Daublet-4, which has 2 vanishing moments. The wavelet coefficients look stationary.
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Figure 10.21: Logscale Diagram for Sprint data (a) without differencing (b) with differencing. No LRD is
found.

and by its asymptotic expression in Equation (10.1) otherwise. An estimator of the exponent α
is given by the log-scale diagram in Section 10.6.2. An extension of the same method can be
used to compute the intercept in the log scale diagram, which gives an estimator of log c1. See
[Veitch01-2parms] for a detailed analysis and implementation.

10.7.2 FORECASTING WITH LONG RANGE DEPENDENCE

For LRD processes with finite variance and known auto-covariance function, the forecasting method
is essentially the same as for classical time series (Section 9.7.5). In practice, the following meth-
ods can be used.

• (FARIMA) Compute MLE as for ARMA. This part is computationally expensive. Forecasts
are done as usual.

• (FARIMA with known Hurst paramter) First identify the Hurst parameter. If the confidence
interval is small, then fit a fractional ARIMA model to the fractionnally differenced time
series. Use the classical methods for prediction.

• (ARIMA) An ARIMA model is non stationary and, over short period of times, may be able to
track the apparent trends of an LRD process. The method here consists in fitting an ARIMA
model to the recent data and use the classical method for prediction. The model is fitted
again periodically. See [Bansali] for details.

• (Wavelet Analysis) Decompose the time series into a multi-resolution analysis: model the
details by a joint, multi-dimensional ARMA process or Kalman filter. Model the coarse ap-
proximation by a simple regression model. See [Pappagiannaki03-infocom] for an example
in that direction.

Peter Dinda reports in [Dinda99-HPDC] that, for host load prediction, FARIMA models perform
marginally better than ARIMA models. Figure 10.22 confirms that fact: the predictions for both
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FARIMA and ARIMA are close (and almost equal to the mean), but the confidence interval is
smaller with FARIMA. [Beran-94] finds that this is a general finding: long memory helps finding
smaller confidence intervals.

Nile - FARMA forecast -- d= 0.391
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Figure 10.22: Forecasts for Nile data, fitted on the time series minus the last 26 data points. Top: Best
FARIMA(p,d,q) model for p, d ≤ 2. The estimation found d = 0.391 (H = 0.891). Bottom: best ARIMA(p,1,q)
model for p, d ≤ 5.
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10.8 REVIEW AND QUESTIONS

Hurst Parameter 0.5 ≤ H < 1 H = 0.5 means SRD H = 1 − α
2

Decay Exponent of ACF 0 < α ≤ 1 α = 1 means SRD α = 2(1 −H)
FARIMA(p, d, q) 0 ≤ d < 0.5 d = 0 means SRD d = H − 1

2
= 1−α

2

QUESTION 10.8.1. For each of the following process type, say if it is stationary (assume that the
auto-regressive polynomials have all roots outside the unit disk):

1. ARMA
2. ARIMA(p, d, q) (assume that d ≥ 1 and d ∈ N)
3. FARIMA(p, d, q) (assume that 0 < d1

2
)

4. fGn(H) (assume that 1
2
≤ d < 1)

9

QUESTION 10.8.2. Same question with : “self-similar” instead of “stationary” 10

QUESTION 10.8.3. Same question with : “long-range dependent” instead of “stationary” 11

QUESTION 10.8.4. What is the difference between a FARIMA process and fGn ? 12

QUESTION 10.8.5. Is there a difference between fractionally integrated noise and fGn ? 13

QUESTION 10.8.6. What are the differences between LRD and self-similarity ? 14

QUESTION 10.8.7. What is the difference between heavy tail and LRD ? 15

QUESTION 10.8.8. How can I know if my time series is LRD ? 16

QUESTION 10.8.9. If a time series is non-stationary, does this go away by aggregation ? 17

QUESTION 10.8.10. Is it possible to have a stationary model and a non-stationary one for the
same data ? 18

9ARMA, FARIMA and fGn are stationary. ARIMA is not.
10fGn is self-similar; ARMA, FARIMA and ARIMA are not (except for special cases)
11ARMA is not LRD. ARIMA is not stationary so the question of LRD does not apply. FARIMA and fGn are LRD

for H �= 0.
12FARIMA has both LRD and a short range structure that can be exploited to fit some data that is not strictly

self-similar.
13Yes. The former is not self-similar (its auto-covariance function does not have the right form, whereas the latter

is. Both are noise models with LRD.
14Self similarity is a property of aggregated processes. Aggregation tends to produce self-similarity. If the original

data is SRD, the aggregation limit is white noise (=fGn 0.5)(after proper re-scaling); if the original data is LRD, the
aggregated data is fGn with same hurst parameter.

15Heavy tail is a property of the distribution of one random variable. LRD is a property of the ACF of a second
order process. If we build a processes by superposing indepedent on-off sources that have independent on and off
period, when the On (or Off) duration is heavy tailed, the process is LRD, and conversely.

16First make sure it looks stationary. Then look at variance time plots in log-log scales, or (better) use the scalogram
method.

17In general no. There are exceptions: seasonal components go away by aggregation, but trends do not. Random
trends like in ARIMA(0,1,0) do not go away.

18Yes, if the data set is large and exhibits apparent trends. An ARIMA-like model (non-stationary) and a LRD,
stationary model (for example: FARIMA) may both explain the data well.



10.9. EXERCICES 279

10.9 EXERCICES

EXERCISE 10.1. Compute the Hurst parameter of the Sprint, Dinda and Ethernet traces. Cut the
traces in two and re-do the computations. What do you find ? Use confidence intervals (see Darryl
Veitch’s tools).

EXERCISE 10.2. Compute the Hurst parameter for the traffic load generated by Surge. Explain
the result.

EXERCISE 10.3. Read [grossglauser96-sigcomm] and answer the following questions.

• What is the main finding of the paper ?
• What is the model ? How is LRD created ?
• How is the queuing system solved ?

EXERCISE 10.4. Compute confidence intervals for the bottleneck utilisation in your SURGE ex-
periment, using a single long run.

EXERCISE 10.5. Forecast the Dinda time series using methods that account for LRD. Compare to
methods that do not. Same question for the Sprint traces.

USEFUL S-PLUS COMMANDS :

• arima.fracdiff fit a FARIMA model
• arima.fracdiff.sim simulate a FARIMA process
• gamma(), lgamma: Γ() and log Γ()
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CHAPTER 11

PALM CALCULUS OR THE IMPORTANCE OF

THE VIEWPOINT

11.1 INTRODUCTION

11.1.1 THE IMPORTANCE OF THE VIEWPOINT

EXAMPLE 11.1: VIDEO SERVER. Consider the question mentioned in Chapter ??: “A
video server starts the film on a channel three times per hour. Is it fair to say that the
average waiting time is 60mn/3/2 = 10mn ?”. The operator viewpoint may be that a
performance metric is that λ = 3 films per hour are started. A customer may have a
different viewpoint. If she connects to the system at a random instant, she will have to
wait until the next movie starts, and we may take as performance metric the average
waiting time. Assume for example that films are started at the hour, the hour plus 5mn,
and the hour plus 20 mn. We can compute the average waiting time by assuming that
our customer picks a minute at random uniformly in the hour. She will thus experience
an average waiting equal to

Wc =
5
60

× 2.5mn +
15
60

× 7.5mn +
40
60

× 20mn = 15mn25s

In an attempt to become customer oriented, the provider might change his perfor-
mance metric and compute the average time between films, as follows.

Xp =
1
3
5mn +

1
3
15mn +

1
3
40mn = 20mn

and since the average time between films is 20 mn, the average waiting time is esti-
mated by the provider to Wp = Xp/2 = 10mn.

This shows the importance of the viewpoint. Both computations may look reasonable, in some
sense. In this chapter, we give a framework to analyze the two viewpoints and how they relate.

281
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This example illustrates the use of conditional probability. More generally, it is important to scru-
tinize the model used, whenever a probability or an average is used as performance metric. Any
probabilistic result, must come with model assumptions.

11.1.2 PALM CALCULUS

Consider now another example. Assume you are simulating a complex system (for example a rate
control protocol). You can sample the system at an arbitrary time instant (an external observer
comes at random, hits the stop key and looks at the system state), or at arbitrary points of interest
(arrivals of feedback messages in the protocol). How do the two relate ?

We will see that Palm Calculus can be use to relate the two viewpoints.

We give the Palm calculus results for both discrete and continuous times, but expose the theory for
discrete time only. The continuous time framework is obscured by constructions that are needed
for existence and stability, but which make the theory difficult to access. In contrast, computations
are sometimes a little more cumbersome in discrete time. We also leave out proofs of stationarity
and ergodicity, which are often difficult problems.

Note that the same framework as we show here is used in stochastic geometry [Stoyan]. After read-
ing this chapter, the alert reader will find it considerably easier to understand stochastic geometry
concepts (see also exercise 11.7).

11.2 STATIONARITY

WHAT IS STATIONARITY ? Stationarity is a property of a model. A stochastic model Xt is
stationary if, for any finite sequence of times t1, t2, ..., tn and for any time offset v the joint distri-
bution of Xt1+v, Xt2+v, ..., Xtn+v is independent of v.

It means in practice that the system does not become older: a stationary system is one for which
there is no way to gain any information about the age of the system by by looking at its output.

Examples of non stationary models fall in the two broad following categories.

• unstable models: observe the buffer length in a queuing system where the input rate is larger
than the service capacity. The longer the simulation is run, the larger the queue length is.

• models with seasonal or growth components, or more generally, time dependent inputs; for
example: internet traffic grows month after month and is more intense at some times of the
day

Figure 3.1 on Page 64 illustrates the simulation of stationary and non-stationary models.

In many practical cases, we want to separately analyze the effect of time varying inputs (such as
seasonal variations) and of the internal dynamics of the system; we then use a stationary model of
the system.

WHEN IS A SYSTEM STATIONARY ? There is no formal answer to this question. Informally,
we think of a system as being non-stationary if the well accepted models of the system are station-
ary. A model is well accepted if it provides useful answers to some questions. In Chapter 10 we
see some cases where both stationary and non-stationary models can apply to the same data.
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ASYMPTOTIC STATIONARITY AND MARKOV CHAINS Most simulated models can be inter-
preted, at least theoretically, as Markov chains. Thus it is important to understand stationarity for
Markov chains.

Consider a Markov chain on a enumerable state space (we recall in appendix the basic properties
of Markov chains). A Markov chain is stable when

• it is irreducible (any state can be reached from any state)
• there exists a non zero solution to the balance equation

For a stable Markov chain, a solution of the balance equation is unique (up to a multiplicative
constant). The only solution that sums to 1 is called the stationary probability.

Now the distribution of an ergodic Markov chain converges exponentially fast to the stationary
distribution.

This explains why we can think of stationarity as the regime obtained after running a simulation
long enough.

A Markov chain is strictly stationary if the distribution of the state space at time t = 0 is the
stationary distribution.

QUESTION 11.2.1. Can a model be non-stationary while all of its inputs have a time independent
distribution ? 1

11.3 PALM PROBABILITY

11.3.1 STATIONARY POINT PROCESS

We wish to model a sequence of events that is in stationary regime. Think of it as as a simulation
that has been running for a long time. The mathematical framework for that is the Stationary
Point Process [Baccelli88-book].

A point process in discrete time is a sequence of random time instants Tn ∈ Z with n ∈ Z. It is
also convenient to use the counting time series instead of the sequence of points Tn.

DEFINITION 11.3.1. In discrete time, the counting time seriesN associated with a point process
is the random sequence defined by N(t) =

∑
n∈Z

1{Tn=t}, i.e. N(t) is the number of points at t.

A point process is defined either by the sequence of time instants Tn or the counting time series N .
In continuous time, the counting time series is replaced by the random counting measure defined
by N(I) = the number of points in the interval I .

DEFINITION 11.3.2. A stationary point process in discrete time is a sequence of time instants
Tn ∈ Z with n ∈ Z, such that

• (stationarity) the corresponding counting time series N(t) is stationary
• (simple point process) for any t ∈ Z, P(N(i) > 1) = 0

1Yes, if it is unstable.
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• (liveness) with probability 1, there are infinitely many points in any unbounded interval.

We consider only simple point processes. This means that the counting time series N(t) is always
equal to 0 or 1. Stationarity means that for any finite sequence t1 < t2 < ... < tn and for any u the
distribution of N(t1 + u), N(t2 + u), ..., N(tn + u)) is independent of u. See Chapter 9 for testing
whether a time series is stationary.

EXAMPLE 11.2: BUSES AT SAINT-FRANÇOIS. You stand at the bus stop and observe
buses passing by. Tn is the sequence of bus arrival instants. If you arrive at an arbi-
trary time and board the next bus, you experience only one point Tn. A bus inspector
who measures all bus arrival epochs is able to give an estimate of the time series
N(t). We do not assume here that the bus interarrival times Tn − Tn−1 are iid.

EXAMPLE 11.3: RENEWAL SOURCE MODEL. Consider one infinite iid sequence of
positive numbers Un, n ∈ Z. Run a simulation as follows. Draw a point at T1 = U1,
then at T2 = U1 + U2, etc. Run the simulation long enough for it to reach steady state.
(We will see a more rigorous solution later). For any interval I, N(I) is the number of
points in that interval. Such a sequence is used in some traffic models, where Tn is
the time at which a source changes its rate (Section 10.5).

EXAMPLE 11.4: POISSON PROCESS. A Poisson process is a point process in contin-
uous time. For any interval [a, b], N [a, b] is a Poisson random variable, i.e. P ([a, b] =
k) = λk

k! e
−kλ for some λ > 0. If two intervals I and J are disjoint, then N(I) and N(J)

are independent.

11.3.2 INTENSITY

DEFINITION 11.3.3. By stationarity, λ = E(N(t)) is independent of t and is called the intensity
of the point process.

Consider now an arbitrary subset I of time instants. E(N(I)) =
∑

i∈I E(N(i)) = λ
∑

i∈I 1. Thus

E(N(I)) = λ|I|

where |I| is the number of elements in I . In continuous time, the formula is the same, with |I|
equal to the “length” (Lebesgue measure) of I , and we usually require that I is measurable. Thus

• in continuous time: E(N [a, b]) = λ(b− a)
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• in discrete time: E(N(a, b]) = λ(b− a)

QUESTION 11.3.1. In continuous time, what is E(N(a, b]) ? 2

QUESTION 11.3.2. In discrete time, what is E(N [a, b]) ? 3

For a Poisson process, λ is the usual one. For the renewal source model, we will see below that
λ = 1/(E(Un).

In a simulation, λ is estimated by the number of points per time unit during steady-state.

We assume the following [Baccelli88-book]:

• λ > 0

For the Poisson process, this is naturally true. For the renewal source model, this corresponds to
E(Un) < +∞.

QUESTION 11.3.3. What is the intensity for the video server example in Section 11.1.1 ? 4

11.3.3 PALM PROBABILITY

THE ARBITRARY TIME INSTANT. In the rest of this chapter we use the following convention.

• The time instants Tn are such that ... < T−2 < T−1 < T0 ≤ 0 < T1 < T2 < ...

In other words, we call by convention T0 the time instant just before or at time 0. This convention
is the one used by mathematicians to give a meaning to “a random time instant”: we regard t = 0
as our random time instant, in some sense, we fix the time origin arbitrarily.

This differs from the convention used in many simulations, where t = 0 is the beginning of the
simulation. Our convention, in this chapter, is that t = 0 is the beginning of the observation period
for a simulation that has run long enough to be in steady state.

PALM PROBABILITY AND EXPECTATION.

DEFINITION 11.3.4.

Time is discrete. Given a point process Tn, the Palm probability P 0 is the conditional probability,
given that T0 = 0 (i.e., given that there is a point at time 0).

There is a similar definition for the Palm expectation. The Palm probability represents the point
of view obtained by sampling a system at times Tn.

Why use a special notation (P0) instead of the classical conditional probability notation P(...|T0 =
0) ? The reason is that, in continuous time, the conditional probability is not defined, since the
probability that a point occurs exactly at time 0 is 0. However, the Palm probability still exists
and all properties are the same as in discrete time. The rigorous definition is complicated: see
[Baccelli88-book].

2λ(b − a)
3λ(b − a + 1)
4λ = 3 per hour.
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EXAMPLE: BUSES AT SAINT-FRANÇOIS. E
0(T1) is the average time between buses,

seen by an inspector standing at the bus stop and who spends the hour counting
intervals from bus to bus. E(T1) is the average waiting time experienced by you and
me when we come to the bus stop at some arbitrary time instant and wait for the next
bus. We will see that E

0(T1) = 1
λ .

EXAMPLE: RENEWAL SOURCE MODEL. Consider the following special case. Assume
Un is constant, equal to the same value u. Let Xt be the time duration from t to
the next point. Given that there is a point at t = 0, the time duration until the next
point is x, thus E

0(X0) = u. In contrast, if we pick a random instant as beginning of
observation period, we should fall anywhere between two points, thus we expect to
have E(X0) = u

2 . We will give a formal proof later.

EXAMPLE: POISSON PROCESS. Let Xt be the time duration from t to the next arrival.
Then P 0(X0 > x) = P (X0 > x) = e−λx, in other words, Xt is an exponential random
variable, both under P and P 0.

REMARK. One should be careful with the convention that T0 ≤ 0 < T1. Indeed, once we accept
it, Tn+1 − Tn is no longer the interval between two arbitrary consecutive points. In contrast, it is
the nth interval that follows an arbitrary point in time. In this framework, the distribution of the
interval between two arbitrary consecutive points is the Palm distribution of T1 − T0 (= the Palm
distribution of T1). For example, for the renewal source model mentioned above, we should now
write λ = 1

E0(U1)
.

QUESTION 11.3.4. For the video server example in Section 11.1.1, what is (1) the Palm expectation
of the time between films (2) the expected time from an arbitrary instant to the start of the next film ?
5

QUESTION 11.3.5. Under P 0, what is the probability that T0 = 0 ? 6

11.3.4 JOINT STATIONARITY.

Consider both a point process Tn with counting time series N(t), and some process Xt, on the
same probability space (i.e., both Tn andXt are observed during the same simulation). Xt can take
values in any space.

5(1) 20mn (2) 15mn25s.
61.
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DEFINITION 11.3.5. We say that Tn, Xt are jointly stationary iff the process (N(t), Xt) is strictly
stationary. This means that for any finite sequence of times t1 < t2 < ... < tn the distribution of

(N(t1 + u), Xt1+u, N(t2 + u), Xt2+u, ..., N(tn + u), Xtn+u)

is independent of u.

If Tn, Xt are jointly stationary, then Xt is strictly stationary. Intuitively, the process Xt moves with
Tn whenever we change the time origin. We will freely use informal synonyms such as “Xt is
jointly stationary with Tn”.

PROPOSITION 11.3.1. If Tn, Xt are is jointly stationary then for any bounded deterministic func-
tion f(): Et(f(Xt)) = E0(f(X0))

Proof. By definition, Et(f(Xt)) = E(f(t)|N(t) = 1) = 1
λE(f(Xt)1{N(t)=1)}) which, by stationarity,

is independent of t.

�

Thus, both E(f(Xt)) and Et(f(Xt)) are independent of t, for any bounded f .

EXAMPLE 11.5: ELAPSED AND RUNNING TIMES. We use the following notation. Let
T+(t) [resp. T−(t)] be the first point after [resp. before or at] t. Thus, for example,
T+(0) = T1 and T−(0) = T0.

Let Xt = T+(t) − t (time until next point), Yt = t − T−(t) (time since last point),
Zt = T+(t) − T−(t) (duration of current interval). Then (Xt, Yt, Zt) is jointly stationary
with Tn.

QUESTION 11.3.6. Is T+(t) stationary ? 7

EXAMPLE 11.6: MARKOV CHAIN. Consider an irreducible finite Markov chain in dis-
crete time and Tn = n. Joint stationarity is true iff the initial distribution is the stationary
distribution of the Markov chain.

THINNING. At every arrival Tn of a stationary point process we associate a type In ∈ {1, 2, , ,M}.
Consider the thinned point process T i

n obtained by selecting those points for which In = i. If In
is the value of the type at time Tn, then T i

n is stationary. Let λi be its intensity.

QUESTION 11.3.7. Show (in discrete time) that λ =
∑M

i=1 λi. 8

7No, it is not stationary – its mean is larger for large t.
8

λ = P(N(t) = 1) =
M∑
i=1

P(N(t) = 1 and In = i)

Now λi = P(N(t) = 1 and In = i).
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11.3.5 ERGODIC INTERPRETATION OF PALM PROBABILITY.

We say that Xt is ergodic if the sample path averages of any bounded function of Xt converge
to a non-random number. If, in addition, Xt is strictly stationary, then this limit is necessarily the
expectation of f(Xt) (which is independent of t). In particular, this implies, in discrete time:

E(f(X0)) = E(f(Xt)) = lim
T→+∞

1

T

T∑
s=1

f(Xs)

and in continuous time

E(f(X0)) = E(f(Xt)) = lim
T→+∞

1

T

∫ T

s=0

f(Xs)ds

For a stationary ergodic system, we can thus interpret a stationary probability P(Xt ∈ A) as a time
average.

The strong law of large numbers says that an iid sequence with finite mean is ergodic. An irre-
ducible, finite, aperiodic Markov chain is ergodic. If we remove the finite assumption, ergodicity
requires that the chain is positive (i.e. there exists a stable solution to the Kolmogorov equations),
which is a stability argument. This is quite general: a process is ergodic if it is stable and mixes
well (any state can be reached from any state).

We say that Xt, Tn constitute an ergodic-stationary system if they are jointly stationary and the
process Xt, N(t) is ergodic. For an ergodic-stationary system, we have the following result:

E
0(f(X0)) = lim

N→+∞
1

N

N∑
n=1

f(XTn)

This gives the interpretation of Palm probability as an event average. Note that the various formu-
lae (direct, inversion, Campbell) do not require ergodicity; but their interpretation is simple if the
system is ergodic.

EXAMPLE 11.7: STOP AND GO PROTOCOL. A source sends packets to a destination.
Error recovery is done by the stop and go protocol, as follows. When a packet is
sent, a timer, with fixed value S1, is set. If the packet is acknowledged before S1,
transmission is successful. Otherwise, the packet is re-transmitted. The packet plus
acknowledgement transmission and processing have an constant duration equal to
S < S1. The proportion of successful transmissions (fresh or not) is α. We assume
that the source is greedy, i.e., always has a packet ready for transmission. Can we
compute the throughput of this protocol without further information ?

An ergodic interpretation gives the answer. Call N(t) the number of successfully trans-
mitted packets over some long period of time [0, t] and Sav(t) the average time to suc-
cessfully transmit a packet, measured over this interval. Thus Sav(t) = t/N(t). Call λ
the throughput and assume the system is stationary ergodic. We have limt→+∞ N(t)/t =
E(N(0)) = λ and thus

Sav := lim
t→+∞Sav(t) = 1/λ

Let N1(t) be the number of timeouts occurring during the same time. We have

t = N(t)S + N1(t)S1 + ε
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where epsilon is an error term, bounded by S1. Call λ1 the intensity of the timeout
process. Divide the above by t, let t go to infinity and obtain:

1 = λS + λ1S1

We need one more equation, in order to compute λ1. Call A(t) the fraction of packets
or acknowledgements lost in [0, t]; we have

A(t) (N(t) + N1(t)) = N1(t) ± 1

Further, limt→+∞ A(t) = α, thus, dividing the above by t gives, at the limit

α(λ + λ1) = λ1

Combining the equations gives

Sav = S +
α

1 − α
S1

and the throughput is λ = 1/Sav.

11.3.6 RYLL-NARDZEWSKI AND SLIVNYAK’S INVERSION FORMULA

THEOREM 11.3.1 (Inversion Formula). If Tn, Xt is jointly stationary, then, in discrete time

E(X0) = λE
0

(
T1∑

s=1

Xs

)
= λE

0

(
T1−1∑
s=0

Xs

)

and in continuous time

E(X0) = λE
0

(∫ T1

0

Xsds

)

Proof. (discrete time) We show first that E(X0) = λE
0
(∑T1

s=1 Xs

)
. Condition the main term in the

right hand-side with respect to T1 = t1:

E
0

(
T1∑

s=1

Xs|T1 = t1

)
=

t1∑
s=1

E
0(Xs|T1 = t1) =

t1∑
s=1

E(Xs1{T1=t1}1{T0=0})
P(T1 = t1, T0 = 0)

thus

E
0

(
T1∑

s=1

Xs

)
=

+∞∑
t1=1

t1∑
s=1

E(Xs1{T1=t1}1{T0=0})P(T1 = t1, T0 = 0)
P(T1 = t1, T0 = 0)P(T0 = 0)

Multiply by λ and obtain, for the right-handside:

RHS =
∑

(s,t1):1≤s≤t1

E(Xs1{T1=t1}1{T0=0})

Re-arrange the summation by summing first with respect to t1 and obtain

RHS =
+∞∑
s=1

+∞∑
t1=s

E(Xs1{T1=t1}1{T0=0}) =
+∞∑
s=1

E(Xs1{T1≥s}1{T0=0}) =
+∞∑
s=1

E(Xs1{N [1,s)=0}1{N(0)=1})
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By joint stationarity of Xt and N :

RHS =
+∞∑
s=1

E(X01{N [1−s,0)=0}1{N(−s)=1})

=
+∞∑
s=1

E(X01{T−(−1)=−s}) = E

(
+∞∑
s=1

X01{T−(−1)=−s}

)
= E(X0)

This shows the first formula. The proof for the second formula, E(X0) = λE
0(
∑T1−1

s=0 ) is similar.

�

REMARK. There are many variants of the inversion formula. For example, one can similarly
show that

E(X0) = λE
0

(∑
s∈V0

Xs

)

where Vn (Voronoi cell) is the set of times that are closest to Tn, with rounding by excess:

Vn =

(
Tn−1 + Tn

2
,
Tn + Tn+1

2

]

QUESTION 11.3.8. What does Palm’s formula give for Xt = T+(t) ? 9

11.3.7 APPLICATION TO INTENSITY.

Apply the inversion formula to Xt = 1 and obtain

PROPOSITION 11.3.2.

For a stationary point process with intensity λ:

1

λ
= E

0(T1 − T0) = E
0(T1)

This formula is well known for a Poisson process, but we now know that it is true for any stationary
point process.

11.3.8 APPLICATION: RESIDUAL LIFETIME AND FELLER’S PARADOX

Consider a stationary point process Tn, with intensity λ. Let Xt = T+(t) − t be the time from t
until the next point, Yt = t − T−(t) the time since the last point, and Zt = Xt + Yt the interval
seen at a random instant.

QUESTION 11.3.9. What is X0 ? Y0 ? Z0 ? 10

9Nothing, because Xt, Tn is not jointly stationary.
10X0 = T1 and Y0 = −T0, Z0 = T1 − T0.



11.3. PALM PROBABILITY 291

Note that, with our convention, Xt > 0 and Yt ≥ 0.

THEOREM 11.3.2. For any t, the distributions of Xt and Yt have densities given by{
fX(s) = λP

0(T1 > s)
fY (s) = λP

0(T1 ≥ s)

The distribution of Zt is given by
dFZ(s) = λsdFT (s)

where FT is the Palm distribution of T1 − T0.

The Palm probability P
0(T1 ≥ s) is the complementary distribution of the time between points. In

discrete time, the theorem means that P(Xt = s) = λP
0(T1 > s), P(Yt = s) = λP

0(T1 ≥ s) and
P(Zt = s) = λsP0(T1 = s).

In continuous time, if the Palm distribution of T1 − T0 has a density fT , (i.e. dFT (s) = fT (s)ds)
then Xt and Yt both have a density equal to

fX(s) = fY (s) = λ

∫ +∞

s

fT (u)du

and Zt has density
fZ(s) = λsfT (s)

Proof. (discrete time) Xt is jointly stationary with Tn, thus its distribution is independent of t, and we
can apply the inversion formula. For any s ≥ 0 we have

P(X0 = s) = E(1{X0=s}) = λE
0

(
T1−1∑
u=0

1{Xu=s}

)

Given that there is a point at 0 and 0 ≤ u ≤ T1 − 1, we have Xu = T1 − u, thus

P(X0 = s) = λE
0

(
T1−1∑
u=0

1{T1=u+s}

)

Now the sum in the formula is 1 if T1 > s and 0 otherwise. Thus

P(X0 = τ) = λE
0
(
1{T1>s}

)
= λP

0(T1 > s)

which shows the formula for Xt. The formula for Yt is similar, using Yu = u for 0 ≤ u ≤ T1 − 1.

For Zt, apply the inversion formula and obtain

P(Z0 = s) = λE
0

(
T1−1∑
u=0

1{Zu=s}

)

Now under P 0, Zu = T1 does not depend on u for 0 ≤ u ≤ T1 − 1 thus

P(Z0 = s) = λE
0

(
1{T1=s}

T1−1∑
u=0

1

)
= λE

0
(
T11{T1=s}

)
= λsP

0(T1 = s)

�
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EXAMPLE: POISSON PROCESS.We have fT (t) = λe−λs and P
0(T1 > s) = P

0(T1 ≥ s) =
e−λs thus fX(s) = fY (s) = fT (s), as expected: the time until the next arrival, or since
the last arrival, has the same distribution as the time between arrivals. The distribution
of Zt has density

fT (s) = λ2se−λs

i.e., it is an Erlang-2 distribution.

COROLLARY 11.3.1 (Mean Residual Times and Mean Interval). With the notation of Theo-
rem 11.3.2:

E(Zt) = λE
0(T 2

1 ))

Further, in discrete time {
E(Xt) = λ

2
E

0(T1(T1 + 1))
E(Yt) = λ

2
E

0(T1(T1 − 1)))

and in continuous time

E(Xt) = E(Yt) =
λ

2
E

0(T 2
1 )

Proof. Apply Theorem 11.3.2 or apply the inversion formula directly.

�

EXAMPLE: BUSES AT SAINT-FRANÇOIS. The average time until next bus, seen by you
and me, is

E(Xt) =
1
2

(
1
λ

+ λvar0(T1 − T0)
)

where var0(T1 − T0) is the variance, under Palm, of the time between buses. It is the
variance estimated by the inspector. The expectation E(Xt) is minimum, equal to 1

2λ
when the buses are absolutely regular (T1 − T0 is constant). If the interval between
buses T1 − T0 seen by the inspector is heavy tailed, then E(Xt) is infinite. Thus,
when the inspector should report not only the mean time between buses, but also its
variance.

QUESTION 11.3.10. For the video server example in Section 11.1.1, verify the value found for the
expected time from an arbitrary instant to the next film, by applying the corollary. 11

QUESTION 11.3.11. If Tn is a Poisson process, what is E(T−(0)) ? 12

11Time unit is a slot of 5mn: E
0(T 2

1 ) = 1
3 (12 + 32 + 82) = 74/3; λ = 1/4; E(Xt) = λ/2E

0(T 2
1 ) = 74/24 time

units = 15mn25s as found earlier.
12 1

λ



11.3. PALM PROBABILITY 293

FELLER’S PARADOX. Apply now the corollary to Zt, the duration of the interval, seen at an
arbitrary instant. We find

E(Zt) =
1

λ
+ λvar0(T1 − T0)

thus, except for constant bus interarrival times, the mean interval, seen at an arbitrary instant, is
always larger than the mean interval between buses E

0(T1 − T0) = 1
λ

, measured by the inspector !
This is called Feller’s paradox, and, as we have shown, it holds for any stationary point process
(in particular, whatever the correlation between successive intervals is). An intuitive explanation
is that if we pick a random time interval, we are more likely to fall in a large one.

QUESTION 11.3.12. For the video server example in Section 11.1.1, what is (1) the Palm expec-
tation of the time between films (2) the expected time between films measured from an arbitrary
instant ? 13

QUESTION 11.3.13. Is it fair to say that the average waiting time is the average interval between
evants, divided by 2 ? 14

QUESTION 11.3.14. Answer the question asked in Chapter ?? about the video server example: “Is
it fair to say that the average waiting time is 60mn/3/2 = 10mn ”? 15

QUESTION 11.3.15. Does Feller’s paradox apply to a Poisson process ? 16

QUESTION 11.3.16. How do you interpret the difference between the discrete time and continuous
time results in Corollary 11.3.1 ? 17

QUESTION 11.3.17. Prove the statements for the renewal source model in Section 11.3.3. 18

11.3.9 WHEN CAN A SEQUENCE OF TIME INSTANTS BE CONSIDERED A

STATIONARY POINT PROCESS ?

In some cases, such as the random waypoint model in Example 3.5 on page 68, we are given the
state of the system at transition instants. In this section we examine whether it is formally possible
to build a point process for which the states sampled at transition instants correspond to the Palm
viewpoint.

To understand why this is an issue, consider the following example.

EXAMPLE 11.8: RANDOM WAYPOINT. The random waypoint model is defined in
Example 3.5 on page 68. The intensity of the process of transitions (or “waypoints”)
is given by the Palm inversion formula:

λ−1 = E
0(T1) = E

0(
D1

V0
)

13(1) 20mn (2) E(Zt) = 2E(Xt) = 30mn50s.
14Yes, if averages are at arbitrary instants, since (at least in continuous time) E(Xt) = 1

2E(Wt).
15No, this performance metric does not represent customer waiting times. It is fine to divide by 2 for expectations

at arbitrary time points, but it does not represent customer waiting time if we apply it to Palm averages.
16For a Poisson process, E(Wt) = 2/λ = 2E

0(T1), so the answer is yes. The average at a random instant is twice
as large as seen at a random point of the Poisson process.

17An observer arriving at an arbitrary discrete time instant samples the system slightly differently than one arriving
at an arbitrary continuous time instant. If the time unit is very small, the difference can be neglected.

18Direct application of Corollary 11.3.1, in continuous time, taking dFT = Dirac mass at u.
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with D1 := ‖M1 − M0‖. By construction, D1 and V0 are independent. Thus

λ−1 = E
0(D1)E0(

1
V0

)

It is finite if and only if E
0( 1

V0
) is finite, which means vmin > 0.

If vmin = 0, the formula would give λ = 0, which means that there is a problem.

In the case vmin = 0, Palm calculus does not apply, i.e. we cannot consider the transitions as
the transition instants of a stationary process. A simulation study shows that in fact, the system
“freezes”: as you run the simulation longer and longer, it becomes more likely to draw a very small
speed Vn. When such a small speed is drawn, the system stays with a very long time at this speed.

In contrast, for vmin > 0, it does. We give in this section a theorem that states such a result.

THEOREM 11.3.3. Consider a sequence of wide sense increasing, random, times T0 = 0 ≤ T1 ≤
T2 ≤ ..., and of random variables Y0, Y1, ... such that

C1 (Tn − Tn−1, Yn) is stationary with respect to the index n.

Then Tn can be considered as the points of a stationary, marked point process, observed condi-
tional to the event “there is an arrival at time 0” if and only if

C2 E
0(T1) <∞

C3 P
0(T1 > 0) = 1

Further, define the process Zt by Zt = Yn with n such that Tn ≤ t < Tn+1. Then Tn, Zt are jointly
stationary.

The proof is complex – see [Baccelli88-book]. In continuous time, there is an additional condition:

C4 E0(N(0, t)) <∞ for all t ≥ 0.

REMARK. A process Zt such that

• Tn, Zt are jointly stationary
• Zt is constant on intervals of the form [Tn, Tn+1)

is called a mark of the point process.

EXAMPLE 11.9: RENEWAL SOURCE MODEL (I.I.D INTERARRIVAL TIMES). Let T0 =
0, T1 = U1, ..., Tn = U1 + U2 + ... + Un where Un is iid ≥ 0. Under which conditions can
we consider these points as the realization of a stationary point process with a point
at time t = 0 ?

The answer is: the inter-arrival time S1 is not identically zero (with probability 1) and
has finite mean.
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Proof.

Here condition C1 is obviously true. We now apply the remaining conditions in the
theorem.
Conditions C2 and C3 mean that the inter-arrival time S1 is not identically zero
(with probability 1) and and has finite mean.
Condition C4 is always true if U1 is not identically 0. We prove this now.
First note that

E0(N(0, t)) =
∑
k≥1

kP
0(N(0, t) = k) =

∑
k≥1

P
0(N(0, t) ≥ k) =

∑
k≥1

P
0(Tk ≤ t)

(11.1)
Pick some arbitrary, fixed s > 0; by Markov’s inequality:

P
0(Tn ≤ t) ≤ est

E
0
(
e−sTn

)
Now E

0
(
e−sTn

)
= E

(
e−s(U1+...+Un)

)
is the Laplace-Transform of the convolution

of n independent random variables. Thus

P
0(Tk ≤ t) ≤ estGk(s)

where G(s) := E
(
e−sU1

)
is the Laplace-Transform of U1. We have G(s) = 1 if and

only if sU1 = 0 with probability 1. Thus, by hypothesis, G(s) < 1 since s > 0. By
Equation (11.1):

E0(N(0, t)) ≤ est
∑
k≥1

Gk(s) < ∞

�

EXAMPLE 11.10: RANDOM WAYPOINT. The random waypoint model is defined in
Example 3.5 on page 68. We apply the theorem to the sequence of times Tn and
marks (Mn, Vn). We obtain that the random waypoint is stationary if and only if vmin >
0.

Proof. Condition C1 is true by construction since speed and next position at tran-
sition instants are iid.
Condition C2 follows from :

E
0(T1) = E

0(D1)E0(
1
V0

)

It is bounded if and only if E
0( 1

V0
is finite, which means here vmin > 0.

Condition C3 is obviously true.
Condition C4 : The inter-transition times Sn = Tn − Tn−1 are not all independent,
but Sm and Sn are independent if n−m ≥ 2. The rest of the proof is similar to the
proof in Example 11.9 on page 294

�
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11.4 A MENAGERIE OF PALM CALCULUS FORMULAE.

We give here a few useful theorems which hold in discrete and continuous times. We give the
proofs in discrete time only.

11.4.1 CAMPBELL’S FORMULA

THEOREM 11.4.1 (Campbell’s Formula). let Tn be a stationary point process with intensity λ and
F (t) a bounded, random (not necessarily stationary) process.

E

(∑
n∈Z

F (Tn)

)
= λ

∑
t∈Z

E
t(F (t))

where Et is the conditional expectation, given that there is a point at t.

Proof. The left handside of the equation in the theorem is

E

(∑
t∈Z

F (t)1{N{t}=1}

)
=
∑
t∈Z

E
(
F (t)1{N{t}=1}

)
=
∑
t∈Z

E
t(F (t))P(N{t} = 1) = λ

∑
t∈Z

E
t(F (t))

�

In continuous time, Et is not strictly speaking a conditional expectation, and a rigorous state-
ment requires a complex formalism, which we do not develop here. Assuming such a formalism,
Campbell’s formula is

E

(∑
n∈Z

F (Tn)

)
= λ

∫
t∈R

E
t(F (t))dt (11.2)

SPECIAL CASE If F (t) = f(t) is non-random, Campbell’s formula gives, in discrete time

E

(∑
n∈Z

f(Tn)

)
= λ

∑
t∈Z

f(t) (11.3)

and in continuous time

E

(∑
n∈Z

f(Tn)

)
= λ

∫
t∈R

f(t)dt

EXAMPLE 11.11: SHOT NOISE WITH DETERMINISTIC SHOTS. A shot noise process
is defined by X(t) =

∑
n∈Z

h(t − Tn), where Tn is a stationary point process (“shot
epochs”) and h(t) a function such that h(t) = 0 for t < 0. Shot noise is used to
model traffic in a backbone network in [Barakat02-infocom], where Tn represents the
beginning of sessions and h(t) the bit rate generated by one session that would start
at time 0. We say here that the shots are deterministic to express that h(t) is non-
random.
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A direct application of Campbell’s formula to f(t) = h(τ − t) gives, for any time τ :

E(X(τ)) = E

(∑
n∈Z

f(Tn)

)
= λ

∑
t∈Z

h(t − τ)

thus
E(X(τ)) = E(X(0)) = λ

∑
t∈Z

h(t) (11.4)

which is also known under the name of Campbell formula. In continuous time, we
have

E(X(τ)) = E(X(0)) = λ

∫ +∞

0
h(t)dt

APPLICATION: SHOT NOISE A general shot noise process is defined by X(t) =
∑

n∈Z
h(t−

Tn, ZTn), where Tn is a stationary point process (“shot epochs”), Zt a mark, and h(t, z) a function
such that h(t, z) = 0 for t < 0. For the example of internet traffic, Tn is the beginning of a session,
ZTn is the random parameter chosen for session n and h(t, z) the bit rate generated by one session
that would start at time 0, and has parameter z. A direct application of Campbell’s formula to
F (t) = h(−t, Zt) gives

E(X(0)) = λ
∑
t∈Z

E
t(h(−t, Zt)) = λ

∑
t∈Z

E
t(h(−T−(−t), Zt))

now t− T−(t), Tn is jointly stationary. Thus, by Proposition 11.3.1

E
t(h(−T−(t), Zt) = E

t(h(t− T−(t) − t, Zt) = E
0(h(−t, Z0))

and

E(X(0)) = λ
∑
t∈Z

E
0(h(−t, Z0)) = λE

0

(∑
t∈Z

h(−t, Z0)

)

which can be re-written as
E(X(0)) = λ

∑
t∈N

E
0(H(t)) (11.5)

where H(t) := h(t, Z0) is the value at time t of the random function chosen for a typical shot.
There is an equivalent formula in continuous time:

E(X(0)) = λ

∫ +∞

0

E
0(H(t))dt

Equation (11.5) is also known as a Campbell formula for shot noise. Note that the stationarity
assumption implies that X(t) is stationary and thus E(X(τ)) = E(X(0)) for any time τ . Compare
to Equation (11.4): the expected value of the shot noise is the same as if we replace the random
shot H(t) by its expected value. We have shown that this holds quite generally, whether the shot
epochs are a Poisson process or not.
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11.4.2 LITTLE’S FORMULA.

THEOREM 11.4.2 (Little). Consider a sequence Tn, Yn stationary with respect to index n. Assume
that Tn can be viewed as a stationary point process, with intensity λ (see Theorem 11.3.3). Let
X(t) =

∑
n∈Z

1{Tn≤t<Yn+Tn} and define Zt by Zt = Yn if and only if Tn < leqt < Tn+1. We
interpret Tn as customer arrival times, Yn as the residence time of the nth customer, Zt as the
residence time of the last customer who arrived before or at t andX(t) as the number of customers
present in the system at time t. Then for any t

E(X(0)) = λE
0(Z0)

The theorem relates the average number of customers at an arbitrary instant to the average resi-
dence time seen by an arbitrary customer.

Proof. Apply Campbell’s formula, with F (t) = 1{t≤0<Zt+t}. The left-handside in Campbell’s formula
is E(X(0)).

Let us compute the right-handside. If t > 0 then F (t) = 0. Else E
t(F (t)) = P

t(Zt > −t). Now by
joint stationarity, P

t(Zt > u) = P
0(Z0 > u) for any u ≥ 0. Thus E

t(F (t)) = P
0(Z0 > −t) and the

right handside is
λ
∑
t≤0

P
0(Z0 > −t) = λ

∑
u≥0

P
0(Z0 > u) = λE

0(Z0)

�

Note that, by stationarity, we also have E(X(t)) = λE
t(Zt) for any t.

11.4.3 NEVEU’S EXCHANGE FORMULAE

THEOREM 11.4.3 (Exchange Formula). Consider two jointly stationary point processes Tn and
T ′

n, with counting time series N and N ′, and intensities λ, λ′. Let Xt be jointly stationary with
them. This means that the joint process N(t), N ′(t), Xt is strictly stationary. Call E

0
N [resp. E

0
N ′]

the Palm expectation with respect to the first [resp. second] point process. Time is either discrete
or continuous. Then:

λE
0
N(X0) = λ′E0

N ′

(∑
m∈Z

XTm1{0<Tm≤T ′
1}

)
= λ′E0

N ′

(∑
m∈Z

XTm1{0≤Tm<T ′
1}

)

Proof. (discrete time): Apply the inversion formula to XsN(s) and note that
∑

m∈Z
XTm

1{0<Tm≤T ′
1} =∑T ′

1
s=1 XsN(s).

�

COROLLARY 11.4.1.
λ = λ′E0

N ′ (N(0, T ′
1]) = λ′E0

N ′ (N [0, T ′
1))

Proof. apply the theorem with Xs = 1
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�

COROLLARY 11.4.2 (Wald’s Identity).

E
0
N(X0) =

E
0
N ′
(∑

m∈Z
XTm1{0<Tm≤T ′

1}
)

E0
N ′ (N(0, T ′

1])

Proof. First Corollary 11.4.1, then apply Theorem 11.4.3

�

REMARKS. The exchange formulae do not make any assumption about the joint behaviour of
the two point processes, other than stationarity. Wald’s identity is often shown under restrictive
assumptions (for example, whenXs is an iid sequence), but we have shown here that it is generally
true.

The exchange formula can also be applied to Voronoi cells.

APPLICATION: THE STOP AND GO PROTOCOL. We re-visit the computation of the stop and
go protocol given in Section 11.3.5. Apply the corollary with the first process equal to arrivals of
fresh packets, and second process equal to all retransmission attempts. Thus the second process
contains all points of the first process, and more. We have, by Theorem 11.4.3 with Xs = 1:

λ = λ′E0
N ′ (N(0, T ′1]) = λ′(1 − α)

where the last equality is by definition of α. We compute λ′ from Proposition 11.3.2:

1

λ′
= (1 − α)S + αS1

Combining the two gives 1
λ

= S + α
1−α

S1 as already found.

11.4.4 MATTHES’ DIRECT FORMULA

The direct formula gives an intuitive interpretation of Palm probability:

THEOREM 11.4.4 (Direct Formula). If Tn, Xt is jointly stationary, then for any interval I:

E
0(X0) =

1

λ|I|E
( ∑

n such that Tn∈I

XTn

)

Proof. Apply Campbell’s formula to F (t) = XT−(t)1{T−(t)∈I}:

E

( ∑
n such that Tn∈I

XTn

)
= E(

∑
n

F (Tn)) = λ
∑
t∈Z

E
t
(
XT−(t)1{T−(t)∈I}

)
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Now, by stationarity

E
t(XT−(t)1{T−(t)∈I}) = E

0(XT−(0)1{T−(0)∈I}) = E
0(X01{0∈I−t}) = 1{t∈I}E0(X0)

where I − t is the set {i − t, i ∈ I}. Thus

E

( ∑
n such that Tn∈I

XTn

)
= λ

∑
t∈Z

1{t∈I}E0(X0) = λ|I|E0(X0)

�

EXAMPLE 11.12: ELAPSED AND RUNNING TIMES. Consider some stationary point
process Tn and let Zt = T+(t) − T−(t). (Zt, Tn) is jointly stationary and thus we can
apply the direct formula. Let us take I = [0, t]. On one side we have:

E
0(Z0) = E

0(T1) =
1
λ

On the other side, we find

1
λt

E

⎛
⎝ ∑

n:0≤Tn≤t

ZTn

⎞
⎠ =

1
λt

E

⎛
⎝ ∑

n:0≤Tn≤t

Tn+1 − Tn

⎞
⎠ =

1
λt

E
(
T+(t) − T−(0)

)

Thus
E(T+(t)) − t = E(T−(0)) = E(t − T−(t))

which expresses that, in average, the time from an arbitrary instant to or from the next
point are equal.

11.5 CASE STUDY: THROUGHPUT OF TCP

TCP is considered to be the reference protocol in the Internet, and any session should have a
throughput not exceeding that of TCP. Therefore, there is interesting in understanding the perfor-
mance of TCP. TCP controls its sending rate by increasing it when there is no congestion,a nd
reducing it when it receives a congestion signal. A congestion signal is a packet loss in the cur-
rent internet, or a bit in an acknowledgement packet in the future. The following paper relates the
throughput of a TCP connections to the characteristics of the loss process.

Read [Altman00-Sigcomm] and answer the following questions.

QUESTION 11.5.1. What is the performance metric used for a TCP connection ? 19

QUESTION 11.5.2. What is the equation describing the evolution of the rate of the TCP connec-
tion ? 20

19The throughput X(t), assumed to be represented by a stationary process.
20

Xn+1 = νXn + αSn

where ν is the decrease factor and α the linear increase term.
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QUESTION 11.5.3. What are the values of α and ν? 21

QUESTION 11.5.4. What is the stationary point process used in the paper ? What is its intensity
called ? 22

QUESTION 11.5.5. In our framework, how would we write E(X∗
n)) and E((X∗

n)2 ? 23

QUESTION 11.5.6. How are E(X∗
n)) and E

0(X(0)2) computed ? 24

QUESTION 11.5.7. How is the throughput related to Xn ? 25

QUESTION 11.5.8. Which jointly stationary process in the inversion formula applied to ? 26

QUESTION 11.5.9. What is the difference between loss event rate and the intensity of the loss
process ? 27

QUESTION 11.5.10. What is the loss-throughput formula obtained in the paper ? 28

QUESTION 11.5.11. What is the “famous square root formula” ? Under which assumptions is it
valid ? 29

QUESTION 11.5.12. What is the conservative timeout model ? 30

QUESTION 11.5.13. How do the authors derive the throughput formula for the conservative time-
out model ? 31

21α = 1/(bRTT 2). In fact, b = 1/MSS2 (maximum TCP segment size). ν = 0.5.
22The sequence of loss events. It is not necessarily stationary, but the authors show that it converges to a stationary

point process and place themselves at the limit. λ = 1/E
0(S1).

23These are Palm probabilities. We would write them E
0(X(0)) and E

0(X(0)2).
24First, an EWMA representation of the stationary sequence X∗

n is given. Second, this is used to derive the mean
and second moment, using a direct computation.

25By the inversion formula.
26X(t).
27The loss event rate, p, is defined by an ergodic interpretation as the long term average of the number of losses per

data unit sent. It is equal to λ
E(X(0)) .

28

RTT
√

p

√√√√ 1 + ν

2(1 − ν)
+

1
2
Ĉ(0) +

∞∑
k=1

νkĈ(k)

where Ĉ(k) is the normalized auto-covariance function (covariance/square of mean), under Palm, of Sn.
29It is the formula obtained for a deterministic Sn.
30A more accurate model that accounts for the fact that loss events are of two types: with timeout (TO) or without

(TD). With TO, the dynamic of the system is slightly different. During some period, in average equal to Z, the rate is
set to 0

31First, they derive the throughput X̄ ′ of the virtual system where the idle periods are deleted. This is the same as
in the original case. Second, they use an ergodic interpretation to show that the real throughput is related by

X̄ = (1 − λTOZ)X̄ ′

It is in fact a thinning formula and could be obtained by reasoning with conditional probabilities.
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QUESTION 11.5.14. What is the model with transmission rate limitation ? How is it solved ? 32

QUESTION 11.5.15. How is the model validated ? 33

QUESTION 11.5.16. How do the authors compare their model to competing ones ? 34

11.5.1 MODULATED MODELS.

A powerful, generic family of models can be built using modulators, as follows. Consider a sta-
tionary point process Tn with a mark Zt that takes a finite number of values 1, ..., I , called “states”.
Given a function yi of the state i, we are interested in the process Yt = yZt . We say that Zt is a
modulating process and Yt is a modulated process.

There is a discrete time, finite space, ergodic Markov chain Xn. At step n we draw a random
number Sn according to a distribution Fi, with i = Xn, independently of all past, given that we are
in state i. A continuous time process Zt, called the modulator, stays in state i for a duration equal
to Sn. Call Tn = S1 + ... + Sn. We have thus Zt = Xn iff Tn ≤ t < Tn+1. We assume that the
system is stationary, thus Tn is a stationary point process, and Zt is a mark.

PROPOSITION 11.5.1. Let π0
i be the probability that the modulator is in state i at an arbitrary

transition and T̄i = E
0(T1 − T0|Z0 = i) the expected duration of an inter-transition time, starting

from state i. We have {
λ =

∑
i π

0
i T̄i

E(Yt) = λ
∑

i π
0
i yiT̄i

Proof. Apply the inversion formula to 1 then to Yt

�

32In many cases, the rate X(t) cannot grow indefinitely, but is limited to a maximum M . This changes the dynamics
of the system to

Xn+1 = M ∧ (νXn + αSn)

The new system is harder to study. The authors take ν = 1/2 use a bounding technique and min-plus algebra, they
re-write the dynamics as

Xn+1 =
[
(M − 1

2
Xn) ∧ (αSn)

]
+

1
2
Xn

which can be used to show that an upper bound is X̂n with

X̂n+1 = [(M ∧ (αSn)] +
1
2
X̂n

and a lower bound is X̌n with

X̌n+1 =
[
M

2
∧ (αSn)

]
+

1
2
X̌n

Then the same method is used to obtain the palm expectations and the throughput.
33By a limited number of measurements.
34Their model makes no specific assumption on the loss process. Competing works assume the loss process is either

deterministic or Poisson. The authors find that this introduces some errors, but in some cases the errors are largely
cancelled by inaccuracies in the model (such as absence of TO or rate limitation effects).
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EXAMPLE 11.13: LOSS CHANNEL MODEL. A path on the internet is often model
as a loss system, where the packet loss ratio Pt depends on the state of a hidden
modulator. Assume that when the modulator Zt is in state i, the loss ratio is pi. We
have Pt = pZt .

We find that the time average loss rate is

p̄ =
∑

i π
0
i piT̄i∑

i π
0
i T̄i

See exercise 11.7 for an application to the Internet.

QUESTION 11.5.17. What is P(Zt = i) ? 35

REMARK. MARKOV MODULATED PROCESS. A special case is when Zt is a markov process.
The modulated process Yt is then called a markov modulated process. Note that Proposition 11.5.1
does not assume any Markov property.

11.6 APPLICATION TO MARKOV MODELING

For a quick review of Markov chains, see Section 11.8.

to be completed– add Erlang

11.6.1 EMBEDDED SUB-CHAIN

If we observe a Markov chain at selected transitions, we obtain an embedded sub-chain. We
explain in this section how to compute all elements of the embedded subchain.

Consider first a discrete time chain. Let C be a matrix such that A − C is wide-sense positive.
We consider that C defines a process of selected transition, as follows. Whenever a transition
i, j of the markov chain occurs, we draw a random number, independent of all past, and with with
probability Ci, j/Qi,j decide that the transition is “selected”. To gain some intuition, consider the
simple case where Ci,j = Ai,j or 0. Define F = {(i, j) ∈ E2 : Ci,j = Qi,j}; a transition is selected
if it is in F . In continuous time, the definition is the same with A in lieu of Q.

Call Tn the point process of selected transitions. Then XTn is itself a markov chain, since the
knowledge of the state at the nth transition is sufficient to compute the probabilities of future
events (this is the strong markov property). The sequence Yn = XTn is called the embedded
sub-chain and we say that C is the matrix of selected transitions.

THEOREM 11.6.1 (LeBoudec84-diss). Consider an ergodic, stationary markov chain Xt, t ∈ Z,
with stationary probability π. Consider an embedded sub-chain Yn with matrix of selected transi-
tions Ci,j .

35Apply the proposition to yj = 1{i=j} and find P(Zt = i) = λπ0
i T̄i.
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1. The transition matrix J of the embedded sub-chain Yn satisfies (Id−Q+C)J = C (discrete
time) or (C − A)J = C (continuous time).

2. The intensity of the point process of selected transitions is η =
∑

i,j πiCi,j

3. The probability that a selected transition is (i, j) is P
0(X−1 = i,X0 = j) = 1

η
πiC(i, j).

4. The probability to be in state j just after a selected transition is π0
j := P

0(X0 = j) =
1
η

∑
i πiC(i, j). The probability to be in state i just before a selected transition is P

0(X−1 =

i) = 1
η
πi

∑
j C(i, j).

Proof. By the strong markov property:

Ji,j = P
0(XT1 = j|XT0 = i) = P(XT+(0) = j|X0 = i)

Condition with respect to the next transition, selected or not:

Ji,j =
∑

k:(i,k)∈F

Qi,k +
∑

k:(i,k) 	∈F

Qi,kP(XT+(0) = j|X1 = k and X0 = i)

Now, for (i, k) �∈ F , given that X0 = i,X1 = k, we have T+(0) = T+(1). Thus, the last term in the
previous equation is∑

k:(i,k) 	∈F

Qi,kP(XT+(1) = j|X1 = k and X0 = i) =
∑

k:(i,k) 	∈F

Qi,kJk,i

Combining the two gives J = C + (Q − C)J which shows item 1.

Now, by definition of an intensity, η =
∑

(i,j)∈F P(X0 = j,X−1 = i) and P(X0 = j,X−1 = i) =
πiQi,j , which shows item 2.

By application of Matthes’s direct formula

P
0(X−1 = i,X0 = j) =

1
η

E(1{X−1=j}1{X0=i}1{(i,j)∈F}) =
1
η

P(X−1 = j,X0 = i)1{(i,j)∈F}

which shows item 3. Item 4 follows immediately.

�

QUESTION 11.6.1. Is the embedded sub-chain irreducible if the original one is ? 36

EXAMPLE 11.14: ARP REQUESTS WITHOUT REFRESHES. IP packets delivered by a
host are produced according to a Point process with λ packets per second in average.
The packet delivery is a renewal source model, with the time between packet arrivals
having a phase type distribution. This models an almost constant inter-arrival time.
When a packet is delivered, if an ARP request was emitted not more than ta seconds
ago, no ARP request is generated. Else, an ARP request is generated. (ta is the ARP
timer). What is the probability p that an arriving packet causes an ARP request to be
sent ?

Consider discrete time. We can model the system as a Markov chain Xt with state
(i, s) where i is the phase of the modulator of the inter-arrival time model and s ∈

36Not necessarily, it may have states that are never reached. For example, take F = {(0, 1)}; all states other than 1
are never reached.
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{0, 1, ..., ta} is the remaining lifetime of the timer. Let Qi,j be the transition matrix
of the modulator and θi the arrival rate given that the modulator is in state i. The
transitions of Xt are⎧⎨

⎩
(i, s) → (j, s − 1) with probability Qi,j for s �= 0
(i, 0) → (j, 0) with probability Qi,j(1 − θi)
(i, 0) → (j, ta) with probability Qi,jθi

We can thus compute the stationary probability πs(i) := E(Xt = (i, s)) from the
steady-state equations (πs is a row matrix and Θ = diag(θi)) :⎧⎨

⎩
πs = πs+1Q 0 < s < ta
πta = π0ΘQ
π0 = π1Q + π0(Id − Θ)Q

which solves into
πs = π0ΘQta+1−s

and
π0 = π0ΘQta+1 + Π0(Id − Θ)Q

The last equation gives π0 up to a multiplicative constant.

Now we apply Theorem 11.6.1 with selected transitions corresponding to a packet
arrival. Call q(i, s) the probability that an arriving packet sees the system in a state
(i, s). We have

p =
∑

i

q(i, ta)

Now q(i, s) = η−1(πs+1ΘQ)[i] for s �= ta and q(i, ta) = η−1(π0ΘQ)[i] = η−1(πta)[i].
Thus p = η−1

∑
i πta [i]. We compute η by the normalizing condition

∑
i,s q(i, s) = 1.

Numerical App to Erlang-k

to be completed– add Erlang

“OBSERVABLE TRANSITIONS” OF A DISCRETE TIME CHAIN. Consider a chain with more
than 1 state, such that Qi,i > 0 for some i, i.e., there are some looping states. Let C be the set of
non-looping transitions: Ci,j = Qi,j for i �= j and Ci,i = 0. The embedded sub-chain is the chain
that is observable. Its transition matrix is J = D−1C = diag((1 −Qi,i)

−1)(Q− diag(Qi,i).

QUESTION 11.6.2. Why is 1 −Qi,i �= 0 in this example ? 37

11.6.2 DISCRETE TIME CHAIN EMBEDDED IN A CONTINUOUS TIME CHAIN.

Consider a stationary ergodic continuous time chain Xt with generator A. Let Tn be the point
process of transition epochs. The embedded sub-chain has transition matrix J = D−1(A + D)
where D = −diagAi,i is the diagonal matrix whose ith element is the rate of transition out of state

37Because Qi,i < 1 otherwise the chain is not irreducible.
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i. Put differently, this says that the probability that the next transition leads to state j, starting from
i, is Ai,j

Di,i
.

Define T̄i = E
0(T1|X0 = i) the mean sojourn time is state i. We know that T̄i = 1

Di,i
. By

application of Proposition 11.5.1 we find the relation between state probabilities at an arbitrary
time and at an arbitrary transition:

πi = η
π0

i

Di,i

The rate of transitions η is obtained by expressing that
∑

i πi = 1:

1

η
=
∑

i

π0
i

Di,i

11.6.3 PASTA

THEOREM 11.6.2 (PASTA). Consider a system that can be modeled by a stationary, ergodic
Markov chain. We are interested in a matrix of C ≥ 0 of selected transitions such that

• For any state i,
∑

j Ci,j = λ is a constant.

The point process of selected transitions is a Bernoulli process (discrete time) or Poisson process
(continuous time) with intensity λ. The Palm probability to be in state i just before a transition is
the stationary probability.

A Bernoulli process is a Point process in discrete time such that N(t) is an iid sequence.

Proof. (discrete time) The probability that there is a transition at time 1, given that X0 = i, is λ,
independent of i. Thus N(1) is independent of the state at time 0. Since we have a Markov chain, the
state at time 1 depends on the past only through the state at time 0. Thus N(1) is independent of N(t0)
for all t ≥ 0. By stationarity, it follows that N(t) is iid, i.e. is a Bernoulli process.

The relation between Palm and stationary probabilities follows from Theorem 11.6.1, item 4. The Palm
probability to be in state i just before a transition is

1
η
πi

∑
i

C(i, j) =
λ

η
πi

The sum of probabilities is 1, thus necessarily λ
η = 1.

�

INTERPRETATION The condition that
∑

j Ci,j is a constant is called the “Lack of Anticipation
Assumption”. Another way to view the theorem is to say that a Poisson process of events sees the
system as an observer at an arbitrary point in time, provided that the future of the event process is
independent of the state of the system.

Interpret C as external arrivals into a queuing system. The theorem is known as “Poisson Arrivals
See Time Averages”, hence the acronym.
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EXAMPLE 11.15: ARP REQUESTS WITHOUT REFRESHES. Consider the example in
Example 11.14 on page 304, but assume that the IP packets delivered by a host are
produced according to a Poisson process with intensity λ. What is the probability p
that an arriving packet causes an ARP request to be sent ?

Call Tn the point process of ARP request generations, and μ its intensity. First, let p
be the probability that an arriving packet causes an ARP request to be sent. We have

μ = pλ (11.6)

(to see why, assume time is discrete and apply the definition of intensity).

Second, let Zt = 1 if the ARP timer is running, 0 if it has expired. Thus p is the
probability that an arriving packet sees Zt = 0. To see why the PASTA property
applies, think in discrete time. The system can be modeled by a Markov chain with
Xt = the residual value of the timer. We have Qi,i−1 = 1 for i > 0, Q0,ta = λ, Q0,0 =
1 − λ. The selected transitions are packet arrivals, corresponding to Ci,i = C0,ta = λ
and Ci,j = 0 otherwise. Thus we can apply Theorem 11.6.2 in discrete time, and we
extrapolate that we can do the same in continuous time. Thus p = P(Zt = 0).

By the inversion formula:

p = P(Zt = 0) = μE
0(T1 − ta) = μ

(
1
μ
− ta

)
= 1 − μta (11.7)

Combining the two equations gives p = 1
λta+1 (and μ = λ

1+λta
).

EXAMPLE 11.16: M/GI/1 QUEUE. A similar reasoning shows that for a queuing sys-
tem with Poisson arrivals, an arriving customer sees the system (just before its own
arrival) in the same way as an external observer arriving at an arbitrary instant.

EXAMPLE 11.17: A POISSON PROCESS THAT DOES NOT SATISFY PASTA. The PASTA
theorem requires the event process to be Poisson or Bernoulli and the lack of antici-
pation assumption. Here is an example of Poisson process that does not satisfy the
lack of anticipation assumption, and does not have the PASTA property.

Construct a simulation as follows. Requests arrive as a Poisson process of rate λ
into a single server queue. The service time of the request that arrives at time Tn is
1
2(Tn+1−Tn). The service times are exponential with mean 1

2λ , but not independent of
the arrival process. The system has exactly one customer during half of the time, and
0 customer otherwise. Thus the stationary distribution of queue length Xt is given by
P(Xt = 0) = P(Xt = 1) = 0.5 and P(Xt = k) = 0 for k ≥ 2. In contrast, the queue
is always empty when a customer arrives. Thus the Palm distribution of queue length
just before an arrival is different from the stationary distribution of queue length.

The arrival process does not satisfy the lack of anticipation assumption: at a time
t where the queue is not empty, we know that there cannot be an arrival; thus the
probability that an arrival occurs during a short time slot depends on the state of the
process.
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APPLICATION TO MEASUREMENTS. The PASTA property shows that sampling a system at
random observation instants, distributed like a Poisson or Bernoulli process, provides an unbiased
estimator of the stationary distribution.

11.6.4 APPLICATION: PERFECT SIMULATION

In some cases, it is possible to start a simulation immediately in the stationary regime (Perfect
Simulation). Theoretically, if we know the stationary distribution of a Markov chain, all we need
to do is draw a state at random according to this distribution and run the program. In practice, this
may not be as simple.

Consider the Renewal Source Model defined in Section 11.3.1. Think of it as a Markov chain,
with Xt = T+(t) − t, ie. the state of the model is the time until the next arrival. The stationary
distribution is given by the residual life results in Theorem 11.3.2. Thus we can start the simulation
immediately in steady state by drawing a random number V1 that follows the distribution of the
residual time, which has a density f(t) = λP

0(U1 > t). Then set T1 = V1 and from there on run
the simulation as before.

11.7 EXERCICES

EXERCISE 11.1 (Residual Time). Consider the notation of Theorem 11.3.2. Is the distribution of
Zt equal to the convolution of those of Xt and Yt ?

EXERCISE 11.2. A distributed protocol establishes consensus by periodically having one host send
a message to n other hosts and wait for an acknowledgement. Assume the times to send and receive
an acknowledgement are iid, with distribution F (t). What is the number of consensus per time unit
achieved by the protocol ? Give an approximation using the fact that the mean of the kth order
statistic in a sample of n is approximated by F−1( k

n+1
). Compare to [Bakr02-PODC].

EXERCISE 11.3 (File Distributions). Packets arriving at a router belong to flows. Let P (x) be the
probability that, for an arbitrary packet, its flow is of size x packets. Let F (x) be the probability
that an arbitrary flow is of length x packets. Show that there is a necessary relation between P ()
and F (). Verify this relation on Figure 2 in [Anees99-Sigcomm].

EXERCISE 11.4 (ARP protocol with refreshes). IP packets delivered by a host are produced ac-
cording to a stationary point process with λ packets per second in average. Every packet causes
the emission of an ARP if the previous packet arrived more than ta seconds ago (ta is the ARP
timer). What is the average number of ARP requests generated per second ?

EXERCISE 11.5. Read [Rougier00-PE] and answer the following questions. To be done.

EXERCISE 11.6. (Rekeying for Multicast) Read [Zhang02-Perf] and answer the following ques-
tions. To be done.
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EXERCISE 11.7 (Rate Control in the Internet). Read [Vojnovic02-Sigcomm] and answer the fol-
lowing questions.

1. What is a TCP friendly rate control ?
2. Why is there a difference between TCP friendly and conservative ?
3. What is the loss parameter p̄ ?
4. What is the “loss event interval” θn ? What is the estimator θ̂n ?
5. What is the basic control ? What is the relation between average rate and θ̂n ?
6. What is the main argument in the proof of Theorem 1 ?
7. What is the main conclusion of Section 5.1 ?
8. Do we need the Markov chain property in Section 5.1 ?
9. Why do the authors expect TCP to see a higher loss parameter than a rate controlled appli-

cation ?
10. Why does a Poisson source experience the stationary loss estimator ?

EXERCISE 11.8. Consider the Aloha with a finite number of stations. More precisely, we consider
a set of m stations running the slotted Aloha protocol. Assume they operate as follows:

• fresh arrivals to a station is according to a Bernoulli process, with 0 or 1 packet arrival
per time slot per station. qa is the probability of 1 arrival during one time slot. All arrival
processes are independent. All packets have a transmission time equal to one time slot and
all stations are synchronized.

• when a station experiences a collision, it becomes backlogged and remains so until the packet
is successfully transmitted. Backlogged stations attempt to retransmit according to mutually
independent Bernoulli trials; call qr the probability that a given sbacklogegd station attempts
to retransmit during one time slot. When a station is backlogged, all arriving (fresh) packets
are simply discarded.

1. Compute a(k, i), the probability that there are k fresh arrivals in one time slot given that
there are i backlogged stations; compute r(k, i), the probability that there are k retransmis-
sion attempts in one time slot given that there are i backlogged stations.

2. Give a discrete time Markov chain model with (m + 1) states for this system. Write the
transition probabilities Q(i, j). Express Q(i, j) by using a() and r().

3. Call p(i) the steady-state probability of state n; find a method to compute p(i). You can use
a mathematical package such as Mathematica.

4. Call S(i) the expected number of succesful transmissions in one time slot given that there
are i backlogged stations at the beginning of the slot. Show that the following holds for all
i: ∑

i

p(i)S(i) =
∑

i

p(i)(m− i)qa

(find an interpretation).
5. In the rest of the exercise, we consider the following combinations of parameters:

• qa = 1
m2 to 1

m
by increments of 1

m• qr = qa; qr = 2qa; qr = 4qa

Compute the steady state probability p for all cases with m = 5 and m = 10.
Do the following verifications for all numerical cases:
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(a) Verify that Q is a stochastic matrix
(b) Verify that p satisfies pQ = p
(c) Verify the equality of the previous question

6. For all numerical cases, compute :

• the offered load λ
• the throughput θ
• the average transmission and retransmission rate G
• the average loss ratio L
• the average delay (not including the 1 slot transmission delay) for a packet which is

not lost.

Put all these results on one diagram by plotting the results as a function of λ. Also plot θ as
a function of G and comment on the results.

7. (This question is optional) If you have numerical problems or do not want to use a numerical
package, you can write an algorithm to compute p(i) iteratively. For that purpose, use the
cut lemma to obtain p(i) as a function of p(j), j ≤ i− 1.

EXERCISE 11.9. (Continuation of Exercise 11.7)

1. Consider now the cases m = 10. Does the previous method work ? Analyze why. How can
you obtain a solution ?

2. An alternative is to use an ad-hoc solution method, which exploits the fact that the Markov
chain does not have skips to the right, namely, transitions n → n − k are possible only for
k ≤ 1. The method below is called the Hessenberg method.
The idea is to compute ratios instead of the steady state probabilities.
Define ri by p(i) = rip(i+ 1).

(a) Show that

p(i)

(
1 −Q(i, i) −

∑
j≤i−1

rjrj+1 . . . ri−1Q(j, i)

)
= p(i+ 1)Q(i+ 1, i)

(b) Show that∑
j≤i−1

rjrj+1 . . . ri−1Q(j, i) = r0(P (0, i) + r1(P (0, 1) + . . . (ri−1P (i− 1, i))))

(c) Derive from the previous equations an algorithm to compute ri iteratively, starting from
r0.

(d) Solve again the case m = 10

EXERCISE 11.10. (Double Campbell)

1. Let Tn be a stationary point process in discrete time. Show that, for any bounded random
function F (s, t):

E

⎛
⎝ ∑

(m,n)∈Z2

F (Tm, Tn)

⎞
⎠ = λ

⎛
⎝∑

t∈Z

E
t(F (t, t)) +

∑
(s,t)∈Z2,s �=t

φ(t− s)Es,t(F (s, t))

⎞
⎠
(11.8)

where φ(u) = E
0(N(u)) is the probability that there is a point at time u, given that there is

one at time 0. (Hint: try to extend the Proof of Campbell’s formula.)
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2. Assume that Tn is a Bernoulli process, i.e., N(t) is an iid sequence. What does Equa-
tion (11.8) give ?

3. Give the corresponding formula in continuous time.
4. Consider a shot noise process with a Poisson point process for the shot epochs:

X(t) =
∑
n∈Z

h(t− Tn, ZTn)

Compute the variance of X(0).

11.8 APPENDIX: QUICK REVIEW OF MARKOV CHAINS

For more details see for example [Thiran02-LN] or [Bremaud01-book]. We consider a markov
chain on some enumerable set E. In discrete time, the chain is given by a transition matrix Q,
with Qi,j = P(Xt+1 = j|Xt = i). Q is a stochastic matrix, i.e. Q(i, j) ≥ 0 and

∑
j Qi,j = 1.

In continuous time, the chain is determined by the generator matrix A, where Ai,j is the rate of
transition from state i to j; it is such that P(Xt+dt = j|Xt = i) = Ai,jdt + o(dt) for i �= j. A has
non-negative entries everywhere except on the diagonal and

∑
j Ai,j = 0.

QUESTION 11.8.1. What is Ai,i ? 38

Call π(t) the row vector of probabilities at time t, i.e. πi(t) = P(Xt = i). We have π(t) = π(0)Qt

in discrete time, and π(t) = π(0)e−tA in continuous time. The exponential of a matrix is defined
like for complex numbers by eA =

∑∞
n=0A

n/n!.

A stationary probability is a row vector π that satisfies πQ = π (discrete time) or πA = 0 (contin-
uous time), is wide-sense positive, and sums to 1. For a finite state space E, there is always at least
one stationary probability. There may be several if the chain branches into subsets of state spaces
from which it cannot exit. For an infinite state space, there may not exist a stationary probability
(the chain “escapes to infinity”).

The chain is stationary if π(t) is independent of t. For a chain starting at time 0, this is true iff the
initial probability distribution π(0) is a stationary probability.

The chain is irreducible if any state can be reached from any state. The chain is positive is the
steady-state equation μQ = μ (discrete time) or μA = 0 (continuous time) has at least one solution
μ with finite sum (μ is a row vector). If the chain is not irreducible, there may be some states such
that πi = 0 for a stationary probability π.

The chain is ergodic if it is irreducible positive, and for discrete time, aperiodic. If so, the stationary
probability is defined as the only solution of the steady-state equation that sums to 1. Such a
solution is necessarily positive. For an ergodic chain, we have limt→+∞ π(t) = π where π is the
unique stationary probability.

An ergodic chain is also stationary iff the initial probability π(0) is the stationary probability π.
Otherwise, it becomes stationary for t large enough.

For a continuous time markov chain, the time until the next transition given that Xt = i is an
exponential random variable with parameter d(i) = −Ai,i.

38Ai,i = −∑j:j 	=i Ai,j .
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A phase type distribution is the lifetime of a finite, transient markov chain Xt, defined as follows.
There are I + 1 states labeled 0, 1, ..., I; state 0 is the final state. The random variable T is the
first time t ≥ 0 for which Xt = 0. Let Ai,j be the rate of transition from state i �= 0 to state
j, d(i) =

∑
j:i�=iAi,j (departure rate), and αi the probability that the chain in in state i at time 0.

We assume that α0 = 0. The moment generating function of T , m(s) := E(esT ), is obtained by
solving the set of linear equations, defined for all i = 1...I:

mi(s) =

(∑
j:j �=1

Ai,j

d(i)
mj(s) +

Ai,1

d(i)

)
d(i)

d(i) − s
= mi(s)

which are obtained by letting mi(s) := E(esT |X0 = i).

Special cases often used are

• the hypo-exponential distribution, for which Ai,j = 0 except for i < I, j = i + 1 or i =
I, j = 0. If the non-zero rates Ai,j are all the same, this is the Erlang-I distribution.

• the hyper-exponential distribution, for which Ai,j = 0 except for j = 0

PH-type distributions have a rational moment generating function (quotient of two polynoms).
They can approximate any distribution, in some sense.
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CHAPTER 12

PROBABILITY THEORY AND TABLES

Probability derives the properties of models. A model is, in general in our framework, a collection
of random variables (independent or not). It is a branch of pure maths: given a model, we can
derive proven properties and do computations. In contrast, statistics starts when the model itself
is not known. The problem of statistics is to infer a model from the data and return something
useful about the data. Determining a model is not a pure mathematical exercise, in the sense that
it is not possible to prove formally whether a model is appropriate or not – though in many cases
some models are obviously wrong. Much of this book is about finding the right model for the right
situation. In this chapter, we give the results of probability theory that we used throughout the
book.
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12.5.5 Conditional Normal Distribution . . . . . . . . . . . . . . . . . . . . . . 323

12.5.6 Partial Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

12.1 RANDOM VARIABLES AND DISTRIBUTIONS

A real random variable is a mapping from the set of randomness Ω to R, i.e. the output of a random
generator that produces a real number. For a real random variable X:

• The Cumulative Distribution Function (cdf) is the function F : R → [0, 1] defined by
F (x) = P(X ≤ x). The distribution of a random variable is entirely defined by its cdf. A
cdf is always right-continuous, i.e. F (x) = limx→c+(x) for all c ∈ R.

• A probability density function (pdf) of X is a function f : R → R
+ such that for any

subset A ⊂ R: P{X ∈ A} =
∫

x∈A
f(x)dx, if it exists. f is defined up to a zero mass set,

which means in particular that you can change the value of f on a enumerable set of points
and still obtain a density. The distribution of a random variable that has a density is entirely
defined by its pdf. There are random variables that do not have a density, for example the
(degenerate) random variable that is deterministically equal to some (non random) value x0.
Its cdf is called the Dirac mass at x0.

12.1.1 RANDOM VECTORS

Covariance matrix

12.1.2 CHANGE OF VARIABLE

12.2 CONVERGENCE RESULTS

Def of convergence in distrib and in proba and in l2

THEOREM 12.2.1 (Slutzky’s Lemma). Slutzky’s lemma (conv en proba + en loi implique en loi

If Xn converges in distribution to X and Yn converges in probability to a constant c, then Xn/Yn

converges in distribution to X/c

CLT

12.3 ORDER STATISTIC

(X(j), X(k)) has a density.

E(X(j)) = j
n+1

if distrib is uniform
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12.4 LINEAR ALGEBRA AND NOTATION

12.4.1 GENERAL NOTATION

We consider in this chapter a linear space E of finite dimension. We assume the reader is familiar
with the definitions of linear space, linear mapping, dimension, and coordinate system.

BASIS, COORDINATES Any linear space has a basis, and all bases have the same number of
elements. If this number is finite, it is the dimension of the linear space. Any vector �x can be
written uniquely as a linear combination of elements of the basis.

Examples:

• E = R
I × R

J × R
K . A vector is a triple (X,Y, Z) with X ∈ R

I , Y ∈ R
J , Z ∈ R

K . The
dimension is I + J +K.

• E = R[I, J,K]. A vector is an array a[, , ] with three indices (more generally, n indices).
This set is called the set of “tensors” in physics. For 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K,
a[i, j, k] is a real number. The dimension is IJK.
The tensor a[, , ] can be written

a[, , ] =
∑
i,j,k

a[i, j, k]zi,j,k

where zi,j,k is the tensor defined by zi,j,k[i
′, j′, k′] = 1{i=i′}1{j=j′}1{k=k′}. The list

(zi,j,k)1≤i≤I,1≤j≤J,1≤k≤K

is a basis of the space of tensors and a[i, j, k] is the coordinate of a[, , ] attached to the element
zi,j,k of the basis.

It is traditional to identify a vector �x and its p×1 matrix of coordinatesX in some well-know basis
(p is the dimension of the linear space). However, this may sometimes be counter-productive, for
example for reasoning about tensors. There are many ways to map an array a[, , ] to a column
matrix of coordinates. This is unpleasant to write and is best left to the statistical software to
handle. An example where this occurs is given in Section ??. Another example is with wavelet
analysis in Chapter 13.

LINEAR MAPPING AND MATRIX A linear mapping f from a space E with dimension p to
a space F with dimension q is a mapping such that f(α�x + β�y) = αf(�x) + βf(�y) for all real
numbers α, β and all vectors �x, �y ∈ E. Let (�ei)1≤i≤p [resp. (�fj)1≤j≤q] be a basis of E [resp. F ].
The matrix A associated with f is the two-dimensional array defined by

A[r, s] = rth coordinate of f(�es)

A linear mapping is commonly identified with its matrix, assuming there is a non-ambiguous, well
defined basis. However, it is sometimes useful to make the distinction. See Section ?? for a place
where such a viewpoint is helpful.
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• The null space of f is the set of �x such that f(�x) = �0.
• The image of f is the set of �x that can be written �x = f(�y) for some �y
• Both null space and image are linear subspaces of (E and F respectively). The dimension

theorem says that the sum of their dimensions is the dimension of E.

OTHER NOTATION For two arbitrary sets E,F :

• E × F is the set of couples (e, f) where e ∈ E and f ∈ F .
• EF is the set of mappings from F to E. When F is finite, this is the same as the set of arrays

indexed by F .

12.4.2 DIRECT SUMS

Let E be a linear space and Ei, i = 1...k sub-linear spaces of E. If any �x ∈ E can be decomposed
in a unique way as

�x = �x1 + ...+ �xk

where �xi ∈ Ei, then we say that E is the direct sum of the Eis and we write

E = E1 ⊕ E2...⊕ Ek

Example: let E = R[I, J ]. Let E1 be the set of constant arrays, E2 [resp. E3] the set of arrays that
depend only on i [resp. j] and that sum to 0, and E4 the set of arrays a[, ] such that

∑
i a[i, j] =∑

j a[i, j] = 0.

QUESTION 12.4.1. Show that E = E1 ⊕ E2 ⊕ E3 ⊕ E4
1

12.4.3 PROJECTOR

A projector is a linear mapping f from E to E such that f ◦ f = f , i.e. f(f(�x)) = f(�x) for all �x.
Then E is the direct sum of the null space of f and the image of f .

Conversely, consider a direct sum E = E1 ⊕ E2 and let �x = �x1 + �x2 be the corresponding
decomposition. The mapping from �x to �x1 is a projector, with null space E2 and image E1. Thus
a projector is entirely defined by its null space and its image.

We have the following characterization. For any �x ∈ E, ΠE1(�x) is the unique vector such that

{
ΠE1(�x) ∈ E1

�x− ΠE1(�x)) ∈ E2
(12.1)

1Hint: write

a[i, j] = ā + (ā[i, .] − ā) + (ā[., j] − ā) + (a[i, j] − ā[i, .] − ā[., j] + ā)

with ā = 1
IJ

∑
i,j a[i, j], ā[i, .] = 1

J

∑
i,j a[i, j], ā[., j] = 1

J

∑
i,j a[i, j].
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12.4.4 INNER PRODUCT, ISOMETRY

Notation: inner product �u · �v. It is equal to uTv where u, v is the column vector of coordinates in
some orthonormal basis.

‖�x‖ :=
√
�x · �x

Two subspaces E1 and E2 are orthogonal iff �x1 · �x2 = 0 for all �x1 ∈ E1, �x2 ∈ E2.

An isometry is a mapping that preserves the norm. It is necessarily linear.

MAPPING A VECTOR TO ITS COORDINATES Let (�ei)i ∈ I an orthornormal basis of E, �x ∈ E
and XT the column vector of coordinates of �x in this basis. The mapping �x → X is an isometry
from E to R

I

12.4.5 ORTHOGONAL PROJECTORS

Given a sub-space E1, the set of vectors �y that are orthogonal to all vectors in E1 is called the
orthogonal of E1. E1 and its orthogonal are in direct sum. The projector with image E1 and null
space the orthogonal of E1 is called the orthogonal projector on to E1 and is denoted with ΠE1 .

The following characterization follows from Equation (12.1). For any �x ∈ E, ΠE1(�x) is the unique
vector such that {

ΠE1(�x) ∈ E1

for all �y ∈ E1 : (�x− ΠE1(�x)) · �y = 0

The following theorem relates minimization of sums of squares to orthogonal projectors.

THEOREM 12.4.1. The optimization problem (where �y is the unknown)

minimize ‖�x0 − �y‖2

subject to �y ∈ E1

has a unique solution, equal to �y = ΠE1(�x0)

Example: Haar function

12.5 NORMAL VECTORS

Let �X be a random vector in a finite dimension. Then if h is linear, non random:

E(h( �X)) = h(E( �X))

In matrix form, for any non-random matrix H , E(HX) = HE(X)
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12.5.1 COVARIANCE FORM

For a random vector �X such that all first and second moments are defined, the covariance form ω
is a symmetric bilinear form defined by

ω(�u,�v) = cov(�u · �X,�v · �X)

or equivalently
ω(�u, �u) = var(�u · �X)

In some orthonormal basis where we identify �X with a column vectorX of coordinates, the matrix
Ω of ω is called the covariance matrix. It is given by

Ω := E((X − μ)(X − μ)T )

with μ = E(X). In matrix form:

cov(uTX, vTX) = uT Ωv

var(uTX) = uT Ωu

Now consider a new basis, where the coordinates of �X is X ′. Let A be the square matrix defined
by:

A[r, s] = rth coordinate, in the old basis, of the sth vector of the new basis.

Then X = AX ′. It follows that cov(uTX, vTX) = uT Ωv = u′TAT ΩAv′ thus the covariance
matrix of �X in the new basis is

Ω′ = AT ΩA

ω is obviously a wide-sense positive form, i.e. ω(�u, �u) ≥ 0. From the general theory of bilinear
forms, we know that there exists an orthonormal basis �f1, ..., �fn in which the matrix of ω is diagonal
with diagonal terms λi ≥ 0. If we call Xi the ith coordinate of �X in the basis �f1, ..., �fn, then the
collection of random variables Xi is non-correlated (i.e. cov(Xi, Xj) = 0).

The null space of the random vectorX is the space generated by those vectors �fi for which λi = 0.
Its dimension is n minus the rank of the matrix of ω in any basis. It can be computed by solving
uT Ω = 0 where u is the column vector of coordinates of �u is some basis, and Ω the matrix of ω in
the same basis. Ω is invertible iff the null space is {0}.

The null space is also the set of vectors �u such that var(�u · �X) = 0, i.e., �u · �X is a.s. constant. In
other words, X takes its values in the affine sub-space orthogonal to the null space that contains
the mean �μ. The dimension of this sub-space is the rank of ω. In any basis, the direction of this
sub-space is the linear space generated by the columns of Ω.

EXAMPLE. In R
3, let the covariance matrix be

Ω =

⎛
⎝ a 0 a

0 b b
a b a+ b

⎞
⎠

The rank is 2. The linear space generated by the columns of Ω is the plane defined by x+y−z = 0.
Thus the random vector takes its values almost surely in the plane defined by x+y−z = x0+y0−z0

where μ = (x0, y0, z0).
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12.5.2 NORMAL VECTOR

A random vector �X is normal iff for any �u ∈ R
n, the real random variable �u · �X has a normal

distribution. The expectation and the covariance matrix completely characterize a normal distrib-
ution.

DENSITY If Ω has full rank, �X has a density, given by

f �X(�x) =
1√

(2π)n det Ω
e−

1
2
(�x−�μ)T Ω−1(�x−�μ)

(in the above, we identified a vector and its coordinates). Else, �X spans an affine sub-space of
dimension equal to the rank of Ω.

CHARACTERISTIC FUNCTION In all cases, the characteristic function is

E(eiuT X) = eiuT μ− 1
2
uT Ωu

For any normal vector �X , there exists an orthonormal basis (�f1, �f2..., �fn) in which the r first coor-
dinates of �X are mutually independent, and the n− rth others are almost surely constant. Here, r
is the rank of Ω. This follows from diagonalization of the covariance matrix Ω.

If X1, ..., Xn is normal and is a sequence of independent variables, then a change of coordinate
system basis will, in general, not keep independence (except for homoscedastic vectors, see below).

12.5.3 THE EUCLIDIAN SPACE OF A NORMAL PROCESS

Given a normal process, the linear combinations of it form a Hilbert space. Homoscedasticity
means that it is the same as normal geometry.

Otherwise, the rank of Ωn is the dimension of the space generated by X1, ...Xn.

12.5.4 HOMOSCEDASTIC VECTOR

THEOREM 12.5.1. If the matrix of the covariance form of a random vector is σ2Id in one ortho-
normal basis, with σ ∈ R

+, then the same holds in any other orthonormal basis.

DEFINITION 12.5.1. A normal vector is called Homoscedastic if its covariance matrix in one
basis is σ2Id for some σ > 0.

Thus if X1, X2, ..., Xn is jointly normal, saying that it is homoscedastic means that Xi = μi + εi,
with μi non-random and εi normal iid with.

A homoscedastic normal vector always has a density (since its covariance matrix is invertible),
given by

fX(�x) =
1

(2π)
n
2 σn

e−
1

2σ2 ‖�x−�μ‖2
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THEOREM 12.5.2. Consider an homoscedastic normal vector �X with values in a space E and let
�μ = E( �X).

• For any orthogonal transformation U ofE, U( �X) is also homoscedastic (with same common
variance σ2).

• Let ΠM be the orthogonal projector on some linear sub-space M . ΠM( �X) and �Y = �X −
ΠM( �X) are independent, ‖ΠM( �X) − ΠM(�μ)‖2 ∼ χ2

m and ‖�Y − �μ + ΠM(�μ)‖2 ∼ χ2
n−m

where n = dimE and m = dimM .

MLE FOR HOMOSCEDASTIC NORMAL VECTORS

THEOREM 12.5.3. Consider a vector �X of independent, normal random variables Xr with com-
mon variance σ2, where the index r is in some finite set R (N is the number of elements in R).
Assume that �μ := (μr)r∈R is restricted to a linear subspace M of R

R. Let k = dimM .

• The MLE of (�μ, σ) is given by
μ̂ = ΠM( �X)

σ̂2 =
1

N
‖ �X − μ̂‖2

• E�μ,σ(μ̂) = �μ = E�μ,σ( �X)

• Under �μ, σ: �X − μ̂ and μ̂ are independent normal vectors. Further

‖ �X − �μ‖2 = ‖ �X − μ̂‖2 + ‖�μ− μ̂‖2

• Under �μ, σ: ‖ �X − μ̂‖2 ∼ χ2
N−kσ

2 and ‖μ̂− �μ‖2 ∼ χ2
kσ

2

• (Fisher distribution) Under �μ, σ:

‖μ̂−�μ‖2

k

‖ �X−μ̂‖2

N−k

∼ Fk,N−k

Proof. The log likelihood of an observation (xr)r∈R is

lx(
μ, σ) = −1
2

ln(2π)−N ln(σ)− 1
2σ2

∑
r∈R

(xr−μr)2 = −1
2

ln(2π)−N ln(σ)− 1
2σ2

‖
x−
μ‖2 (12.2)

For a given σ, by Theorem 12.4.1, the log-likelihood is maximized for 
μ = μ̂ = ΠM (
x), which is
independent of σ. Let 
μ = μ̂ in Equation (12.2) and maximize with respect to σ, this gives the first item
in the theorem. The rest follows from Theorem 12.5.2.

�

COROLLARY 12.5.1. Let (Xi)i=1...n ∼ N(μ, σ2).

• The MLE of (�μ, σ) is given by

μ̂ = X̄ :=
1

n

n∑
i=1

Xi

σ̂2 =
1

n
SXX :=

1

N

n∑
i=1

(Xi − X̄)2
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• Under μ, σ: SXX and X̄ are independent. Further∑
i

(Xi − μ)2 = SXX + n(X̄ − μ)2

• Under �μ, σ: SXX ∼ χ2
n−1σ

2 and X̄ ∼ N(μ, σ2

n
).

• (Student distribution): Under �μ, σ

√
nX̄√
SXX

n−1

∼ tn−1

12.5.5 CONDITIONAL NORMAL DISTRIBUTION

Assume we have a decomposition of the linear space into two orthogonal sub-spaces. Let �X =

�X1+ �X2 be the corresponding decomposition of a normal vector �X . In matrix form: X =

(
X1

X2

)
,

if we take a basis compatible with the decomposition.

The covariance matrix of X can be decomposed into blocks as follows.

Ω =

(
Ω1,1 Ω1,2

Ω2,1 Ω2,2

)

where Ωi,j (cross-covariance matrix) is defined by

Ωi,j = E((Xi − E(Xi))(Xj − E(Xj))
T )

X1 and X2 are independent iff Ω1,2 = 0. Note that Ω1,2 = ΩT
2,1

THEOREM 12.5.4 ([Davison02-book]). If Ω2,2 is invertible, the conditional distribution of X1

given that X2 = x2 is well defined and is normal, with mean

μ1 + Ω1,2Ω
−1
2,2(x2 − μ2)

and covariance matrix
Ω1,1 − Ω1,2Ω

−1
2,2Ω2,1

Note that the covariance matrix is independent of x2. This is true only for normal vectors.

12.5.6 PARTIAL CORRELATION

[Davison02-book]

Consider the case �X1 = (X1, 0, ..., 0, Xn)T and �X2 = (0, X2, ..., Xn−1, 0)T . The conditional

covariance matrix of �X1 given �X2 is a 2 × 2 matrix. Let it be

(
γ1,1 γ1,n

γ1,n γn,n

)
. The number γ1,n

is called the partial covariance and r1,n = γ1,n/
√
γ1,1γn,n the partial correlation of X1 and Xn.

The partial correlation expresses the residual correlation between X1 and Xn when we know the
other variables X2, ..., Xn−1.
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THEOREM 12.5.5 ([Davison02-book]). When Ω (the covariance matrix of the joint vector (X1, X2, ..., Xn−1, Xn)T )
has full rank, the partial correlation of X1 and Xn is given by the relation

r1,n =
τ1,n√
τ1,1τn,n

where τi,j is the (i, j)th term of Ω−1.

If X1, ..., Xn is a Markov chain, and n > 1, then Xn is independent of X1, given X2, ..., Xn−1. In
such a case, the partial correlation of X1 and Xn is 0 (but the covariance of X1 and Xn is not 0).
Partial correlation can be used to test if a Markov chain model is adequate.



CHAPTER 13

ORTHOGONAL WAVELETS AND

MULTIRESOLUTION ANALYSIS

We give a short summary of key facts related to orthogonal wavelets. For a more general theory, in-
cluding non-orthogonal wavelets (called “bi-orthogonal”) see the course page at lcavwww.epfl.ch
and [Vetterli95-book].

13.1 HILBERT SPACES

transposition and scalar product

Notation: inner product �u · �v. It is equal to uTv where u, v is the column vector of coordinates in
some orthonormal basis.

Define inner product and Hilbert space E. Linear form: def, matrix, continuous, representation in
Hilbert spaces.

Linear combinations and series in case of Hilbert.

13.2 MULTI-RESOLUTION ANALYSIS

Wavelets are defined for functions of continuous time (but we will apply them to time series, i.e.
functions of discrete time, see later). We consider functions that are square integrable, thus we are
in the Hilbert space L2(R). Orthogonal wavelets come in pairs: a father wavelet φ(t), also called
scaling function and a mother wavelet, or just “wavelet”, ψ(t). They are such that∫

t∈R

φ(t)dt = 1 and

∫
t∈R

ψ(t)dt = 0

Orthogonal wavelets are required to have some other special properties, some of them are men-
tioned as needed in the rest of this document.

325
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Examples: Haar wavelet. Put a figure. Other orthogonal wavelets: Daublets, Symmlets, Coiflets.
Different wavelet families give slightly different decompositions. The only important aspect we
will use is the number of vanishing moments and the regularity (see below).

For j ∈ Z (octave) and k ∈ Z (location) define the dilatations and translations of the wavelet
functions by

φj,k(t) = 2−j/2φ(2−j(t− 2jk)) ψj,k(t) = 2−j/2ψ(2−j(t− 2jk))

2j is also called the scale parameter: think of it as the inverse of a frequency parameter, roughly
speaking.

QUESTION 13.2.1. Draw φ2,10 and ψ3,−5 for the Haar wavelets. 1

Call Vj the space generated by φj,k, k ∈ Z. The orthogonal wavelets are such that the sequence
φ0,k constitute an orthonormal basis of V0, i.e.∫

t∈R

φ(t− k)φ(t− h)dt = 0 if k �= h and 1 if k = h

and similarly the set of φj,k, k ∈ Z constitute an orthonormal basis of Vj .

QUESTION 13.2.2. Verify that φ0,k constitute an orthonormal basis of V0 for the Haar wavelet 2

QUESTION 13.2.3. What is V0 for for the Haar wavelet ? 3

QUESTION 13.2.4. Does a high octave number j correspond to a high frequency ? 4

MULTI-RESOLUTION ANALYSIS, STEP 0. Consider a fixed function f(t). We call C0 :=
ΠV0(f) the projection of f on V0. It follows that

C0(t) =
∑
k∈Z

c0,kφ0,k(t)

with

c0,k =

∫
t∈R

f(t)φ(t− k)dt

C0(t) is a smooth approximation of f(t). The difference f(t)−C0(t) is the initial detail, in practice
we expect it to be negligible (but see below for a discussion).

MULTI-RESOLUTION ANALYSIS, STEP n. Multi-resolution analysis is based on coarser and
coarser approximations of C0(t). First, the wavelets are such that φ(t/2) ∈ V0. In other words,
there exist a sequence uk such that φ(t/2) =

∑
k∈Z

ukφ(t − k) (equality is in the mean square
sense).

QUESTION 13.2.5. Find uk for the Haar wavelets 5

1tbd
2tbd
3The set of functions f(t) that are constant between integers.
4No, with our convention, it is the opposite. Negative octaves correspond to high frequencies.
5tbd
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Now consider V1, the space generated by the sequence φ1,k. It follows that V1 ⊂ V0. Let C1 :=
ΠV1(C0) be the projection of C0 on V1 and D1 := C0 − C1. In other words

C0(t) = D1(t) + C1(t)

C1(t) is a coarser approximation of f(t) than C0(t).

The step can be iterated by considering Vn, the space generated by φn,k, k ∈ Z, Cn the projection
of Cn−1 on Vn and

Dn(t) = Cn(t) − Cn−1(t)

for n = 1 to some integer J . Thus we have V0 ⊃ V1 ⊃ ... ⊃ VJ and

C0(t) = D1(t) +D2(t) + ...+Dn(t) + CJ(t) (13.1)

CJ(t) is called the coarse approximation of C0 at octave J , and Dn the detail at octave n. CJ

is a coarser approximation than C0 (Figure 13.1 and Figure 13.2). Equation (13.1) is called a
multi-resolution analysis of f(t) at octaves 0 to J .

ENERGY AT OCTAVE j By construction, the details Dj and Cn are mutually orthogonal. Thus
(“conservation of energy”):

‖C0‖2 = ‖D1‖2 + ...+ ‖Dn‖2 + ‖Cn‖2

Also, the smooth approximation C0 and f are orthogonal, thus

‖f‖2 = ‖C0‖2 + ‖f − C0‖2

QUESTION 13.2.6. Write the conservation of energy in terms of integrals 6

NEGATIVE OCTAVES In practice (see below) the function f(t) is very close to its projection on
V0, and multi-resolution analysis works as explained above. A general property of wavelets is that
the sequence of Vj , when j goes to −∞, is dense in L2(R), in other words, any function can be
approximated by its projection on Vj for some j.

If the difference between f(t) and C0(t) is not negligible, multi-resolution should be started at
some negative octave J0, instead of at octave J0 = 0. The rest is without change. Note that
the functions Cj and Dj are always the same, independent of the octave J0 at which we start the
multi-resolution.

13.3 THE SCALING AND WAVELET COEFFICIENTS

The orthogonal wavelets are such that the sequence φj,k, k ∈ Z, is an orthonormal basis of Vj , and
the sequence ψj,k, k ∈ Z, is an orthonormal basis of the orthogonal of Vj in Vj−1. Thus, we can
write {

Cj(t) =
∑

k∈Z
cj,kφj,k(t)

Dj(t) =
∑

k∈Z
dj,kψj,k(t)

6tbd
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Figure 13.1: First graph: Decomposition of C0(t) into a coarse approximation C6(t) and successive details
Dj(t). Second graph: the successive coarse approximations Ci(t). The data is equal to C0(t) and is shown
at the top of each graph; it is the amount of internet traffic in bytes on a backbone link of the American
operator SPRINT; one point is the aggregate over 90 mns. Wavelet basis: Daubechies 6. The details are
high at octaves 3 and 4, which corresponds to timescales of 12 hours and 24 hours.
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Figure 13.2: Same as Figure 13.1 but with Wavelet = Haar.
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with {
cj,k =

∫
t∈R

f(t)φj,k(t)dt
dj,k =

∫
t∈R

f(t)ψj,k(t)dt
(13.2)

cj,k is called a scaling coefficient and dj,k a wavelet coefficient.

THE PYRAMIDAL ALGORITHM. The coefficients cj,k, dj,k are not computed by means of
Equation (13.2). Instead, a discrete wavelet transform (DWT) is used, based on the pyramidal
algorithm.

It computes cj,k and dj,k, assuming that the coefficients at scale 0, c0,k, are known. It is given by

{
cj,k =

√
2
∑

n∈Z
uncj−1,2k+n

dj,k =
√

2
∑

n∈Z
vncj−1,2k+n

where un, vn are equal the coordinates of φ1,0, ψ1,0 in the basis φ0,n:{
φ(t/2) =

∑
n∈Z

unφ(t− n)
ψ(t/2) =

∑
n∈Z

vnφ(t− n)

IDWT is the inverse transformation

NUMBER OF COEFFICIENTS Assume we are given only a finite number of coefficients c0,k.
At every octave, the number of scaling and wavelet coefficients is divided by 2. If we have 2Jn
coefficients at step 0, then at octave j, 1 ≤ j ≤ J , we have 2J−jn coefficients. The complexity of
the pyramidal algorithm is O(N), where N is the total number of coefficients computed.

ATOMS A multi-resolution analysis at octaves 0 to J can be written as

C0(t) =
∑
k∈Z

cJ,kφj,k(t) +
J∑

j=1

∑
k∈Z

dj,kψj,k(t)

The individual terms in this summation are called atoms. The J + 1 sequences (cJ,k)k∈Z and
(dj,k)k∈Z for j = 1 to J are called crystals.

ENERGY AT OCTAVE j The mapping from a vector to its coordinates in an orthonormal basis is
an isometry, thus { ‖CJ‖2 =

∑
k∈Z

c2J,k

‖Dj‖2 =
∑

k∈Z
d2

j,k

and we can re-write the conservation of energy as

∫
t∈R

C0(t)
2dt =

∑
k∈Z

c2J,k +
J∑

j=1

∑
k∈Z

d2
j,k

and similarly if we start at octave J0 < 0 instead of 0.
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Figure 13.3: Scaling and Wavelet coefficients for the example of Figure 13.1 with wavelet = Daubechies
6 (first graph) and wavelet = Haar (second graph). The variability of the time series is mainly at octave 3,
(first graph) or 3 and 4 (second graph).
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VANISHING MOMENTS The number of vanishing moments is the largest M such that∫
t∈R

tmψ(t)dt = 0 for m = 0, 1, ...,M − 1

If f(t) is a polynomial of degree ≤ M − 1, the wavelet coefficients are 0. If f(t) is well approxi-
mated by the first M terms of its Taylor expansion, the wavelet coefficients are small.

13.4 TIME SERIES

Consider xn, n ∈ Z. Wavelets apply to functions of continuous time – this shows up in particular
for the computation of coefficients as integrals. Thanks to the pyramidal algorithm, the plays a role
only for the computation of the initial coefficients c0,k.

DETERMINISTIC CASE If xn is non random, all we need is a mapping xn → X(t) that pre-
serves the norms, i.e. ‖x‖2 = ‖X‖2 (the mapping is an isometry). A generic form is

X(t) =
∑
n∈Z

xng(t− n)

A simple function is g0(t) = 1{0≤t<1}. A better one is g1(t) = sinc(t) = sinπt
πt

. By Shannon’s sam-
pling theorem, the resulting X(t) is the band-limited process which can be perfectly reconstructed
from the samples xn. In either case we have X(n) = xn for n ∈ Z.

The initial coefficients can be computed as follows.

c0,k =
∑
n∈Z

xn

∫
t∈R

φ(t− k)g(t− n)dt =
∑
n∈Z

xn

∫
t∈R

φ(t− k + n)g(t)dt

=
∑
n∈Z

xnIk−n = (x ∗ I)k (13.3)

with

Ik =

∫
t∈R

φ(t− k)g(t)dt

Thus we should apply a convolution filter to the time series before taking its wavelet transform. In
practive, there is only a small number of coefficients Ik that are non 0 or non-negligible.

Some packages do not do the correct initialization; instead, they initialize multi-resolution analysis
with c0,k = xk. This is equivalent to applying the wavelet analysis to Y (t) =

∑
k∈Z

φ(t − k)xk.
This mapping of xn to Yn is an isometry because φ0,n is an orthornormal system, however, it does
not seem natural. This is because the time series which is analyzed in reality is yn =

∑
k∈Z

xkφ(n−
k), which, in general, is not equal to xn. This may introduce some distortion into the coefficients
at lower octaves.

QUESTION 13.4.1. Compute yn for the Haar wavelet. 7

The mapping from the time series xn to the coefficients so obtained is called discrete time wavelet
transform. It is an orthogonal transformation, and is used by some authors in replacement of the
true DWT.

7Y (t) is the natural extrapolation
∑

n∈Z
xn1{n≤t<n+1} and yn = xn. There is no distortion in this specific case.
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IMPACT OF FIRST OCTAVE J0. In multi-resolution analysis, we often limit ourselves in practice
to J0 = 0, i.e. we assume that C0(t), the projection on V0 of X(t), is close to X(t). This is
particularly true if we take X(t) =

∑
n∈Z

xnsinc(t−n), due to the spectral properties of wavelets;
it is more accurate for wavelets with higher degree of regularity.

For the time series in Figure 13.1 and Figure 13.3, the error is negligible (of the order of computa-
tion errors).

QUESTION 13.4.2. How can we verify whether this approximation holds ? 8

In the rare cases where this approximation is not valid, this does not impact the values of coef-
ficients obtained with the pyramidal algorithm. It simply means that the coefficients for negative
octaves are not negligible and should be computed as well. This can be done with the pyramidal
algorithm, starting with cJ0,k instead of c0,k. It is equivalent to replacing the original time series
with the up-sampled time series

x∗n = 2J0/2X(2J0n)

where X(t) is the continuous time interpolation of xn (remember that J0 is negative; we have
x∗

2−J0n
= xn.

STOCHASTIC CASE Assume now that xn is a random sequence, and we are interested in second
order properties of xt. Then we should use only the mapping

X(t) =
∑
n∈Z

xnsinc(t− n)

This definition is shown to be valid in the mean square sense in [Veitch00-Init], provided that
the father wavelet φ is bounded, which is the case for the ones we use. It can be shown that
the second-order properties of X(t) and xn are the same. We use this property for analyzing the
auto-covariance functions of time series.

PADDING AND BOUNDARY CONDITIONS See S+Wavelet tutorial.

USEFUL S-PLUS COMMANDS

• make.signal: out of a data frame, make an object that wavelet functions can use
• ca <- dwt(ic) perform DWT on initial coefficients; returns scaling and wavelet coeffi-

cients; plot(ca) displays the scaling and wavelet coefficients
• eda(ca) plots distribution of energy and other summary data
• ca <- mrd(ic) multi-resolution analysis (decomposition) (returns the coarse approxi-

mation and details); ca <- mra(ic) multi-resolution approximation (returns the succes-
sively coarser approximations; plot(ca) plots the results.

• reconstruct: returns the time series C0[t]; top.atoms: returns the largest coefficients;
decompose returns the atoms.

• dwt.matrix the discrete time wavelet transform

8By plotting xn − C0(n), where C0 is the sum of crystals, or by comparing the sum of squares of xn with that of
the coefficients.
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CHAPTER 14

TABLES AND DISTRIBUTIONS

A good list of distributions can be found in [McLaughlin97], a compendium of distributions
by Michael P. McLaughlin that is publicly available (see web site for more information).
We add here the tables and concepts that could not be found there.

14.1 CATALOG OF DISTRIBUTIONS

We give a list of commonly used distributions and the notation for their cdf. For more details see
[McLaughlin97].

14.1.1 Binomial

Bn,p

14.1.2 Multinomial Mn,
p

A sequence N1, ..., Nk in N
k has the multinomial distribution Mn,�p if and only if⎧⎨

⎩
∑k

i=1Ni = n

P {N1 = n1, ..., Nk = nk} =

(
n!

n1!...nk!

)
pn1

1 ...p
nk
k

(14.1)

Assume n random variablesXj are iid, take values in the finite set {1, 2, ..., k} and P(Xj = i) = pi.
Let Ni =

∑n
j=1 1{Xj=i} (number of observations that are equal to i). Then the distribution of the

vector (N1, ..., Nk) is Mn,�p.

14.1.3 Geometric

Geom(θ)

335



336 CHAPTER 14. TABLES AND DISTRIBUTIONS

14.1.4 Normal

also called gaussian Nμ,σ2

14.1.5 Chi-Square

χ2
n is the distribution of the sum of the squares of n independent random variables with distribution
N0,1. Expectation: n; Variance: 2n

14.1.6 Fisher

Fm,n is the distribution of

Z =
X/m

Y/n

where X ∼ χ2
m, Y ∼ χ2

n and X and Y are independent.

If F ∼ Fm,n then 1
F
∼ Fn,m, thus if Fm,n(η) = γ then Fn,m(1/η) = γ

If T ∼ tn then T 2 ∼ F1, n.

14.1.7 Student

tn is the distribution of

Z =
X√
Y/n

where X ∼ N0,1, Y ∼ χ2
n and X and Y are independent.

14.2 CONFIDENCE INTERVALS FOR QUANTILES

The following tables can be used to determine confidence intervals for quantiles (including me-
dian), as follows (see Theorem 2.2.1 for more details).

For a sample of n iid data points x1, ..., xn, the tables give a confidence interval at the confidence
level γ = 0.95 or 0.99 for the q-quantile with q = 0.5 (median), q = 0.75 (quartile) and q = 0.95.
The confidence interval is [x(j), x(k)], where x(j) is the jth data point in increasing order.

The confidence intervals for q = 0.05 and q = 0.25 are not given in the tables. They can be
deduced by the following rule. Let [x(j), x(k)] be the confidence interval for the q-quantile given
by the table. A confidence interval for the 1 − q-quantile is [x(j′), x(k′)] with

j′ = n+ 1 − k

k′ = n+ 1 − j

For example, with n = 50, a confidence interval for the third quartile (q = 0.75) at confidence
level 0.99 is [x(29), x(45)], thus a confidence interval for the first quartile (q = 0.25) at confidence
level 0.99 is [x(6), x(22)].



14.2. CONFIDENCE INTERVALS FOR QUANTILES 337

The tables give p, the actual confidence level obtained (it is not possible to obtain a confidence
interval at exactly the required confidence levels). For small values of n no confidence interval is
possible. For large n, an approximate value is given.
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n j k p

n ≤ 5: no confidence interval possible.
6 1 6 0.969
7 1 7 0.984
8 1 7 0.961
9 2 8 0.961
10 2 9 0.979
11 2 10 0.988
12 3 10 0.961
13 3 11 0.978
14 3 11 0.965
15 4 12 0.965
16 4 12 0.951
17 5 13 0.951
18 5 14 0.969
19 5 15 0.981
20 6 15 0.959
21 6 16 0.973
22 6 16 0.965
23 7 17 0.965
24 7 17 0.957
25 8 18 0.957
26 8 19 0.971
27 8 20 0.981
28 9 20 0.964
29 9 21 0.976
30 10 21 0.957
31 10 22 0.971
32 10 22 0.965
33 11 23 0.965
34 11 23 0.959
35 12 24 0.959
36 12 24 0.953
37 13 25 0.953
38 13 26 0.966
39 13 27 0.976
40 14 27 0.962
41 14 28 0.972
42 15 28 0.956
43 15 29 0.968
44 16 29 0.951
45 16 30 0.964
46 16 30 0.960
47 17 31 0.960
48 17 31 0.956
49 18 32 0.956
50 18 32 0.951
51 19 33 0.951
52 19 34 0.964
53 19 35 0.973
54 20 35 0.960
55 20 36 0.970
56 21 36 0.956
57 21 37 0.967
58 22 37 0.952
59 22 38 0.964
60 23 39 0.960
61 23 39 0.960
62 24 40 0.957
63 24 40 0.957
64 24 40 0.954
65 25 41 0.954
66 25 41 0.950
67 26 42 0.950
68 26 43 0.962
69 26 44 0.971
70 27 44 0.959

n ≥ 71 ≈ �0.50n −
0.980

√
n�

≈
�0.50n+1+
0.980

√
n�

0.950

n j k p

n ≤ 7: no confidence interval possible.
8 1 8 0.992
9 1 9 0.996
10 1 10 0.998
11 1 11 0.999
12 2 11 0.994
13 2 12 0.997
14 2 12 0.993
15 3 13 0.993
16 3 14 0.996
17 3 15 0.998
18 4 15 0.992
19 4 16 0.996
20 4 16 0.993
21 5 17 0.993
22 5 18 0.996
23 5 19 0.997
24 6 19 0.993
25 6 20 0.996
26 7 20 0.991
27 7 21 0.994
28 7 21 0.992
29 8 22 0.992
30 8 23 0.995
31 8 24 0.997
32 9 24 0.993
33 9 25 0.995
34 10 25 0.991
35 10 26 0.994
36 10 26 0.992
37 11 27 0.992
38 11 27 0.991
39 12 28 0.991
40 12 29 0.994
41 12 30 0.996
42 13 30 0.992
43 13 31 0.995
44 14 31 0.990
45 14 32 0.993
46 15 33 0.992
47 15 33 0.992
48 15 33 0.991
49 16 34 0.991
50 16 35 0.993
51 16 36 0.995
52 17 36 0.992
53 17 37 0.995
54 18 37 0.991
55 18 38 0.994
56 18 38 0.992
57 19 39 0.992
58 20 40 0.991
59 20 40 0.991
60 20 40 0.990
61 21 41 0.990
62 21 42 0.993
63 21 43 0.995
64 22 43 0.992
65 22 44 0.994
66 23 44 0.991
67 23 45 0.993
68 23 45 0.992
69 24 46 0.992
70 24 46 0.991
71 25 47 0.991
72 25 47 0.990

n ≥ 73 ≈ �0.50n −
1.288

√
n�

≈
�0.50n+1+
1.288

√
n�

0.990

Table 14.1: Quantile q = 50%, Confidence Levels γ = 95% (left) and 0.99% (right)
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n j k p

n ≤ 10: no confidence interval possible.
11 5 11 0.950
12 6 12 0.954
13 7 13 0.952
14 7 14 0.972
15 8 15 0.969
16 9 16 0.963
17 9 17 0.980
18 9 17 0.955
19 10 18 0.960
20 12 20 0.956
21 12 20 0.960
22 13 21 0.956
23 13 22 0.974
24 14 23 0.970
25 14 24 0.982
26 15 24 0.959
27 16 25 0.958
28 17 26 0.954
29 17 27 0.971
30 17 27 0.954
31 18 28 0.958
32 20 30 0.956
33 20 30 0.958
34 21 31 0.955
35 22 32 0.950
36 22 33 0.968
37 22 34 0.979
38 23 34 0.961
39 24 35 0.960
40 25 36 0.958
41 25 37 0.972
42 25 37 0.961
43 26 38 0.963
44 28 40 0.961
45 28 40 0.963
46 28 40 0.951
47 29 41 0.953
48 31 43 0.952
49 31 43 0.954
50 32 44 0.952
51 32 45 0.966
52 33 46 0.964
53 33 47 0.975
54 34 47 0.959
55 35 48 0.959
56 36 49 0.957
57 36 50 0.969
58 37 50 0.951
59 38 51 0.951
60 39 53 0.961
61 39 53 0.963
62 39 53 0.954
63 40 54 0.956
64 42 56 0.955
65 42 56 0.956
66 43 57 0.955
67 44 58 0.952
68 44 59 0.966
69 44 60 0.975
70 45 60 0.962
71 46 61 0.961
72 47 62 0.960
73 47 63 0.971
74 48 63 0.956
75 49 64 0.956

n ≥ 76 ≈ �0.75n −
0.849

√
n�

≈
�0.75n+1+
0.849

√
n�

0.950

n j k p

n ≤ 16: no confidence interval possible.
17 7 17 0.992
18 8 18 0.993
19 9 19 0.993
20 10 20 0.993
21 11 21 0.991
22 11 22 0.995
23 12 23 0.994
24 13 24 0.992
25 13 25 0.996
26 13 25 0.993
27 15 27 0.992
28 15 27 0.993
29 16 28 0.992
30 16 29 0.995
31 17 30 0.994
32 18 31 0.993
33 18 32 0.996
34 19 32 0.991
35 20 33 0.990
36 21 35 0.991
37 21 35 0.993
38 21 35 0.990
39 23 37 0.990
40 23 37 0.991
41 23 39 0.997
42 24 39 0.994
43 25 40 0.993
44 26 41 0.992
45 26 42 0.995
46 27 42 0.990
47 28 44 0.993
48 29 45 0.991
49 29 45 0.993
50 29 45 0.990
51 31 47 0.990
52 31 47 0.991
53 31 49 0.996
54 32 49 0.993
55 33 50 0.993
56 34 51 0.992
57 34 52 0.995
58 35 52 0.991
59 36 53 0.990
60 37 55 0.992
61 37 55 0.993
62 37 55 0.991
63 39 57 0.991
64 39 57 0.991
65 40 58 0.991
66 41 59 0.990
67 41 60 0.993
68 42 61 0.993
69 42 62 0.995
70 43 62 0.992
71 44 63 0.991
72 45 64 0.991
73 45 65 0.994
74 45 65 0.992
75 47 67 0.992
76 48 68 0.991
77 48 68 0.992
78 48 68 0.991
79 50 70 0.991
80 50 70 0.991
81 51 71 0.990

n ≥ 82 ≈ �0.75n −
1.115

√
n�

≈
�0.75n+1+
1.115

√
n�

0.990

Table 14.2: Quantile q = 75%, Confidence Levels γ = 95% (left) and 0.99% (right)
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n j k p

n ≤ 58: no confidence interval possible.
59 50 59 0.951
60 52 60 0.951
61 53 61 0.953
62 54 62 0.955
63 55 63 0.957
64 56 64 0.958
65 57 65 0.959
66 58 66 0.961
67 59 67 0.962
68 60 68 0.963
69 61 69 0.964
70 62 70 0.964
71 63 71 0.965
72 64 72 0.965
73 65 73 0.966
74 66 74 0.966
75 67 75 0.966
76 68 76 0.966
77 69 77 0.966
78 70 78 0.966
79 71 79 0.966
80 72 80 0.965
81 73 81 0.964
82 74 82 0.964
83 75 83 0.963
84 76 84 0.962
85 77 85 0.961
86 78 86 0.960
87 79 87 0.959
88 80 88 0.957
89 81 89 0.956
90 82 90 0.954
91 83 91 0.952
92 84 92 0.950
93 84 93 0.974
94 85 94 0.973
95 86 95 0.972
96 87 96 0.971
97 88 97 0.970
98 89 98 0.969
99 90 99 0.967
100 91 100 0.966
101 91 100 0.952
102 92 101 0.953
103 93 102 0.953
104 94 103 0.954
105 95 104 0.954
106 96 105 0.954
107 97 106 0.954
108 98 107 0.954
109 99 108 0.954
110 100 109 0.954
111 101 110 0.954
112 102 111 0.953
113 103 112 0.953
114 104 113 0.952
115 105 114 0.951
116 106 115 0.950
117 107 117 0.965
118 108 118 0.963
119 109 119 0.961
120 110 120 0.959
121 110 120 0.967
122 111 121 0.966
123 112 122 0.966

n ≥ 124 ≈ �0.95n −
0.427

√
n�

≈
�0.95n+1+
0.427

√
n�

0.950

n j k p

n ≤ 89: no confidence interval possible.
90 76 90 0.990
91 79 91 0.990
92 80 92 0.990
93 81 93 0.991
94 82 94 0.991
95 83 95 0.991
96 84 96 0.992
97 85 97 0.992
98 86 98 0.992
99 87 99 0.992
100 88 100 0.993
101 89 101 0.993
102 90 102 0.993
103 91 103 0.993
104 92 104 0.993
105 93 105 0.993
106 94 106 0.993
107 95 107 0.993
108 96 108 0.993
109 97 109 0.993
110 98 110 0.993
111 99 111 0.993
112 100 112 0.993
113 101 113 0.993
114 102 114 0.992
115 103 115 0.992
116 104 116 0.992
117 105 117 0.992
118 106 118 0.991
119 107 119 0.991
120 108 120 0.991
121 109 121 0.990
122 109 122 0.995
123 110 123 0.995
124 111 124 0.995
125 112 125 0.994
126 113 126 0.994
127 114 127 0.994
128 115 128 0.994
129 116 129 0.993
130 117 130 0.993
131 118 131 0.993
132 119 132 0.992
133 120 133 0.992
134 121 134 0.992
135 122 135 0.991
136 123 136 0.991
137 124 137 0.990
138 124 138 0.995
139 125 139 0.995
140 126 140 0.995
141 127 141 0.994
142 127 141 0.992
143 128 142 0.992
144 129 143 0.992
145 130 144 0.992
146 131 145 0.992
147 133 147 0.992
148 134 148 0.992
149 135 149 0.992
150 136 150 0.991
151 137 151 0.991
152 138 152 0.990
153 138 152 0.992
154 139 153 0.992

n ≥ 155 ≈ �0.95n −
0.561

√
n�

≈
�0.95n+1+
0.561

√
n�

0.990

Table 14.3: Quantile q = 95%, Confidence Levels γ = 95% (left) and 0.99% (right)
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