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PREFACE

Performance Evaluation is often the critical part in evaluating the results of a research project.
Many of us are familiar with simulations, but it is often difficult to address questions like: Should
| eliminate the beginning of the simulation in order to wait until the system stabilizes ? | smulate
a random way point model but the average speed in my simulation is not as expected. What
happened ? The reviewers of my study complained that | did not provide confidence intervals.
What isthat ? How do | get them ?

Thisbook isthe set of lecture notesfor acourse given at EPFL. With this book and some accompa-
nying practicals, you will be able to answer these and other questions, more generally, to evaluate
the performance of computer and communication systems and master the theoretical foundations
of performance evaluation and of the corresponding software packages.

In the past, many textbooks on performance evaluation have given the impression that thisis a
complex field, with lots of baroque queuing theory excursions, which can be exercised only by
performance evaluation experts. It does not have to be so. In contrast, performance evaluation can
and should be performed by any computer engineering specialist who designs a system. When
a plumber installs pipes in our house, one expects her to properly size their diameters; the same
holds for computer engineers.

This book is not for the performance evaluation specialist. It is for every computer engineer
or scientist who is active in the development or operation of software or hardware systems. The
required background is an elementary course in probability and onein calculus.

Thefirst objective of the book isto make performance evaluation usable by all computer engineers
and scientists. The foundations of performance evaluation are in statistics and queuing theory,
therefore, some mathematics is involved and the text cannot be overly simplified. However, it
turns out that much of the complications are not in the general theories, but in the exact solution
of specific models. For example, some textbooks on statistics (but none of the ones | cite in
the reference list) develop various solution techniques for specific models, the vast majority of
which are encapsulated in commercialy or freely available software packages like Matlab, S
PLUS, Excel, Scilab or R.

To avoid this pitfall, | focused first on the what before the how. Indeed, the most difficult question
in a performance analysis is often “what to do”; once you know what to do, it is less difficult to
find a way with your usual software tools or by shopping the web. For example, what do we do
when we fit amodel to data using least square fitting (the answer isin Chapter 4) ? | also looked
for solution methods that are universal, i.e., that apply in al situations, smple or complex. For

XVii
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example, computing confidence or prediction intervals can be made simple and systematic is we
use the median and not the mean; if we have to use the mean, the use of likelihood ratio statistic
is quite universal and requires little intellectual sophistication about the model. | give a coverage
of queuing theory that focuses on universal laws and patterns rather than the solution of specific
gueuing networks. During a performance analysis, one is often confronted with the dilemma:
should | use an approximate model for which exact solutions exist, or should | use approximate
solutions for a more exact model ? | took the second option as much as possible. A benefit isto
use methods that apply practically always, instead of dwelling on the meanders of explicit, exact
closed forms that apply only with unrealistic, restrictive assumptions.

Part | isa self-contained first cour se that addresses the first objective. It contains al the materia
needed by an engineer who wishes to evaluate the performance of a computer or communication
system. Chapter 1 gives a methodology and serves as introduction to the rest of the book. Chap-
ter 2 describes how to quantify the accuracy of results. In Chapter 4 we present a general method
for fitting an explanatory model to data. Chapter 3 discusses ssimulation and its application to
performance evaluation. Chapter 5 describes performance patterns, i.e., facts that repeatedly ap-
pear in various situations, and whose knowledge considerably helps the performance evaluation.
Chapter 6 discusses patterns specific to queuing.

A second objective is to introduce the computer engineer to more specialized topics, that are not
more complex, but whose applicability is restricted to more specific areas. This is covered by
Part I1. Chapter 7 describes the techniques of tests. Chapter 8 discusses the background needed
for load generation. Chapter 9 describes the techniques used for forecasting the load intensity.
Chapter 10 describes the concepts of 1ong range dependence, afeature found in most traffic traces.
Last, Chapter 11 describes Palm calculus, which relates the different viewpoints resulting from
measurements done by different operators. This is generaly considered too complicated for ap-
plied textbooks, but, here too, | found that it is possible to convey the main ideas and resultsin a
simple, accessible way.

A typical course for computer engineers would consist of Part | and, depending on the focus of the
students, a few selected topics from Part 11. Sections marked with ax can be omitted or skimmed,
depending on the reader’s inclination. This applies to both Parts| and I1. Text in small font size can be
skipped at first reading.

Performance evaluation is primarily an art, and involves using sophisticated tools such as mathe-
matical packages, measurement tools and simulation tools. See the web site of the EPFL lecture
on Performance Evaluation for some examples of practicals designed around this book.

The text isintended for self-study. It contains many inline questions; | invite the alert readers to
try and answer the questions as they read.

QUESTION 0.0.1. Whereisthe answer to an inline question ? *

Every chapter contains areview section that summarizes the main points and also contains further
inline questions. The exer cise section can be used as assignments in a lecture. The solutions are
available on request; if time permits, a solution manual will eventually be available. The Index
collects all terms and expressions that are highlighted in the text like this and also serves as a
notation list. An appendix gives background material on probability and calculus.

In afootnote on the same page
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1.1 WHAT ISPERFORMANCE EVALUATION ?

In the context of this book, performance evaluation is about quantifying the service delivered
by a computer or communication system. For example, we might be interested in knowing the
response time experienced by a customer performing a reservation over the Internet; or we might

be interested in comparing two compilers for a multiprocessor machine.

The performance metric isameasurable quantity that precisely captureswhat we want to measure
— it can take many forms. There is no general definition of a performance metric: it is system
dependent, and its definition requires understanding the system and its users well. We will often
mention examples where the metric is throughput (number of tasks completed per time unit) or
response time (time elapsed between a start and an end events). For each performance metric,
we may be interested in average, 95-percentile, worst-case, etc. We discuss this point in detail in

Chapter 2.



4 CHAPTER 1. METHODOLOGY

A particular feature of computer or communication systems is that their performance depends
dramatically on the workload (or simply load) they are subjected to. The load characterizes the
guantity and the nature of requests submitted to the system. Consider for example the problem of
guantifying the performance of aweb server. We could characterize the load by a simple concept
such as the number of requests per second. Thisis called theintensity of the workload. In general,
the performance deteriorates when the intensity increases, but often the deterioration is sudden;
this is due to the non-linearity of queuing systems — an example of performance pattern that is
discussed in Section 1.3 and Chapter 6. The performance of a system depends not only on the
intensity of of the workload, but also its nature; for example, on a web server, all requests are
not equivalent: some web server softwares might perform well with get requests for frequently
used objects, and less well with requests that require database access, for some others it might
be different. This is addressed by using standardized mixes of web server requests. They are
generated by a benchmark, defined as a load generation process that intends to mimic atypical
user behaviour. In Chapter 8 we study how such a benchmark can be constructed.

ExampPLE 1.1: Quiz. Consider the following cases and answer the next question.

Design web server code that is efficient and fast.
Compare TCP-SACK versus TCP-new Reno for hand-held mobile devices.
Compare Windows 2000 Professional versus Linux.
Design a rate control for an internet audio application.
Compare various wireless MAC protocols.
Say how many servers a video on demand company needs to install.
Compare various compilers.
How many control processor blades should this Cisco router have ?
9. Compare various consensus algorithms.
10. Design bug-free code.
11. Design a server farm that will not crash when the load is high.
12. Design call center software that generates guaranteed revenue.
13. Size a hospital’s information system.
14. What capacity is needed on an international data link ?
15. How many new servers, if any, should | install next quarter for my business ap-
plication ?

N~ LONE

QUESTION 1.1.1. Say which examples require a detailed identification of the intensity of the
workload. !

If you score more than 12 correct answers, then proceed with this course. Else, go
back to the beginning of the lecture.

ExamMpPLE 1.2: Consider the following performance evaluation results:

(A1) PC configuration 1 is 25% faster than PC configuration 2 when running Excel

1Examples 6, 8,13, 14, 15.
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(A2) Foryour video on demand application, the number of required servers is 35, and
the number of disk units is 68.
(A3) Using the new version of sendfile () increases the server throughput by 51%

QUESTION 1.1.2. What is the difference between Examples (A1) to (A3) ? 2

The goal of a performance evaluation study is usually either acomparison of design alternatives
i.e. quantify the improvement brought by a design option or system dimensioning, i.e. deter-
mining the size of al system components for a given planned utilization. Comparison of designs
requires a well-defined load model; however, the exact value of its intensity does not have to be
identified. In contrast, system dimensioning requires a detailed estimation of the load intensity.
Like any prediction exercise, thisis very hazardous. For any performance evaluation, it isimpor-
tant to know whether the results depend on a workload prediction or not. Forecasting techniques
are the object of Chapter 9.

The benefit of a performance evaluation study has to be weighted against its cost and the cost
of the system. In practice, detailed performance evaluations are done by product development
units (system design). During system operation, it is not economical (except for huge systems
such as public communication networks) to do so. Instead, manufacturers provide engineering
rules, which capture the relation between load intensity and performance. Example (A2) aboveis
probably best replaced by an engineering rule such as:

EXAMPLE 1.3: ENGINEERING RULE.

(E2) For your video on demand application, the number of required servers is given
by N1 = [& + £ and the number of disk units by N = [;&; + £, where R
[resp. B]is the number of residential [resp. business] customers.

In this lecture, we study the techniques of performance evaluation that apply to all these cases.
However, how to implement a high performance system (for example: how to efficiently code a
real time application in Linux) or how to design bug-free systems are outside the scope.

QUESTION 1.1.3. Among the examples in Example 1.1 on page 4, say which ones fall within the
scope of this lecture ? 3

1.2 How To EVALUATE PERFORMANCE

Thefirst step isto clearly define the goal of the performance evaluation, as discussed in the previ-
ous section. Once the goal isidentified, it remains to define ametric and aload model. All of this
requires knowing the system and its use.

2(A1), (A3) are about a comparison; (A2)is about dimensioning
SAll except 1, 4, 10
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EXAMPLE 1.4: WINDOWS VERSUS LINUX. Assume you want to compare Windows
versus Linux. Chen and its co-authors did it in [Chen95-SOSP].

QUESTION 1.2.1. What metric and load model would you use ? #

The performance evaluation can then proceed with a solution method, which usualy fallsin one
of the three cases below. Which method to use depends on the nature of the problem and the skills
or taste of the evaluation team.

e Measurement of the real system. Likein physics, it is hard to measure without disturbing
the system. Some special hardware devices (e.g.: optical splitters in network links) some-
times can prevent any disturbance. If, in contrast, measurements are taken by the system
itself, the impact has to be analyzed carefully. Measurements are not always possible (eg. if
the system does not exist yet). It sometimes requires a complex instrumentation.

e Discrete Event Simulation: asimplified model of the system and its load are implemented
in software. Timeissimulated and typically flows orders of magnitude more slowly than redl
time. The performance of interest is measured as on a real system, but measurement side-
effects are usually not present. It is often easier than a measurement study, but not always.
It is the most widespread method and is the object of Chapter 3.

e Analytical: A mathematical model of the system is analyzed numerically. Thisis viewed
by some as a specia form of simulation. It is often much quicker than simulation, but
sometimes wild assumptions need to be made in order for the numerical procedures to be
applicable. Analytical methods are often used to gain insight during a development phase,
or aso to learn fundamental facts about a system, which we call “patterns’. The chapters
in Part Il make abundant use of analytical methods. We also show in Chapter 6 how some
performance analyses can be solved approximately in a very ssimple way, using bottleneck
analysis; see Section 6.5 for aexample.

Further, one needs to establish alist of factors: these are elements in the system or the load that
affect the performance. Ignoring some hidden factors may invalidate the result of the performance
evaluation.

QUESTION 1.2.2. Consider again comparing Windows versus Linux. Can you imagine what fac-
tors might play an important role in the analysis ? What external factors have to be taken care of
during the evaluation ? °

Knowing al factors is a tedious, but necessary task. This implies that you have to know your
system well, or be assisted by people who know it well.

4Chen et a used the metric: number of cycles, instructions, data read/write operations. The load was generated by
various benchmarks: “syscall” generates elementary operations (system calls); “memory read” generates references
to an array; an application benchmark runs a popular application (here: ghostview).

SFrom [Chen95-SOSP]: External factors are: background activity; multiple users; network activity. These were
reduced to a minimum by shutting the network down and alowing one single user. The different ways of handling
idle periods in Windows NT and NetBSD also need to be accounted for, because they affect the interpretation of
measurements. Cycle countsin idle periods of NetBSD have to be removed.
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1.3 PERFORMANCE PATTERNS

Last, performance evaluation is simpler if the evaluator is aware of known performance patterns.
Look at the top figure on the cover page: “We doubled the throughput, you'll be twice as fast”.
Does it make sense ? Isit areasonable promise ? The behaviour of queuing systems follow some
well known patterns. If we know them, we are likely to come more quickly to a conclusion. We
discussthisexamplein Section 6.5. The prominent pattern in queuing is bottlenecks. In most sys-
tems of interest, the overall performance is dictated by the behaviour of the weakest components,
called the bottlenecks.

ExAMPLE 1.5: BOTTLENECKS. You are asked to evaluate the performance of an
information system. An application server can be compiled with two options, A and
B. An experiments was done: ten test users (remote or local) measured the time to
complete a complex transaction on four days. On day 1, option A is used; on day 2,
option B is. The results are in Table 1.3. The expert concluded that the performance
for remote users is independent of the choice of an information system, but A has
higher performance for local users. Six months later, the same experiment is done,
but now the results are different, i.e., A is always better.

QUESTION 1.3.1. Can you think of an interpretation ? ©

remote | locd remote | local
A | 123 43 Al 141 75
189 38 175 71
99 49 192 62
167 37 187 73
177 44 125 58
B 107 62 B| 201 90
179 69 178 83
199 56 193 102
103 47 182 78
178 71 186 92

Table 1.1: Data for Example 1.5 on page 7: measured performance of an information systems with two
compiler options A and B. Test users measured the time to complete a complex transaction. Left: results of
first tests. Right: results six months later.

The important thing about bottleneck is that they depend on all parameters of the system and the
load: a component may be a bottleneck in some conditions, not in others. Knowing bottlenecks
may considerably simplify the performance evaluation, asillustrated by the following example.
More details can be found in Section 6.3.3.

5\We cannot know from this simple series of facts. In fact, further measurements showed that all remote users
access the information system via modem lines and an internet provider, which is the bottleneck in the first case. In
the second case, the bottleneck isthe server itself.
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ExAmMPLE 1.6: CPU MODEL. A detailed screening of a transaction system shows that
one transaction costs in average: 1'238'400 CPU instructions; 102.3 disk accesses; 4
packets sent on the network. The processor can handle 10? instructions per second;
the disk can support 10* accesses per second; the network can support 10* packets
per second. We would like to know how many transactions per second the system
can support.

QUESTION 1.3.2. Can you give a rough estimate ? If you want more accuracy, what would
you study in detail ? 7

Patterns are discussed in Chapter 5 and Chapter 6. The next example illustrates some of them.

EXAMPLE 1.7: PATTERNS. Consider the following scenarios.

1. The web server used for online booking at the “Féte des Vignerons” was so
popular that it collapsed under the load, and was unavailable for several hours.

2. Buffers were added to an operating system task, but the overall performance
was degraded (instead of improved, as expected).

. When too many users are using the international link, the response time is poor

4. When too many users are present on the wireless LAN, no one gets useful work
done

. A traffic volume increase of 20% caused traffic jams

. A new road was opened in the city center but there was no improvement

7. New parking facilities were created but there was no improvement

w

o Ol

and the following patterns

(&) non-linearity of response time with respect to load
(b) congestion collapse (useful work decreases as load increases)
(c) performance is determined by bottleneck

QUEsTION 1.3.3. For each of the examples above, say which of the three patternsis present.
8

"The utilization per transactionis: CPU:0.12% —disk:1.02% —network:0.04%. The disk isthe bottleneck; an upper
bound on the capacity is 99 tps. To obtain more details, afirst step isto model queuing at disk access, to see at which
number of tps delays start becoming large. A global queuing model of CPU, disk access and network is probably not
necessary.

81b; 2: maybe b, maybe other (see Chapter 5); 3a; 4b; 5b; 6: maybe b, maybe other (see Chapter 5); 7¢



1.4. OTHER GUIDELINES FOR A SUCCESSFUL PERFORMANCE EVALUATION 9

1.4 OTHER GUIDELINESFOR A SUCCESSFUL PERFORMANCE
EVALUATION

1.4.1 THE SCIENTIFIC METHOD

The scientific method applies to any technical work, not only to performance evaluation. However,
in the author’s experience, lack of scientific method is one prominent cause for failed performance
studies. In short, the scientific method ssimply requires that you do not believe in a conclusion
unlessit isthoroughly tested.

EXAMPLE 1.8: JOE’S KIOSK. Joe’s e-kiosk sells online videos to customers equipped
with wireless PDAs. Before deployment, performance evaluation tests are performed,
as shown on Figure 1.1(a).

QUESTION 1.4.1. What do you conclude about the throughput ? ©

Joe concludes that the bottleneck is the wireless LAN and decides to buy and install
2 more base stations. After installation, the results are on Figure 1.1(b).

QUESTION 1.4.2. How do you interpret this ? 1°

Joe scratches his head and decides to go more carefully about conclusions. Mea-
surements are taken on the wireless LAN; the number of collisions is less than 0.1%,
and the utilization is below 5%. This confirms that the wireless LAN is not a bottle-
neck. Joe makes the hypothesis that the bottleneck may be on the server side. After
doubling the amount of real memory allocated to the server process, the results are
as shown on Figure 1.1(c).

QUESTION 1.4.3. What do you think ? 1

First, acommon pitfall isto draw conclusions from an experiment that was not explicitly designed
to validate these conclusion. Therisk isthat hidden factors might interfere, asillustrated by the pre-
vious example. Indeed, Joe concluded from the first experiment that the LAN performance would
be improved by added a base station; this may have been suggested by the result of Figure 1.1(a),
but this is not sufficient. It is necessary to perform other experiments, designed to validate this
potential conclusion, before making afinal statement.

EXAMPLE 1.9: IS ATM UBR BETTER THAN ATM ABR ?.  In [Manthorpe00], the
authors evaluate whether the ATM-UBR protocol is better than ATM-ABR (both are al-
ternative methods used to manage switches used in communication networks). They
use a typical scientific method, by posing each potential conclusion as a hypothesis
and designing experiments to try and invalidate them:

91t reaches amaximum at around 8 tps.
10There is no improvement. The conclusion that the wireless LAN was a bottleneck was wrong.
1The bottleneck is now removed, which confirms that the real memory was the limiting factor.
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Figure 1.1: Performance results for Joe’s server. X-axis: offered load; Y-axis: achieved throughput, both
in transactions per second.

ABSTRACT. We compare the performance of ABR and UBR for providing
high-speed network interconnection services for TCP traffic. We test the
hypothesis that UBR with adequate buffering in the ATM switches results
in better overall goodput for TCP traffic than explicit rate ABR for LAN in-
terconnection. This is shown to be true in a wide selection of scenarios.
Four phenomena that may lead to bad ABR performance are identified and
we test whether each of these has a significant impact on TCP goodput.
This reveals that the extra delay incurred in the ABR end-systems and the
overhead of RM cells account for the difference in performance. We test
whether it is better to use ABR to push congestion to the end-systems
in a parking-lot scenario or whether we can allow congestion to occur in
the network. Finally, we test whether the presence of a “multiplexing loop”
causes performance degradation for ABR and UBR. We find our original
hypothesis to be true in all cases. We observe, however, that ABR is able
to improve performance when the buffering inside the ABR part of the net-
work is small compared to that available at the ABR end-systems. We also
see that ABR allows the network to control fairness between end-systems.

Second, give the accuracy of your quantitative results. Consider the measured datain Table 1.3.
There is a lot of variability in them; saying that the average response time is better with B than
A is not sufficient; it is necessary to give uncertainty margins, or confidence intervals. Thisisthe
objects of the techniques discussed in Chapter 2.

Last, make the results of your performance evaluation easily reproducible. Thisimplies that al
assumptions are made explicit and documented.
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1.4.2 DIJKSTRA’SPRINCIPLE

Like the scientific method, it is a common sense principle that applies to any technical activity. It
is known under several equivalent forms, al of which can be summarized by: Remove what can
be removed.

e (Occam:) if two models explain some observations equally well, the simplest one is prefer-
able

e (Dijkstra:) It iswhen you cannot remove a single piece that your design is compl ete.
e (Common Sense:) Use the adequate level of sophistication.

For example, using a detailed simulation to answer Question 1.3.2 would violate this principle.

1.5 REVIEW

1.5.1 CHECK-LIST

PERFORMANCE EVALUATION CHECKLIST

PE1 Defineyour goal. For example: dimension the system, find the overload behaviour; evaluate
aternatives. Do you need a performance evaluation study ? Aren’t the results obvious ? Are
they too dependent on the input factors, which are arbitrary ?

PE2 Identify the factors. What are al the factors ? are there external factors which need to be
controlled ?

PE3 Defineyour metrics. For example: response time, server occupancy, number of transactions
per hour, Joule per Megabyte.

PE4 Define offered load. How isit expressed: transactions per second, number of users, number
of visits per hour ? Isit measured on areal system ? artificial load generated by a simulator,
by a synthetic load generator ? load model in atheoretical model ?

PE5 Know your bottlenecks. The performance often depends only on asmall number of factors,
often those whose utilization (= load/capacity) is high. Make sure what you are evaluating
is one of them.

PE6 Know your system well. Know the system you are evaluating and list all factors. Use
evaluation tools that you know well.

GENERAL PURPOSE CHECKLIST

S1 Scientific Method
do {Define hypothesis; design experiments; validate } until validation is OK
S2 Quantify the accuracy of your results.
S3 Make your findings reproducible; define your assumptions.
D1 Remove what can be removed.
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1.5.2 REVIEW QUESTIONS

QUESTION 1.5.1. Consider examples 11 and 12 in Example 1.1 on page 4. Which performance
pattern do they correspond to ? 2

QUESTION 1.5.2. Consider dlides298 and 299 in Nitin Vaidya’ stutorial at Mobicom 2000 [ Vai dya00-
Mobicoml]. The author studiesthe performance of TCP on a mobile ad-hoc network, asa function
of speed (of mobile). What can you conclude from these two slides ? 3

QUESTION 1.5.3. Consider slides 300-305 in Nitin Vaidya’stutorial at Mobicom 2000 [ Vai dya00-
Mobicom2]. What can you conclude from these six slides ? 14

QUESTION 1.5.4. What further measurements could be done to confirm the conclusion drawn in
Question 1.3.1. ©®

1.6 EXERCISES

EXERCISE 1.1. Read [ Sngh02-Sgmetrics| and answer the following questions.

isthe goal of the evaluation well defined ? What isit ?

are the factors identified ? What are they ?

what performance indices are chosen ?

how is the workload generated ?

are there implicit assumptions that should have been formulated ?

are the experiments or results reproducible ?

what conclusions can be drawn from the study ?

is the approach scientific ? do you believe the conclusions ? why ?

what techniques are used for the evaluation ?

isthe level of sophistication adequate ?

. was a performance analysis justified (aren’t the results obvious or too dependent on input
factors, which are arbitrary) ?

12. isthere any part that can be removed ?

13. arethe graphics OK ?

14. what aspects of the evaluation do you like or dislike?

Cwowwm~Nooa,r~wWNPE

B
|_\

EXERCISE 1.2. Same question with [ Tan02-Sgmetrics]

12Absence of congestion collapse.

13That mobility decreases throughpt.

14That the previous conclusion was premature.

15pose as assumption that the performance is a function of proportion of remote users and total load. Make mea-
surements where these two factors take different values and analyze the dependency (for example, using a linear
regression, see Part ?7?).
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CONFIDENCE INTERVALS

In most measurements or simulations, we obtain data with some variability. The goal of this
chapter isto review the techniques used to summarize such datainto asmall set of useful numbers,
and to quantify the accuracy of the summarized data. Unfortunately, there are several competing
summarization results, some of which are in widespread use due to historical more than scientific
reasons. We first review these results, then we discuss their use in our setting. We use standard

definitions of probability theory recalled in appendix.
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2.1 SUMMARIZING PERFORMANCE DATA

WHAT ISSUMMARIZATION ? Assume you have obtained alarge set of results for the value of
a performance metric. This can be fully described by the distribution of the data, and illustrated
by a histogram. The histogram displays on the y-axis the ratio of data that fall in the bin on the x
axis. Summarizing means compressing it into one or afew numbers that represent both its average
and variability. In practice of communication and information systems, this is done by either one
of the following two:

Median and Quantile. A median is avalue that falls in the middle of the distribution, i.e. 50%
of the data is below and 50% above. A p%-quantile leaves p% of the observation below and
100 — p% above. The median gives some information about the average, while extreme quantiles
give information about the dispersion. A commonly use plot isthe Box Plot. It shows the median,
the 25% and 75% quantiles (called “quartiles’) and the “outliers’, defined as data points that are a
fixed fraction away from the quartiles. It also shows variability by the following heuristic. It plots
aline that extends to the most extreme value up to 1.5 times the inter-quartile distance (distance 3
on Figure 2.1).
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The sample median of a data set is defined as follows. Assume there are n data points x4, ..., z,,. Sort the points
inincreasing order and obtain z(;) < ... < x(,). If n isodd, the median is T(ng1), else %(x(%) + x(%ﬂ)). More
generally, the sample ¢- quantile is defined as “=272¢0 with &/ = |gn+ (1 —q)] and k' = [gn + (1 — ¢)]. =] is
the largest integer < x and [z isthe smallest integer > «

Mean and Standard Deviation. The mean m of adata set =y, ...,z, iIsm = % Yo It
gives some information about the average. The standard deviation s of a data set is defined by
s2=15" (z;—m)’ors®=-L3"" (2, —m)” (either conventionsare used — see Section 2.2
for an explanation). It gives information about the variability. The use of standard deviation is
rooted in the belief that data roughly follows a normal distribution, with some mean 1 and some
variance o2. The normal distribution is characterized by histogram with Bell shape (see appendix).
It is very frequently encountered because of the central limit theorem that says that an average of
many things tends to be normal (but see some exceptions in Chapter 8). If such a hypothesisis
true, and if we had m =~ p and o ~ s, then with 95% probability, the data sample would lie in
the interval m + 1.965s (see the normal distribution table in appendix). This justifies the use of
mean-variance plotslikein Figure 2.1 that use as a measure of variability theinterval m + 1.96s
(distance 3 on Figure 2.1). Thisisalso called a prediction interval since it predicts alikely range
for afuture sample (Section 2.5).

EXAMPLE 2.1: COMPARISON OF TwO OPTIONS. An operating system vendor claims
that the new version of the database management code significantly improves the
performance. We measured the execution times of a series of commonly used pro-
grams with both options. The data are displayed in Figure 2.1. The raw displays and
histograms show that both options have the same range, but it seems (graphically)
that the new system more often provides a smaller execution time. The box plots are
more suggestive; they show that the average and the range are about half for the new
system.

In Section 2.7 we discuss the differences between these two modes of summarization.

Comparing Data Sets is easily done with their empirical cumulative distribution functions
(ECDFs). The ECDF of adataset x4, ..., x,, isthefunction f defined by

1 n
fla) =~ Z_; Lz <z} 2.1)
so that f(z) isthe proportion of data samples that do not exceed . On Figure 2.2 we see that the

new data set clearly outperforms the old one.

2.2 CONFIDENCE INTERVALSFOR MEDIAN AND OTHER QUAN-
TILES

2.2.1 WHAT ISA CONFIDENCE INTERVAL ?

For any number that we display, we should give some statement about its accuracy: thisis a sci-
entific principle (Chapter 1). Confidence intervals quantify the uncertainty about a summarized
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Figure 2.1: Data for Example 2.1 on page 15. Top : measured execution time, in ms, for 100 transactions
with the old (left) and new (right) code, followed by histograms. Bottom left: Box Plot, showing median
(1), confidence interval for the median (2) and variability (3) for both old and new code. Bottom right: Box
Plots overlaid with: mean (1), confidence interval for the mean (2) prediction interval for a sample (3), using
formulas for the normal case.
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Figure 2.2: Data of Example 2.1 on page 15. Empirical distribution functions for the old code (right curve)
and the new one (left curve). The new outperforms the old, the improvement is significant at the tail of the
distribution.
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Figure 2.3: Data for Example 2.2 on page 17: reduction in run time (in ms). Right: Box plot with mean and
confidence interval for mean.

data due to the randomness of the measurements.

EXAMPLE 2.2: COMPARISON OF TWO OPTIONS, CONTINUED.  We wish to quantify
the improvement due to the new system. To this end, we measure the reduction in
run time for the same sequence of tasks as on Figure 2.1 (both data sets on Fig-
ure 2.1 come from the same transaction sequences — statisticians say that this is a
paired experiment). The differences are displayed in Figure 2.3, with Box-Cox and
mean/standard deviation diagrams. For example, the mean of the reduction in run
time is 26.1 + 10.2.The uncertainty margin is called the confidence interval for the
mean. It is obtained by the method explained in this section. Here, the mean reduc-
tion is non negligible, but the uncertainty about it is large.

Figure 2.1 and Figure 2.3 show confidence intervals for the mean (horizontal lines) and for the
median (notches in Box plot). Note that the confidence interval is not the same as a measure of
variability, though it isrelated, aswe discussin Section 2.7: on Figure 2.1 the confidence interval
for the mean is considerably smaller than the variability interval given by m + 1.96s. There is
a confidence interval for each of the summarized data given earlier: median, quantile, mean and
standard deviation.

2.2.2 ASSUMPTION ON INDEPENDENCE

We assume that the collected data comes from a set of independent and identically distributed
(iid) samples. We discuss this assumption in this section.

WHAT DOES|ID MEAN ?

lid is a property of a stochastic model, not of the data. When we say, by an abuse of language,
that the collected data set is iid, we mean that we can do as if the collected data =4, ..., z, isa
sample (i.e. asimulation output) for a sequence of random variables X1, ..., X,,, where X1, ..., X,
are independent and all have the same (maybe unknown) distribution with cdf F'().
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To generate such as sample, we draw arandom number from the distribution F'(), using arandom
number generator (see Section 3.6). Independence means that the random numbers generated at
every step ¢ are discarded and not re-used in the future stepsi + 1, .... Another way to think of
independence is with conditional probabilities: for any set of real numbers A

]P(XZ S A | X1 = T, ---7Xi—1 = Ii—l) = ]P(XZ € A) (22)

i.e. if we know the distribution F'(x), observing X1, ..., X;_; does not give more information
about what could happen to X;.

Note the importance of the “if” statement in the last sentence: if we remove it, the sentence is no
longer true. To understand why, consider a sample x4, ..., z,, for which we assume to know that
it is generated from a sequence of iid random variables X1, ..., X,, with normal distribution but
with unknown parameter (., o%). If we observe for example that the average of x4, ..., z,,_ iS 100
and all values are between 0 and 200, then we can think that it is very likely that x,, isaso in the
interval [0,200] and that it is unlikely that z,, exceeds 1000. Though the sequence is iid, we did
gain information about the next element of the sequence having observed the past. Thereis no
contradiction: if we know that the parameters of the random generator are . = 100 and 0% = 10
then observing x4, ..., x,,_1 givesus no information about z,,.

QUESTION 2.2.1. Give an example of identically distributed but dependent random variables. *

How DO | KNOW IN PRACTICE IF THE | ID ASSUMPTION ISVALID ?

If your performance data comes from adesigned experiment, i.e. aset of simulation or tests that
isentirely under your control, then it is up to you to design things in such away that the collected
dataareiid. Thisis done asfollows.

Every experiment has a number of factors, i.e., parametersthat are likely to influence the outcome.
Most of the factors are not really interesting, but you have to account for them in order to avoid
hidden factor errors (see Section 4.6 for details). The experiment generates iid data if the values
of the factors are chosen in an iid way, i.e., according to a random procedure that is the same for
every measured point, and is memoriless. Consider Example 2.1 on page 15, where the run time
for anumber of transactions was measured. One factor is the choice of the transaction. The dataiis
madeiid if, for every measurement, we choose one transactions randomly with replacement in a
list of transactions.

A special case of designed experiment is simulation. Here, the method isto generate replications
without resetting the random number generator, as explained in Section 3.3.

Else (i.e. your data does not come from a designed experiment but from measurements on a
running system) thereislittle chance that the complete sequence of measured dataisiid. A ssimple
fix is to randomize the measurements, in such a way that from one measurement point to the
other there is little dependence. For example, assume you are measuring the response time of an
operational web server by data mining the log file. The response time to consecutive requests is
highly correlated at the time scale of the minute (due to protocols like TCP); one common solution
isto choose requests at random, for example by selecting one request in average every two minutes.
If you are in doubt, you can verify the iid-ness by the methods discussed in Section 2.4.4.

Hereisasimpleone: assume X, X3, X5, ... areiid withcdf F() andlet X» = X, X4 = X3 etc. Thedistribution
of X; is F'() but thedistribution of X, conditional to X, = x; isadiracat z;, thusdependson x;. Therandom choices
taken for X influence (here deterministically) the value of X5.
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Do WE NEED THE |1 D ASSUMPTION ?

Theiid assumption is not mandatory, it is just a convenient one, which makes the computation of
confidence intervals easy (using the methods described in the rest of this chapter). It is possible
to obtain confidence intervals even when the data does not appear to be iid, but thisis an order of
magnitude more complicated. In Section 2.9, we study such an example.

2.2.3 CONFIDENCE INTERVAL FOR MEDIAN AND OTHER QUANTILES

We explain now how these confidence intervals are computed, which also serves as an illustration
of the general method for computing confidence intervals. The confidence interval for the median
is shown by notches on Box plots (Figure 2.1, (3) on Box plot). We start with the median and then
extend it to other quantiles.

Recall that we interpret the data x4, ..., z,, as a sample for a sequence of iid random variables
X1, ..., X, with common cdf F'(). The distribution F'() is non-random but is unknown. It has a
well defined median m, defined by P(X; < m) = 0.5. We can never know m exactly, but we
estimateit by m(zy, ..., z,), equa to the sample median defined in Section 2.11.1 (in Section 2.8
we discuss the choice of an estimator in more detail). Note that the value of the estimated median
depends on the data, so it is random: for different measurements, we obtain different estimated
medians. The goal of a confidence interval is to bound this uncertainty. It is defined relative to a
confidence level v; typicaly v = 0.95 or 0.99:

DEFINITION 2.2.1. A confidenceinterval at level v for the fixed but unknown parameter m isan
interval (u(Xy, ..., X,),v(X, .., X,,)) such that

P(u(Xy, ..., Xn) <m <v(Xy,...X,)) > v (2.3)

In other words, the interval is constructed from the data, such that with at least 95% probability (for
~ = 0.95) the true value of m fallsinit. Note that it is the confidence interval that is random,
not the unknown parameter m.

A confidence interval for the median or a quantile is obtained thanks to the following theorem.

THEOREM 2.2.1. Let X1, ..., X,, be n iid random variables whose common distribution has a

density. Let X1y < X9 < ... < X,,) bethe order statistic, i.e. the set of values of X; sorted
inincreasing order. For 0 < p < 1 let m, be a p-quantile of the common distribution of the X;s.
A confidence interval for m,, is [X(;), X()] where j and k satisfy B, ,(k — 1) — B, ,(j — 1) > v
(B, isthe cdf of the binomial distribution). See the tables in Section 14.2 for practical values.
For large n, the binomial cdf can be approximated by a normal distribution, as shown in the tables.

Note. The assumption that the distribution has a density is for simplicity of exposition. In practice it
holds when the values of X; are real numbers. Else, typically, X; takes integer values; the distribution
quantiles are defined as follows. The cdf F() is defined for integer arguments only; we can extend it
to real arguments by linear interpolation: F'(z) = (x — n)F(n+ 1) + (n +1 — 2)F(n) wheren is
the integer part of . This extension is continuous and a p- quantile is defined as a value of = such that
F(z) = p. In such cases the results are essentially the same.
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Proof. The distribution of the X;s has a density, so the cdf is continuous (it has no jump) and the
true (unknown) quantile m,, satisfies P(X; < m,) = p. Let Z, = 1if X; < m,, 0 otherwise and
N = Z,’f:l Z;,1.e. N isthe number of timesthat X; isbelow m,. We have the event equalities

Xy <mpy = {N2j}
(X =mpt = {N<k-1}
thus
P(X(j)<mp§X(k)):P(jSNSk_l):P(NSk—l)—IP’(Ngj_l)

Now Z; areiid Bernoulli(p) random variables thus NV is Binomial (n, p). Further, X; has a density and
thus (X(j),X(k)) as well (Chapter 12) and P (X(j) <my < X(k)) =P (X(j) <my < X(k)>. For
large n, we approximate the binomial cdf by N, ,2 with 4 = np and o = np(1 — p).

The valuesin Section 14.2 are chosen such that j and & are as symmetric as possible around %

O

For n = 10, the theorem and the table in Section 14.2 say that a 95%-confidence interval for the
medianis [X(2), X(9)]. Thetable also saysthat in fact this confidence interval is at the level 0.979.
Due to the discrete nature of the solution, it is not possible here to obtain exactly a confidence level

of 95%. Also recall that the estimated median is ~25%©,

For n = 31 the table gives the interval [X(10), X(22)]. Note that this is not the only interval that
can be obtained from the theorem. Indeed, we have:

j kP (X <mos < Xp)

9 21 0.959
10 22 0.971
11 283 0.959

Thus we have several possible confidence intervals. The table simply picked one for which the
indices are closest to being symmetrical around the estimated median, i.e. theindices j and k£ are
equally spaced around %L, which is used for estimating the median. In some cases, like n = 32,
we do not find such an interval exactly; we have for instance:

j k P (X(]) < Mmos < X(k))
10 22 0.965
11 23 0.965

Here, the table arbitrarily picked the former.

Note that for small values of n, no confidence interval is possible at levels0.95% or 0.99%. Thisis
because the probability that the true quantile is outside any of the observed datais till large. For
larger values of n, the confidence interval becomes much smaller.

ExAmMPLE 2.3: Figure 2.1 shows the confidence intervals for the medians computed
with this method.
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2.3 CONFIDENCE INTERVAL FORTHE MEAN AND STANDARD
DEVIATION

Estimating the mean with confidence interval is more complicated than for the median. Like before
we assume that the collected dataisiid. Here the normal distribution plays a specia role, due to
the central limit theorem which says that an average of many things that are not heavy tailed tends
to be normally distributed (see Chapter 12 for the central limit theorem and Chapter 8 for the
definition of heavy tail). Specifically, there are two special cases of interest:

e Normal, 11D: the common distribution is normal. Simple formulae are available (Sec-
tion 2.3.1 but we need to verify normality (Section 2.4).

e Large Sample, I1D: if the datais not normal but the sample sizeislarge (n > 30 or more,
depending on how much the distribution deviates from a normal one) then anormal asymp-
totic with smple formulas can be used (Section 2.3.2). Verification can be done as explained
in Section 2.4.

e General 11D: else the bootstrap estimate can be used. However, it tends to understimate the
confidence intervals.

2.3.1 NORMAL 11D CASE

We assume the common cdf of al X;sisnormal N, 2, where the parameters ;. and o2 are fixed
but unknown. The problem becomes now to estimate the mean ;. and the standard deviation o2.
The solution is provided by the following theorem.

THEOREM 2.3.1. Let X1, ..., X,, be a sequence of iid random variables with common distribution

N, »2. Define
i, = - i X, (2.9)
e N3 l .
1 n
S X; — ii,)? 2.
Oy n—1 ;( i :“n) (2.5)
Then
e The distribution of \/ﬁ% is Sudent’s ¢,,_;; a confidence interval for the mean at level
1—ais
X T
fin £ 77% (2.6)

wheren isthe (1 — &) quantile of the student distribution ¢,,_;.

e Thedistribution of (n — 1)% isx2_,. Aconfidenceinterval at level 1 — « for the standard
deviationis

6% S 5] (2.7)

n—1""Vn-1

where ¢ and ¢ are quantilesof x2_;: x2_,(¢()=5andx?_,({) =1-%.
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The distributions: y? and Student’s ¢ are defined in Chapter 12. For instance, with n = 100
and confidence level 0.95, we find from the tables in Section 14.1: n = 1.98, ( = 73.4, and
¢ = 128.4. This gives the confidence intervals for mean and standard deviation (we drop the
index n): [z — 0.1984, 1 + 0.1985] and [0.864, 1.145]. Note that the amplitudes of the confidence
intervals decrease roughly like %

Proof. 1. The random variable /i,, is hormal N ,2 . Therandom variable 52 has expectation o2 and a
distribution equal to o2y 2 _;. Thlsfollowsfrom Section 12.5.

2. The second bullet follows immediately.

3. Further, the general theory in Section 12.5 shows that 62 isindependent of ji,,. This, together with
the definition of the student ¢, shows thefirst bullet.

O

Comment 1. 1, and 6,, are estimators of the mean and standard deviation. The choice of /i,
(which is the sample mean) appears to be fairly natural for estimating the distribution mean. In
contrast, anatural estimator for the variance would be the mean squareerror s2 = = 37" | (X, — fin)”,
which differs from the definition in Equation (2.5) by the factor % instead of ﬁ; thisis required
for the statements in the theorem to hold exactly (see in the proof). We discuss a general theory
of estimators in Section 2.8. In practice, it is not required to have an extreme accuracy for the
estimator of o2 (since it is a second order parameter); thus using ﬁ or % makes little difference.
s, is often called the sample standard deviation.

Comment 2. The confi dence intervals in the theorem are not the only possible ones. Any interval
of theform [f, — m 2&, fi, + me2z] wheret, 1(—m) = a1, ty1(p2) =1 —aand oy + as = «
) : v Vn

is also a confidence interval; for example, with n = 100, n; = 2.37 and 5, = 1.77 correspond to

a; = 0.01 and a; = 0.04. In practice, asin the theorem, wetake a; = ap = 3.

Comment 3. Therandom variables \/ﬁ“jﬁﬁ and (n—1) Z—% are constructed from the data, but their
distribution is free of the parameters ;. and o. They are called pivots. Thetrick to find confidence
intervalsisto obtain a pivot.

EXAMPLE 2.4: FILE TRANSFER TIMES. Figure 2.4 shows the file transfer times ob-
tained in 100 independent simulation runs, displayed in natural and log scales. The
last panel shows 95%-confidence intervals for the mean of the data and the mean of
the log of the data, computed with Theorem 2.3.1 (assuming the data is normal) and
with the bootstrap method (explained in Section 2.3.3) for verification. The normal
assumption is valid in log scale, but not in natural scale.

QUESTION 2.3.1. Does the confidence interval for the mean depend on the estimator of the vari-
ance ? Conversely ? 2

2Yes; No
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Figure 2.4. File transfer times for 100 independent simulation runs, with confidence intervals computed
with (1) Theorem 2.3.1 (assuming the data is normal) and with (2) the bootstrap method Section 2.3.3)

2.3.2 GENERAL CASE, n LARGE

When the data sample is large, we can use the following asymptotic result for the mean; thereis
no simple result for the variance.

THEOREM 2.3.2. Let X1, ..., X,, ben iid random variables with a common distribution that has a
mean . and a variance o2. Define fi,, and s2 by

1 n
== Y X; 2.
fin = — 2 X (2.8)
1 & X
sn=—_ (Xi— i)’ (2.9)
=1

The distribution of +/(n) %2 tends to the normal distribution Ny; when n — +oc. An approxi-
mate confidence interval for themean at level 1 — o is

A Sn
+n— 2.10
i £ 01275 (2.10)
wheren isthe (1 — %) quantile of the normal distribution N ;.
Proof. By the central limit theorem, \f(n)“a—;“ convergesin distribution to Ny ;. Now
32 _ l i:XQ _ 'aQ
n n P 3 n
and by the strong law of large numbers, 2 3" | X2 converges aimost surely to E(X?) = 0% — % and
A2 to p?; thus s2 converges almost surely to o2, The rest follows from Theorem 12.2.1.
O

For instance, with n = 100 and confidence level 0.95, we find from the table in Section 14.1:
n = 1.96. This gives the confidence intervals for the mean (we drop the index n): [ — 0.196s, i +
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0.196s]. If it happens that X; has a normal distribution, we can compare this approximate result
to the exact one, given after Theorem 2.3.1: 1.98 isreplaced by 1.96 and s by &; the differenceis
of the order of 2%, which is negligible since the amplitude of the confidence interval is a second
order quantity. For n as low as 30, the difference is still negligible (ca 7%). In general, there
is “continuity” effect: if the distribution of X; is not far from normal, the approximation in the
theorem is good for small values of n

Comment 1. The same theorem holds if we replace s, by 2, see the discussion after Theo-
rem2.3.1.

Comment 2. Thereis no simple result for a confidence interval for the standard deviation. Such
an interval would require an estimate of the fourth moment, which is usually not done.

EXAMPLE 2.5: Figure 2.5 shows confidence intervals for the Example 2.1 on page 15
computed with the asymptotic result in Theorem 2.3.2.

2.3.3 THE BOOTSTRAP METHOD

isasimple, yet efficient method, that can be applied when the datais not normal, all transforma-
tions to make it normal also fail (Section 2.6.1), and we are not sure whether the sample size is
large enough to justify using the asymptotic resultsin Section 2.3.2.

The bootstrap method is general and can be used for any estimator. Consider a sample 77 =
(x1, ..., x,) obtained from n iid realizations of one random variable. We want to find a confidence
interval for some statistic ¢(). For the mean we have t(Z) = + >~ | x;. The bootstrap method
uses the sample ¥ = (z, ..., z,,) & an approximation of the true, unknown distribution. It works
asfollows.

Fix some number R (defined later) and create R bootstrap replicates X", r =1,..,R. Each
bootstrap replicate X™ = (X7, ..., X7) isarandom vector of size n, like the original data. All X7
are independent copies of the same random variable, obtained by drawing fromthe set {x1, ..., z,, }
(with replacement). Thus, in the case where al ) are distinct, for any fixed r, ¢, k, we have
Now for each r, compute 7" = t(2"). It isthe value of the statistic obtained at the rth “replayed”
experiment. The percentile bootstrap estimate at level 1 — « is an approximate confidence
interval for the statistic ¢ (for example the mean), defined as

(T(<R+1>%)7T((RH)(P%))) (2.12)

..........

The value of R needsto be chosen such that there are sufficiently many points outside the interval.
A good value is R = % — 1. For example, with o = 0.05, take R = 999 and the confidence
interval is (T(25), T(975)) .

In essence, we have used the sample data to obtain an empirical estimate of the distribution of the
statistic .
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Figure 2.5: Confidence intervals for both compiler options of Example 2.1 on page 15 computed with three
different methods: assuming data would be normal (Theorem 2.3.1) (left); assuming n is large enough for
the asymptotic result in Theorem 2.3.2 to hold (center) and with the bootstrap method (right).

In general, the percentile estimate is an approximation that tends to be dightly too small (see
Figure 2.5 for an example). For a theoretical justification of the bootstrap method, and other
applications, see [ DavisonHinkley97-book].

EXAMPLE 2.6: COMPARISON OF TwWO OPTIONS. (Example 2.1 on page 15 continued).
The data sets are not normal, as shown in Section 2.4 but we may think that n is large
and apply Theorem 2.3.2. The confidence intervals of mean execution times for old
and new compiler options obtained by the three methods are shown on Figure 2.5.
Though the normal assumption is not valid, the result obtained with it correct as it
does not differ significantly from the asymptotic result.

2.4 VERIFYING ASSUMPTIONS

The methodsin the previous section make some assumptions that need to be verified, aswe explain
now. In this chapter we stay with simple methods, based on visual inspection of qg-plots (defined
in the next section). More formal, automated methods use tests, as described in Section 9.7.1 on

Page 217.
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2.4.1 QQPLOTS

A probability plot, also called qg-plot, compares two samples X;, Y;, i = 1,...,n in order to
determine whether they come from the same distribution. Call X ;) the order statistic, obtained
by sorting X; in increasing order. Thus X,y < X3 < ... The qg-plot displays the points
(X(@), Yiy). If the points are approximately along a straight line, then the distributions of X; and
Y; can be assumed to be the same, modulo a change of scale and location.

Most often, we use ggplots to check the distribution of Y; against a probability distribution F'.
To do so, we plot (z;, Y(;), where z; is an estimation of the expected value of E(Y{;)), assuming
the marginal of Y; is F'. The exact value of E(Y(;)) is hard to obtain. Assume that F is strictly
increasing; a simple approximation is

-l !
ri:=F (n n 1)

Thisisjustified as follows. Let U; = F(Y;). Thedistribution of U; is uniform on [0, 1]. Further,
Uy = F(X;) forall 1. 1t can be shown [Davisson-02] that

1
E(Uy) = —,

(Vo) = o7
which has a simple interpretation if we think that the order statistic of U; has to be placed evenly
on [0, 1]. Also, asn islarge, U, convergesto its expectation. Thus we can approximate as follows

E(Yy) = E(F (Ugw)) = FTHE(Up)) =

which is done in the qgplots shown by statistical packages.

2.4.2 VERIFYING THE NORMAL ASSUMPTION

is best done by visual inspection of a normal gg-plot. More formal methods based on tests are
described in Section 9.7.1 on Page 217, but they do not necessarily provide a better diagnostic than
visual inspection (but they can be used in an automated way). See Figure 2.6 for an example.

2.4.3 VERIFYING THE ASYMPTOTIC REGIME

When n islarge, we can use the asymptotic result in Theorem 2.8.1: the distribution of the sample
mean is asymptotically normal, evenif x4, ..., z,, isnot. The problem isto know whether n islarge
or not. Ideally, we would like to test whether the distribution of ¢ is normal, but we cannot do it
since we have only one value.

The bootstrap method can be used to solve this problem. The method consists in examining the
R bootstrap replicates T as in Section 2.3.3; if they appear to be normal, it is an indication that
the distribution of ¢ isnormal. For example, Figure 8.4 shows that the asymptotic regimeisindeed
reached for the data setsin Example 2.1 on page 15.

EXAMPLE 2.7: FILE TRANSFER TIMES. (Continuation of Example 2.4 on page 22).
Figure 2.8 shows the gg-plots of the bootstrap replicates used for estimating the mean
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Figure 2.6: Normal ggplots of data in Figure 2.1 and of an artificially generated sample from the normal
distribution with the same number of points. For both data sets the small values are smaller (lighter left
tail).They do not appear to come from a normal distribution.
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Figure 2.8: QQplots of bootstrap replicates of the estimator of the mean for the file transfer data in Fig-
ure 2.4. The bootstrap replicates of the data are not normally distributed, but those of the log of the data
are.

of the data and of the log of the data. For the original data, the bootstrap replicates do
not appear to be normal, thus the asymptotic result in Theorem 2.3.2 does not apply.
It is the opposite for the log of the data.

QUESTION 2.4.1. Compare thisfinding to the confidence intervals found in Figure 2.4. 2

2.4.4 VERIFYING THE [ID ASSUMPTION

In many cases, the 11D assumption can be verified by screening the method by which the data is
produced, as discussed in Section 2.2.2. If there is some doubt, the following methods can be used:

1. (Visua Inspection of ACF Plot): If the data appears to be stationary (no trend, no seasonal
component), then we can plot the sample autocorrelation coefficients, which are an estimate
of the true autocorrelation coefficients p, (defined in Equation (2.25). If the data is iid,
then p, = 0 for £ > 1, and the sample autocorrelation coefficients fall within the values
+1.96/+/n (where n is the sample size) with 95% probability. An autocorrelation plot dis-
plays these bounds as well. A visual inspection can determine if this assumption is valid.
For example, on Figure 2.17 we see that there some autocorrelation in the first six diagrams
but not in the last two.

2. (Visual Inspection of Lag-Plot): We can also plot the value of the data at time ¢ versus at
timet + h, for different values of h (lag plots). If the dataisiid, the lag plots do not show
any trend. On Figure 2.15 we see that there is a negative trend at lag 1.

3. (Turning Point Test): A test provides an automated answer, but is sometimes |ess sure than a
visual inspection. A test usually has a null hypothesis and returns a so called “p-value” (see
Chapter 7 for an explanation). If the p-valueis smaller than o = 1 — ~, then the test rgjects

3The figure shows the confidence intervals with the normal assumption and the bootstrap percentile estimates.
With n. = 100, the normal assumption (Theorem 2.3.1) and the asymptotic regime (Theorem 2.3.2) give practicaly
the same result. Thus we expect the confidence interval s obtained with either the normal assumption or the asymptotic
regime to be wrong for the data, and correct for the log of the data, consistent with Figure 2.4.



2.5. PREDICTION INTERVAL 29

the null hypothesis at the confidence level . The turning point test, defined in Section 9.7.1
on Page 217, computes the number of times that the data goes from increasing to decreasing.
This value should be closeto 2/3 if the dataisiid. See Section 2.9.3 for an example.

2.5 PREDICTION INTERVAL

The confidence intervals studied before quantify the accuracy of a mean or median; thisis useful
for diagnostic purposes, for example we can assert from the confidence intervals on Figure 2.3 that
the new option does reduce the run time, because the confidence intervals for the mean (or the
median) are in the positive numbers.

Sometimes we are interested in adifferent viewpoint and would like to characterize the variability
of the data: for example we would like to summarize what can be expected for an arbitrary future
(non observed) transaction. Clearly, this run time is random. A prediction interval at level ~
is an interval that we can compute by observing a realization of X1, ..., X,, and such that, with
probability ~, afuture transaction will have arun timein thisinterval. Intuitively, if the common
cdf of all X;swould be known, then aprediction interval would ssmply be an inter-quantileinterval,
for example [mg /2, m1_q/2], With @ = 1 — ~. For example, if the distribution is normal with
known parameters, a prediction interval at level 0.95 would be i« + 1.960. However, there is some
additional uncertainty, due to the fact that we do not know the distribution, or its parameters a
priori, and we need to estimate it. The prediction interval capture both uncertainties. Formally, the
definition is asfollows.

DEFINITION 25.1. Let X1, ..., X,,, X,,11 beasequence of randomvariables. A prediction interval
at level v isan interval of the form [u(Xy, ..., X,), v(X1, ..., X,,)] such that

]P(U(Xl, >Xn) S Xn—l—l S U(Xl, ;Xn)) 2 Y (212)

Note that the definition does not assume that X; isiid, however we focus in this chapter on the
iid case (but see Section 2.9 for a discussion of the more general case). The trick is now to find
functions u and v that are pivots, i.e. their distribution is known even if the common distribution
of the X;sisnot (or is not entirely known).

There is one genera result, which applies in practice to sample sizes that are not too small (n >
39), which we give next.

2.5.1 PREDICTION FORAN IID SAMPLE BASED ON ORDER STATISTIC

THEOREM 2.5.1 (General Case). Let X, ..., X,,, X,,.1 be an iid sequence and assume that the
common distribution has a density. Let Xg), ...,X&) be the order statistic of X7, ..., X,,. For
1<j<k<n

k—3J
n+1

2 n n - - - . _
thusfor o > =, [X(L(nﬂ)%n,X([(nﬂ)(l_%)])] isaprediction interval at level atleast y = 1 — .

For example, with n = 999, a prediction interval at level 0.95 (o = 0.05) is [X(25), X(975)]. This
theorem is similar to the bootstrap result in Section 2.3.3, but is exact and much simpler.
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Proof. transform X; into U; = F(X;) which is iid uniform. For uniform RVs, use the fact that
E(U(;)) = 547 (Chapter 12). Then

= P(ug) < Uns1 S ug)
= Uk) — Ug)

Theformer issince U,, 1 isindependent of (U, ..., U,,) and the latter since U,, 1 has auniform distri-
bution on [0, 1]. Thus

P (U("j) <U,i1 < U&)) =E (U(T;c) - U(nj)> - %
O

QUESTION 2.5.1. We have obtained n simulation results and use the prediction interval [m, M]
where m isthe smallest result and M the largest. For which values of n isthisa prediction interval
at level at least 95% ? 4

For very small n, this result gives poor prediction intervals with values of ~ that maybe far from
100%. For example, with n = 10, the best prediction we can do iS [Zyin, ZTmax], & level v = 81%.
If we can assume that the datais normal, we have a stronger result, shown next.

2.5.2 PREDICTION FOR AN IID SAMPLE, NORMAL CASE

THEOREM 2.5.2 (Normal iid Case). Let X, ..., X,,, X,, 1 be an iid sequence with common distri-
bution N, 2. Let fi,, and 62 beasin Theorem 2.3.1. Thedistribution of , /HLHX";;TL‘“" isSudent’s
t,_1; apredictioninterval at level 1 — ais

1
fin £\ /1 + =60, (2.14)
n

where isthe (1 — &) quantile of the student distribution ¢,,_; .
For large n, an approximate prediction interval is

i, =16, (2.15)
where n isthe (1 — %) quantile of the normal distribution N ;.

For example, for n = 100 and o« = 0.05 we obtain the prediction interval (we drop the index n):
[ —1.996, i1 + 1.995]. Compare to the confidence interval for the mean given by Theorem 2.3.1
where the width of theinterval is~ 10 = /n timessmaller. For alarge n, the predictioninterval is
approximately equal to /i, = no,,, which isthe interval we would have if we ignore the uncertainty
due to the fact that the parameters 1« and o are estimated from the data. For »n as small as 26, the
difference between the two is 7% and can be neglected in most cases.

“Theinterval is [X(1), X(n)] thusthe level is Z—;} Itis> 0.95 for n > 39. We need at least 39 samplesto provide
a 95% prediction interval.
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Proof. First note that X, is independent of i, 5,. Thus X,,+1 — fi,, is norma with mean 0 and

variance 1
var(X, 1) + var(ji,) = o> + Eoz

Further, 6,, /02 hasax? _, distribution and isindependent of X,, 1 — fi,,. By definition of Student’st,
the theorem follows.

O

Thenormal caseisalso convenient in that it requires the knowledge of only two statistics, the mean
i1, and the mean of squares (from which &,, is derived).

Comment Thereisno “largen” result, likethereisin Theorem 2.3.2: aprediction interval depends
on the origina distribution of the X;s, unlike confidence intervals for the mean that depend only
on first and second moments due to the central limit theorem.

2.6 RESCALING

2.6.1 Box-CoX TRANSFORMATION

If wewant to use Theorem 2.5.2, we need to make sure that the normal assumption holds (using for
example anormal qgplot). If it does not, an alternative isto rescale the data, using atranformation.
In our context, acommonly used method is the Box-Cox transformation which often gives good
results. It has one shape parameter s and is given by

bs() ={ R (2.16)

Inx ,s=0

Commonly used parameters are s = 0 (log tranformation), s = —1 (inverse), s = 0.5 and s = 2.

EXAMPLE 2.8: FILE TRANSFER TIMES. (Continuation of Example 2.4 on page 22).
Figure 2.9 shows the qg-plots of the file transfer times and their logs. It shows that the
data is not normal but the log of the data is. The last panel shows 95%-prediction in-
tervals. The left interval is obtained with the method of quantiles (Theorem 2.5.1); the
middle one by (wrongly) assuming that the distribution is normal and applying Theo-
rem 2.5.1 — it differs largely. The right interval is obtained with a log transformation.
First, a prediction interval [u(Y1,...,Y,),v(Y1,...Y,)] is computed for the transformed
data Y; = In(X;); the prediction interval is mapped back to the original scale to obtain
the prediction interval [exp(u(In(X7y,...,In(X},))), exp(v(In(Xq, ...,In(X,,)))]. We leave
it to the alert reader to verify that this reverse mapping is indeed valid. The left and
right intervals are in good agreement, but the middle one is obviously wrong.

The prediction intervals also show the central values (with small circles). For the first
one, it is the median. For the second one, the mean. For the last one, exp (%)
i.e. the back transformed of the mean of the transformed data.

QUESTION 2.6.1. The prediction intervals are not all symmetric around the central values.
Explain why. °
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Figure 2.9: File transfer times for 100 independent simulation runs, with prediction intervals computed with
the three methods discussed in Example 2.10 on page 34: (1) based on order statistics (2) based on mean
and standard deviation (3) based on mean and standard deviation after re-scaling.

This example shows that it is is important to verify the normality assumption before applying
formulae based on mean and standard deviation. If aBox Cox transformation is used, the optimal
value of the exponent s can be done by visual inspection of qg-plots, or using the formal method
described in Section 2.8.

2.6.2 HARMONIC, GEOMETRIC AND OTHER M EANS

The previous section illustrated that it may be more meaningful to rescale the data, for example
with a Box-Cox transformation. Assume we transform a data set =1, ..., z,, by an invertible (thus
strictly monotonic) mapping b() into y1, ...y, i.e. y; = b(z;) and z; = b~ 1(y;) fori = 1,...,n.
We called transformed sample mean the quantity b~ (£ >-" | y;), i.e. the back-transform of the
mean of the transformed data. Similarly, the transformed distribution mean of the distribution of
arandom variable X isb~' (E(b(X)). When b() isaBox-Cox transformation with index s = —1, 0
or 2 we obtain the classical following definitions, valid for a positive data set z;,7 = 1...,n or a
random variable X:

Transformation | Transformed Sample Mean | Transformed Distribution Mean
i _ 1 1
Harmonic | b(z) =1/x TS T (L)
Geometric | b(z) = In(x) (TT, a) eFn X)
Quadratic |  b(z) = 2?2 D E(X?)

SFirst interval: the distribution of the data is obviously not symmetric, so the median has no reason to be in the
middle of the extreme quantiles. Second interval: by nature, itisstrictly symmetric. Third interval: it isthe exponential

of asymmetric interval; exponentia is not an affine transformation, so we should not expect the transformed interval
to be symmetric.
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THEOREM 2.6.1. A confidence interval for a transformed mean is obtained by the inverse trans-
formation of a confidence interval for the mean of the transformed data.

For example, a confidence interval for the geometric mean is the exponential of a confidence inter-
val for the mean of the logarithms of the data.

Proof. Let m' be the distribution mean of b(X). By definition of a confidence interval, we have
P(u(Ys,...,.Ys) < m' < v(Y1,..,Y,)) > ~ where the confidence interval is [u,v]. If b() isin-
creasing (like the Box-Cox transformation with s > 0) then so is b=!() and this is equivalent to
P (b~ (u(Yr,....Yn)) < b7t (m/) < b~ (v(Y1,...,Yy))) = ~. Now b~'(m’) isthe transformed mean,
which shows the statement in this case. If b() is decreasing (like the Box-Cox transformation with
s < 0) then theresult is similar with inversion of v and v.

EXAMPLE 2.9: The right panel on Figure 2.4 shows confidence intervals for the
geometric mean of the file transfer data.

We have seen in Example 2.10 on page 34 that a prediction interval for the original data can
be obtained by reverse-transforming a prediction interval for the transformed data. In contrast,
the results above show that this is not true for confidence intervals for the means. By reverse-
transforming a confidence interval for the mean of the transformed data, we obtain a confidence
interval for another type of mean (harmonic, etc.).

2.7 WHICH SUMMARIZATION TO USE ?

In the previous sections we have seen various summarization methods. In this section we discuss
the use of these different methods.

The methods differ in their objectives: confidence interval for central value versus prediction
intervals. The former quantify the accuracy of the estimated central value, the latter reflects how
variable the datais. Both aspects are related (the more variable the data is, the less accurate the
estimated central valueis) but they are not the same.

The methods differ in the techniques used, and overlap to a large extend. They fal in two cat-
egories. methods based on the order statistic (Theorems 2.2.1 and 2.5.1) or based on mean and
standard deviation (Theorems 2.3.1, 2.3.2, 2.5.2). The two methods differ in their robustness
Ver sus compactness.

2.7.1 ROBUSTNESS: OUTLIERS

Methods based on the order statistic are more robust to outliers. An outlier is avalue that signifi-
cantly differs from the average. The median and the prediction interval based on order stetistic are
not affected by afew outliers, contrary to the mean and the prediction interval based on mean and
standard deviation, asillustrated by the following example.
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Figure 2.10: File transfer times for 100 independent simulation runs with outlier removed. Confidence
intervals are without (left) and with (right) outlier, and with method (1) median (2) mean and (3) geometric
mean. Prediction intervals are without (left) and with (right) outlier, computed with the three alternative
methods discussed in Example 2.10 on page 34: (1) order statistics (2) based on mean and standard
deviation (3) based on mean and standard deviation after re-scaling.

EXAMPLE 2.10: FILE TRANSFER WITH ONE OUTLIER. In fact in the data of Exam-
ple 2.10 on page 34 there is one very large value, 5 times larger than the next largest
value. One might be tempted to remove it, on the basis that such a large value might
be due to measurement error. A qgplot of the data without this “outlier” is shown on
Figure 2.10, compare to the corresponding gg-plot with the outlier in Figure 2.9 (b).
The prediction intervals based on order statistics are not affected, but the one based
on mean and standard deviation is completely different.

The outlier is less of an outlier on the re-scaled data (with the log transformation). The
ggplot of the rescaled data is not affected very much, neither is the prediction interval
based on mean and standard deviation of the rescaled data. Similarly, the confidence
intervals for median and geometric mean are not affected, whereas that for the mean
is.
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In this example, we should not remove the outlier. In Section 8 we will see that such large values
are normal and common in some cases. However, care should be taken to screen the data collec-
tion procedure for true outliers, namely values that are wrong because of measurement errors or
problems.

The example illustrates the following facts:

e Outliers may affect the prediction and confidence intervals based on mean and standard
deviation.

e Thismay go away if the datais properly rescaled. An outlier in some scale may not be an
outlier in some other scale.

e |n contrast, confidence intervals for the median and prediction intervals based on order sta-
tistics are more robust to outliers. They are not affected by re-scaling.

2.7.2 COMPACTNESS

Assume we wish to obtain both a central value with confidence interval and aprediction interval for
agiven data set. If we use methods based on order statistics, we will obtain a confidence interval
for the median, and, say, a prediction interval at level 95%. Variability and accuracy are given by
different sample quantiles, and cannot be deduced from one another. Furthermore, if we later are
interested in 99% prediction intervals rather than 95%, we need to recompute new estimates of the
quantiles.

In contrast, if we use methods based on mean and standard deviation, we obtain both confidence
intervals and prediction intervals at any level with just 2 parameters (the sample mean and the
sample standard deviation). In particular, the sample standard deviation gives indication on both
accuracy of the estimator and variability of the data. However, as we saw earlier, these estimators
are meaningful only in a scale where the datais roughly normal.

Also, mean and standard deviation are less complex to compute than estimators based on order sta-
tistics, which require sorting the data. In particular, mean and standard deviation can be computed
incrementally online, by keeping only 2 counters (sum of values and sum of squares). Thisreason
islessvalid today than some years ago, since there are sorting a gorithms with complexity n In(n)
but it may still be valid in some cases.

2.8 x« PARAMETRIC ESTIMATION THEORY

The confidence intervals seen in the previous section are special cases of parametric estimation
theory, which we shortly describe in this section. It can be skipped at first reading. The results
of this section are used to compute confidence intervals in some cases where the simple methods
described earlier do not apply.

2.8.1 THE PARAMETRIC ESTIMATION FRAMEWORK.

Consider a data set x;, © = 1...,n, that we view as the redlization of a stochastic system (in
other words, the output of a simulator). The framework of parametric estimation theory consists
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in assuming that ¢ is fixed, but unknown. We usually assume that the model has a density of
probability, and that the density of probability that the output is 1, ..., z,, depends on the parameter
0; we denote it with f(xq,...,2,|0). It is aso caled the likelihood of the observed data. An
estimator of 6 is any function 7'() of the observed data. A good estimator is one such that, in
average, T'( Xy, ..., X,,) is“close” to the true value 6.

ExAMPLE 2.11: 11D NorRMAL DATA. Assume we can believe that our data is iid and
normal with mean x and variance o?.

QUESTION 2.8.1. What isthelikelihood ? ©

Here 6 = (u, o) and an estimator of § is 0 = (fin, 6,,) given by Theorem 2.3.1. Another,
slightly different estimator is 6; = (ji,, s») given by Theorem 2.3.2.

An estimator provides a random result: for every realization of the data set, a different estimation
is produced. The “goodness’ of an estimator is captured by the following definitions. Here X is
the random data set, 7'(X) is the estimator and E, means the expectation when the unknown but
fixed parameter valueis 6.

e Unbiased estimator: E, (T(X)) = 6. For example, the estimator 62 of variance of a
normal iid sample given by Theorem 2.3.1 is unbiased.

e Consistent family of estimators: Py(|7(X) — 6|) > ¢) — 0 when the sample size n goes
to oo. For example, the estimator (/i,,, 52) of Theorem 2.3.1is consistent. Thisfollows from
the weak law of large numbers.

2.8.2 MAXIMUM LIKELIHOOD ESTIMATOR (MLE)

A commonly used method for deriving estimatorsisthat of Maximum Likelihood. The maximum
likelihood estimator is the value of § that maximizesthe likelihood f(x1, ..., z,|6). This definition
makes sense if the maximum exists and is unique, which is often true in practice. A formal set of
conditions is the regularity condition in Definition 2.8.1.

EXAMPLE 2.12: MLE FOR 11D NORMAL DATA. Consider a sample (z1, ..., x,) obtained
from a normal iid random vector (X1, ..., X;,). The likelihood is

n

1 1 z; — p)?
e () o

i=1

We want to maximize (2.17), where z1, ..., z,, are given and ., v = o2 are the variables.
For a given o, the maximum is reached when yu = (i, = %Z?:ﬁi- Let 1 have this

o (ks )
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value and find the value of o that maximizes the resulting expression, or to simplify,
the log of it. We thus have to maximize

1
—nln(o) — ﬁsx,x +ct (2.18)

where ct is a constant with respect to o and S, , = > (v — fin)?. This is a sim-
ple maximization problem in one variable o, which can be solved by computing the
derivative. We find that there is a maximum for o2 = % The maximum likelihood
estimator of (u, 02) is thus precisely the estimator in Theorem 2.3.2.

We say that an estimation method invariant by re-parametrization if thefollowing holds. Assume
the method produces some estimator 7'(X') for #. Assume we re-parametrize the problem by
considering that the parameter is ¢(#), where ¢ is some invertible mapping. For example, anormal
iid sample can be parametrized by 6 = (11, 02) or by ¢(0) = (u, o).

QUESTION 2.8.2. What isthe mapping ¢ inthiscase ? ’

The method is said invariant by re-parametrization if the estimator of ¢(0) is ¢(7(X)). This
means that the method always gives the same estimator, no matter how we decide to parametrize
the model.

The maximum likelihood method is invariant by re-parametrization. This is because the property
of being aamximum isinvariant by re-parametrization. It is an important property in our context,
since the model is usually not given a priori, but has to be invented by the performance analyst.

A method that provides an unbiased estimator cannot be invariant by re-parametrization, in general.
For example, (ji,,, 52) of Theorem 2.3.1isan unbiased estimator of (u, o2), but (i,,, ,,) isabiased
estimator of (u, o) (becauseusually E(S)? # E(S?) except if S isnon-random). Thus, the property
of being unbiased is incompatible with invariance by re-parametrization, and may thus be seen as
an inadequate requirement for an estimator.

In Section 2.8.4, we give a result that shows that MLE for an iid sample with finite variance
is asymptotically unbiased, i.e. the bias tends to 0 as the sample size increases. Further, it is
consistent. Before that, we need to talk about efficiency.

2.8.3 EFFICIENCY AND FISHER INFORMATION

The efficiency of an estimator 7'(X) of the parameter ¢ is defined as the expected square error
Eq(||T(X) — 6|*) (here we assumethat 6 takes valuesin some space © where the norm is defined).
The efficiency that can be reached by an estimator is captured by the concept of Fisher information,
that we define now.

Assume first to simplify that € R. The observed information is defined by
_82l(9)

T0) = —42

where [(0) isthe log-likelihood, defined by
[(0) = Inlik(#) = In f(xq, ..., 2,]0)
"¢(z,y) = (z,/y) defined for z € Rand y > 0.




38 CHAPTER 2. CONFIDENCE INTERVALS

The Fisher information, or expected information is defined by

16) = Ea((6) =50 (253

For an iid model X1, ..., X,, {(f) = >_,In fi(x;]|0) and thus 1(0) = nl;(6), where I;(0) is the
Fisher information for a one point sample X;.

In general, the parameter 6 is multi-dimensional, i.e., varies in an open subset © of R*. Then .J
and I are symmetric matrices defined by

3U(0)
00,00,

16)s =50 (S )

The Cramer-Rao theorem says that the efficiency of any unbiased estimator is lower bounded by
ﬁ. Further, under the conditionsin Definition 2.8.1, the MLE for an iid sample is asymptotically
maximally efficient, i.e. E (||7°(X) — 0]|) /1(#) tendsto 1 as the sample size goesto infinity.

The Cramer-Rao lower bound justifies the name of “information”. The variance of the MLE is of
the order of the Fisher information: the higher the information, the more the sample tells us about
the unknown parameter 6. The Fisher information is not the same as entropy, used in information
theory. There are some (complicated) relations — see [ CoverThomas91-book] chapter 16.

(@) =

and

In the next section we give a more accurate result, that can be used to give approximate confidence
intervals for large sample sizes.

2.8.4 ASYMPTOTIC CONFIDENCE INTERVALS

Here we need to assume some regularity conditions. Assume the sample comes from an iid se-
guence and further, that the following regularity conditions are met.

DEFINITION 2.8.1. Regularity Conditions for Maximum Likelihood Asymptotics, [ Davison02-
book]

1. The set © of values of ¢ is compact (closed and bounded) and the true value 6, is not on the
boundary.

2. (identifiability) for different values of 6, the densities f(x|0) are different.

3. (regularity of derivatives) There exist a neighborhood B of 6, and a constant K such that
for 0 € Bandfor all i, 5, k,n: 1Es(|0%1x(0)/00,00;00,) < K

4. For 6 € B the Fisher information has full rank

5. For § € B the interchanges of integration and derivation in [ 219 g, — %ff(ﬂ@)dx

26,
0% f(x[0) d_ [ 0f(xl0) i
and [ g5 de = g5 [ =55~ dwv arevalid

The following theorem is proven in [Davison02-book].
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THEOREM 2.8.1. Under the conditionsin Definition 2.8.1, the MLE exists, converges almost surely
to the true value. Further 7(6)2(6 — ) converges in distribution towards a standard normal
distribution, as n goesto infinity. It follows that, asymptotically:

~

1. the distribution of § — # can be approximated by N (O, 1(6) 1) or N (0, J(é)*)

2. the distribution of 2 (l (6) — l(Q)) can be approximated by x% (where & is the dimension of
0).

The quantity 2 (l(é) - 1(0)> is called the likelihood ratio statistic.

Note. Inthe examples seen in this part of the course, the regulariy conditions are always satisfied, as
long as : the true value 6 lies within the interior of its domain, the derivatives of [(6) are smooth (for
example, if the density f(z|f) has derivatives at all orders) and the matrices J(#) and I(¢) have full
rank.

If the regularity conditions hold, then we have an equivalent definition of Fisher information:

o2 (555)-o (42

this follows from differentiating with respect to 6 theidentity [ f(Z6)de = 1.

Item 2 is more approximate than item 1, but does not require to compute the second derivative of the
likelihood.

Theorem 2.8.1 also holds for non-iid cases, as long as the Fisher information goes to infinity with the
sample size.

QUESTION 2.8.3. Theorem 2.8.1 provides two asymptotic pivots. What are they ? 8

EXAMPLE 2.13: FISHER INFORMATION OF NORMAL |ID MODEL. Assume (X;);=1..n IS
iid normal with mean 1, and variance 2. The observed information matrix is computed
from the likelihood function; we obtain:

J: < 9 % 3 %(ﬂn_u) >
Tg(ﬂn - N) ;7? + ox (S:rx + n(ﬂn - :U’)Q)

and the expected information matrix (Fisher’s information) is
&0
I=( ¢
(% %)

The following corollary is used in practice. It follows immediately from the theorem.

COROLLARY 2.8.1 (Asymptotic Confidence Intervals). When n is large, approximate confidence
intervals can be obtained as follows:

1. For the ith coordinate of , theinterval is: 0; 1, / [I(é)*l} ETN [J(é)*l} ~, where

No,1(n) = 22 (for example, with y = 0.95, = 1.96).

81(6)%(6 — 0) and 2 (l(é) - 1(9)).
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2. If @ isinR: theinterval can be defined implicitly as {6 : 1() — § < 1(9) < 1(d)}, where
3(€) = . For example, with v = 0.95, £ = 3.84.

EXAMPLE 2.14: ESTIMATE A PROBABILITY (THE OPINION POLL). We have de-
veloped a simulation scheme for wireless networks and simulated it. We run n in-
dependent, identically distributed simulations; each simulation run produces a binary
output (success or failure of synchronization). We want to estimate the probability
of success. The model is an iid sequence X;, i = 1,...,n, with P(X; = 1) = p and
P(X; = 0) = 1 — p. The parameter is p, and we want to estimate it. This is the
same as estimating a confidence interval for the output of a binary opinion poll. We
will compare the use of the second item of Corollary 2.8.1 to a direct method and to
Theorem 2.3.2.

1. Likelihood Ratio Statistic (Corollary 2.8.1). The likelihood of the sample x4, ..., z,,
is p*(1 — p)"~* where k = >_7_, 2;, and the log-likelihood is

l(p) = kIn(p) + (n — k) In(1 — p)
It is maximum for p = % (in other words, the MLE of p is the frequency of success).

If n is large, we can use the second item of Corollary 2.8.1 and plot /(p). A 95%
confidence interval is the set of p defined by I(p) > i(p) — 1.92. Figure 2.11 shows
examples for various values of n. The resulting confidence intervals are shown on
Table 2.1.

2. Direct Evaluation. We can compare to a direct evaluation. Let 7' = """ |, X;. The
distribution of T" is binomial. For n > 30 it is well approximated around its mean by the
normal distribution with mean np and variance np(1 — p). Thus, a good approximation

for the distribution of .

———— (T —np)
np(l - p)
is the standard normal distribution Ny 1. Thus, with probability v, we have approxi-
mately
_T—np < (2.19)
np(l —p)

with Ny 1(n) = HTV We are given a sample with 7" = k. A ~- confidence set is the set
of values of p that satisfies Equation (2.19) where we take T = k.
k—np

v/ np(1—p)

function of p. Thus the set defined implicitly by Equation (2.14) is an interval, and can
simply be obtained numerically. The results are in Table 2.1.

The function p — is plotted on Figure 2.12. We see that is is a decreasing

3. Normal Approximation (Theorem 2.3.2). The estimator of the mean is ji,, = %
and the estimator of the variance is

1< o .
Sn = EZXE — fin, = fin(1 = fin)
i=1
since X? = X;. Thus an approximate confidence interval is given by

i T —np <

nﬂn(l - /ln)




2.8. x PARAMETRIC ESTIMATION THEORY

-20

o5l

log likelihood

a0l

a0l

35

log likelihood
|

log likelihood
]

L
0.1

L L L L
0.2 03 0.4 05 06

p

(@ n=30k=12

L L L L L
08 o 0.1 0.2 03 0.4 05 06 07

p

(b) n =90, k = 36

log likelihood
|

L
0.1

L L
0.2 03 0.4 05

p

(©) n =270,k = 108

L L L L
0.7 o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05

p

(d) n =810,k = 324

41

Figure 2.11: Log-likelihood as a function of the unknown parameter p (probability of success) in an experi-
ment with n trials that produced k successes (Example 2.14 on page 40), and the resulting 95% confidence
intervals for p on the x-axis. The MLE is p = 0.4 for all cases.

| n | Likelihood Ratio Statistic | Direct | Normal Approximation |
30 0.238 —0.578 0.246 —0.577 0.225-0.575
90 0.303 —0.503 0.305—-0.503 0.299 —0.501
270 0.343 —0.459 0.343 —0.459 0.342 —0.458
810 0.367—0.434 0.367—-0.434 0.366 —0.434

Table 2.1: Comparison of 95% confidence intervals for p for Example 2.14 on page 40, for various values

of nand k = 0.4n.
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Figure 2.12: Computation of confidence interval by the Direct method in Example 2.14 on page 40.
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The results are in Table 2.1. Compare with the direct method: the normal approxima-
tion replaces the fixed, but unknown value p by its estimator j,,, thus we expect it to
give good values for large n.

Conclusion. We see that all three methods coincide within 1% or less, for sample
sizes as small as n = 30. The first method (likelihood ratio statistic) is simpler and
more systematic, since all it requires is more general, as it applies to cases with more
than one parameter, as we see in Section 2.8.5.

EXAMPLE 2.15: LAzy NORMAL IID. Assume our data comes from an iid normal
model X;, i = 1,...n. We compare the exact confidence interval for the mean (from
Theorem 2.3.1) to the approximate ones given by the corollary.

The MLE of (i, o) is (i, sn). The exact confidence interval is
0
+
fon £ —= NG
with 62 = S, ,/(n — 1) and t,_1(y) = 7.
Now we compute the approximate confidence interval obtained from the Fisher infor-

mation. We have
2
_ 0
I(n,0) 1—( 0 02>
2n

thus the distribution of (¢ — fin,0 — s,) IS approximately normal with 0 mean and

o2

covariance matrix ( g o2 |- Itfollows that 1 — fi,, is approximately N (0 ,%) and
2n
an approximate confidence interval is

N Sn
+ n—
SV
With s, = s.0/n and No, (n) = 7.

Thus the use of Fisher information gives the same asymptotic interval for the mean as
Theorem 2.3.2. This is quite general: the use of Fisher information is the generaliza-
tion of the large sample asymptotic of Theorem 2.3.2.

We can also compare the approximate confidence interval for o. The exact interval is
given by Theorem 2.3.1: with probability v we have

£ _0y_ &
n—17"02 " n-1
with x2_, (&) = 5% and x2_, (&) = 2. Thus an exact confidence interval for o is

R

With Fisher information, we have that o — s,, is approximately N_ .= Thus with proba-
’2n
bility ~
g
o= sn| < n—=

Van

43
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n 30 60 120
Exact || 0.7964 — 1.3443 | 0.8476 — 1.2197 | 0.8875 — 1.1454
Fisher || 0.7847 — 1.3162 | 0.8411 — 1.2077 | 0.8840 — 1.1401

Table 2.2: Confidence Interval for ¢ for an iid, normal sample of n data points by exact method and
asymptotic result with Fisher information (Corollary 2.8.1). The values are the confidence bounds for the
ratio -Z where o is the true value and &,, the estimated standard deviation as in Theorem 2.3.1.

On

with No1(n) = 2 .

Divide by ¢ and obtain, after some algebra, that with probability ~:

1

_n_

1
< —<

o
Sn, 1—

5
3

Taking into account that s,, = ,/”T‘l&n, we obtain the approximate confidence interval
for o
N n—1 1 n—1 1
On [\/ - 1+L,\/ - 1_,7,] (2.22)
V2n V2n

For n = 30,60, 120 and v = 0.95, the confidence intervals are as shown in Table 2.2;
the difference is negligible already for n. = 30.

~ ~

QUESTION 2.8.4. Which of the following are random variables: 0,0,1(0), 1), J(0), 1(0), J(6),
10)? °

2.8.5 CONFIDENCE INTERVAL IN PRESENCE OF NUISANCE PARAMETERS

In many cases, the parameter hastheform 6 = (u, v), and we areinterested only in . (for example,
for anormal model: the mean) while the remaining element v, that still need to be estimated, is
considered anuisance (for example: the variance). In such cases, we can use the following theorem
to find confidence intervals.

%In the classical, non Bayesian framework: 6, 1(6), 1(), J(0), J(0), I(9) are RVs. # and I(¢) are non-random but
unknown.
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THEOREM 2.8.2 ([Davison02-book]). Under the conditions in Definition 2.8.1, assume that © =
M x N, where M, N are open subsets of R?, R4. Thus the parameter is6 = (u,v) with u € M
andv € N (pisthe“dimension”, or number of degrees of freedom, of ).

For any ., let 7, be the solution to

U, D) = max (1, v)
and define the profile log likelihood pl by
pl(p) = maxi(p, v) = Uy, 0,)

Let (,7) be the MLE. If (u,v) is the true value of the parameter, the distribution of
2 (pl(j2) — pl(p)) tendsto x;.
An approximate confidence region for . at level v is

{w € M :pl(p) > pl(ft) — %5}

where x7(£) = 7.

The theorem essentially says that we can find an approximate confidence interval for the parame-
ter of interest 1 by computing the profile log-likelihood for all values of ;. around the estimated
value. The estimated value is the one that maximizes the profile log-likelihood. The profile log
likelihood is obtained by fixing the parameter of interest 1 to some arbitrary value and compute
the MLE for the other parameters. A confidence interval is obtained implicitly as the set of values
of u for which the profile log likelihood is close to the maximum. In practice, all of thisis done
numericaly.

EXAMPLE 2.16: LAzY NORMAL IID REvVISITED. Consider the log of the data in
Figure 2.4, which appears to be normal. The model is Y; ~ iidN,, ,» where Y; is the
log of the data. Assume we would like to compute a confidence interval for x but are
too lazy to apply the exact student statistic in Theorem 2.3.1.

For any u, we estimate the nuisance parameter o, by maximizing the log-likelihood:

p,0) = —% <n1n02 + ;Z(Yi _ M)2>

It comes ) )
Gy = - Z(Yz‘ —p)?= —Syy + (¥ - w)?
and thus .
PUR) = Up, 5) = =5 (5% + 1)

On Figure 2.13 we plot pl(x). We find i = 1.510 as the point that maximizes pl(u).
A 95%-confidence interval is obtained as the set {pl(n) > pl(i1) — £3.84}. We obtain
the interval [1.106,1.915]. Compare to the exact confidence interval obtained with
Theorem 2.3.1, which is equal to [1.103, 1.918]: the difference is negligible.
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QUESTION 2.8.5. Find an analytical expression of the confidence interval obtained with the
profile log likelihood for this example and compare with the exact interval. 1°
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Figure 2.13: Profile log-likelihood for parameter p of the log of the data in Figure 2.4. The confidence
interval for . is obtained by application of Theorem 2.8.2.

EXAMPLE 2.17: RE-SCALING. Consider the data in Figure 2.4, which does not
appear to be normal in natural scale, and for which we would like to do a Box-Cox
transformation. We would like a confidence interval for the exponent of the transfor-
mation.

The transformed data is Y; = bs(X;), and the model now assumes that Y; is iid ~
N, ,2. We take the unknown parameter to be 0 = (u,0,s). The distribution of X;,
under @ is:

Fxi(@l0) = V() f; (bs(2)ln, 0) = 2° " h(bs(x) |1, 0%)

where h(x|u, o) is the density of the normal distribution with mean p and variance o2.

10The profile log likelihood method gives a confidence interval defined by

A N2
(us 1) et 1
PYY n
Lett:= ﬂgy"y be the student statistic. The asymptotic confidence interval can be rewritten as
n(n—1)

7 - 1

2<(n-1)(e? —1)~ 10D
n

An exact confidence interval is
t2 S 52

where ¢ = t,,_1(1 — «/2). For largen, £* ~ nand -1 ~ 1 so the two intervals are equivalent.
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The log-likelihood is

l(p,o,s) :C—nlna—f—z (5—1)11191:1-—M
) b 20_2
where C' is some constant (independent of the parameter). For a fixed s it is maxi-
mized by the MLE for a Gaussian sample

fis = 5 S bula)

. 1 12
62 = - > (bs(a) — 1)
7
We can use a numerical estimation to find the value of s that maximizes (s, 65, s);
see Figure 2.14 for a plot. The estimated value is § = 0.0041, which gives i = 1.5236

and 6 = 2.0563.

We now give a confidence interval for s, using the asymptotic result in Theorem 2.8.2.
A 95% confidence interval is readily obtained from Figure 2.14, which gives the interval
[—0.0782,0.0841].

QUESTION 2.8.6. Does the confidence interval justify the log transformation ? 1*

Alternatively, by Theorem 2.8.1, we can approximate the distribution of § — 6 by a
centered normal distribution with covariance matrix J(6)~!. After some algebra, we
compute the Fisher information matrix. We compute the second derivative of the log-

likelihood, and estimate the Fisher information by the observed information (i.e. the
value of the second derivative at § = §). We find:

23.7 0 —77.1
J = 0 473 —146.9

771 —146.9 1291.1

0.0605 0.0173 0.0056
J'=1 0.0173 0.0377 0.0053

and

0.0056 0.0053 0.0017

The last term of the matrix is an estimate of the variance of § —s. The 0.95 confidence
interval obtained from a normal approximation is § £+ 1.961/0.0017 = [—0.0770, 0.0852].

2.9 NON INDEPENDENT SAMPLES

Often there is an a priori reason to believe that a data set was generated in an iid way: thisisthe
case for independent ssimulation runs, or for a controlled experiment where all factors have been
randomized. However, thisis not always the case, for example for measurements collected during
system operation. If there is suspicion that the data might not be iid, then the confidence intervals
used in this chapter cannot be used. There is no ssmple rule for what to do in such a context. We
first explain what the problem is by quantifying the bias, then we study two examples.

1yes, since 0 isin theinterval.
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profile log likelinood

Figure 2.14: Profile log-likelihood for Example 2.17 on page 46, as a function of the Box-Cox exponent s.
The maximum likelihood estimator of s is the value that maximizes the profile log likelihood: a confidence
interval for s is the set of s for which the profile log likelihood is below the horizontal dashed line.

2.9.1 NON-IID BIAS

Assume we would like to estimate the mean ;. of asample X1, ..., X,,, whose variance o2 is known.

If the data would be iid, we would use the statistic 7' = /n#2=£, the distribution of which is
asymptotically centered normal with variance = 1 (with zz,, = 1/n )"} | X3). A 95%-confidence
interval for the mean ;. would be

Now assume the sampleis not iid; the variance v of 7" is given by (Section 12.5.1)
v=ass >y (2.23)

where () is the covariance matrix of the sample, defined by
Q,;, =E(X,X;) -E(X;)E(X)) (2.24)

Notethat 2;; = o2. Further, intheiid case, 2; ; = 0 for i # j, thusv = 1 as expected. Otherwise,
visnot equal to 1.

Assume further that €2; ; depends only on the difference |i — j| (for example because the process
X, is“second order stationary”, see Chapter 9). It is usual to define the correlation p,, by:

Q. .
Op = 1,94k (225)

o2

The correlation p;, isnumber between -1 and 1. When it ispositive, X; and X, ;, tend to be similar,
when it is negative, X, tendsto be small when X islarge; itisOfor al £ > 0 when the process
isiid.

By the change of variable (i, j) — (i, k), with & = |i — j| in Equation (2.23), we obtain

v=1+2) (1- %)pk (2.26)
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Thusv > 1 if the datais positively correlated (p;, > 0), and vice-versa.

Thecentral limit theorem still holds, providedthat ), . |px| < 400, inwhich casethedistribution
of T"isasymptotically N(0,v) for large sample size.

A correct confidence interval is thus
I = i, £ 1.96v0/\/n (2.27)

Compare this equation to Equation (2.22): theterm v isthe non iid bias for the confidence interval
of the mean. If the process is positively correlated, the correct confidence interval is larger than
obtained with the incorrect iid assumption, and vice-versa.

2.9.2 xEXAMPLE. JOE’'SBALANCE DATA.

Joe's shop sells online access to visitors who download electronic content. Attheend of day ¢ — 1,
Joe's employee counts the amount of cash ¢;_; present in the cash register and putsit into the safe.
In the morning of day ¢, the cash amount ¢;_, is returned to the cash register. The total amount of
service sold (according to bookkeeping data) during day ¢ is s;. During the day, some amount of
money r; is sent to the bank. At the end of day ¢, we should have ¢; = ¢;_1 + s; — r;. However,
there are always small errorsin counting the coins, in bookkeeping and in returning change. Joe
computesthebaanceY; = ¢; — ¢;_1 — s; +r; and would like to know whether there is a systematic
source of errors (i.e. Joe's employee islosing money, maybe because he is not honest, or because
some customers are not paying for what they take).

Thedatafor Y; isshown on Figure 2.15. The sample mean is —13.95, which is negative. However,
we need a confidence interval for ;. before risking any conclusion.

CONFIDENCE INTERVAL FOR BALANCE ASSUMING IID MODEL. If wewould assumethat
theerrorsY; areiid, then aconfidence interval would be given by Theorem 2.3.2. In fact, the qgplot
indicatesthat the datalooks normal so we can use the student statisticin Theorem 2.3.1: the sample
standard deviationis S = 141.6, so the 95%-confidenceinterval is —13.95 +nS/+/n ~ [—43,15],
where n isthe samplesizeand = 1.986. Thus, with theiid model, we cannot conclude that there
isafraud.

However, we need to verify the iid assumption before giving an interpretation. The data appears
to be stationary (no trend or seasonal behaviour) thus we can use the ACF diagram. Figure 2.15
shows that there is a strong correlation at lag 1. This is confirmed by the lag plot. Thus, we can
conclude that the iid assumption does not hold for this data set.

CONFIDENCE INTERVAL WITH MOVING AVERAGE MODEL. To go further, we need a
valid model. Assume that the coin counting and bookkeeping processes have random, independent
errors:

Ci=c+e (2.28)

Sy —ri =5 —1 +¢€ (2.29)

where upper case if for reported (observed) values and lower case for the true (non observed)
values. Also assume that there is an externa flow of money p + ¢,” every day (a negative p isa
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Figure 2.15: Daily balance at Joe’s wireless access shop over 93 days. The lag plots show z(t) versus
x(t 4+ h) where «(¢) is the time series in (a). The data appears to have some correlation at lag 1 and is thus
clearly not iid.
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Figure 2.16: Profile Log Likelihood for the Moving Average model of Joe’s balance data. The horizontal
line is at a value /2 = 1.92 below the maximum, with x?(n) = 0.95; it gives an approximate confidence
interval for the mean of the data on the z axis.

loss of money). Assume that all esareiid and independent of each other. Then we have
Y; = Ct—Ot,1 =C —C—1 — S+ Tt € — € —62

and
Ct = Ct—1 —St‘i‘?“t‘i‘,u"—q”

It follows that
Yi=p+e +e—e1—¢

The auto-covariance of Y; at lag h > 2 is0 because al es are independent of each other. Thus the
model is compatible with the lag and auto-correlation plotsin Figure ??.

In Chapter 9, we study such processes. It iseasy to seethat Y; — . is stationary, gaussian and with
0 mean. Such processes that, in addition, have the property that the autocorrelation is 0 except at
lags 0 and 1 are said to be moving average processes of order 1 (in short, MA(1)). Thus, Y; — pis
an MA(1) process.

The general method of maximum likelihood estimation in Section 2.8 applies, as we see now.
We are interested in obtaining a confidence interval for ;. We use the MLE asymptotic in Theo-
rem 2.8.2 on Page 45.

Note. InTheorem 2.8.2, we saw that it appliesto an iid model, which is not the case here; however, we
can easily map our model to aniid one, asfollows. The model can bewritten asY; = ¢; + ae; 1 Where
e isiid Ny ,2, with the convention that Y; = ¢;. The random vector Y, = (Y1,...,Y,)T is derived
from the random vector E,, = (ey, ...,,)T by Y,, = HE + jiwhere i = (y, ..., 1)T) and

1 0 0 .. O
a 1 0 ... 0
H, = 0 o 1 .. 0
0O 0 ... a1

Let & = (u,0,a) be the parameter of the model. Note that H,, is invertible and we aso have E, =
H*l(?n — [I). Thus we could imagine that we observe ¢, instead of Y;. The log-likelihood of this

n

derived model isthe log of the density f B (e]9). By the formula of change of variable, we have

5, (el0) = |det(Hy)| f3. (y]0)
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Now det(H,,) = 1 thus the log-likelihood of the derived model is the same as for the original model.
Thus we can apply Theorem 2.8.2.

Here, it is plausible that the sample size is large enough. For any fixed j:, we compute the profile
log-likelihood. It is obtained by fitting an MA(1) process to W, := Y; — u. Good statistical
packages give not only the MLE fit, but also the log-likelihood of the fitted model, which is exactly
the profilelog-likelihood pl(1). The MLE fi isthevalue of . that maximizes pl (), and —2(pl(i1)—
pl(u)) is approximately x?. Figure 2.16 shows aplot of pi(u). It followsthat i = —13.2 and an
approximate 95%-confidence interval is [—14.1, —12.2]. Contrary to the iid model, this suggests
that there is aloss of money, in average 13 per day.

2.9.3 SUB-SAMPLING

If the dataappearsnot ii, asolution may beto sub-sample, i.e. randomly select avery small fraction
of the measured data, and verify that the iid assumption can be made for the selected data. The
hope is that correlation disappears between data samples that are far apart. We verify that the sub
sampled dataisiid by the methods discussed in Section 2.4.4.

Sub-sampling means keeping only afraction p of the data. A simple way would be to keep every
pn data sample, where n is the total number of points, but this is not recommended as such a
strict periodic sampling may introduce unwanted anomalies (called aliasing). A better method is
to decide independently for each data point, with probability p, whether it is sub-sampled or not.

ExamMPLE 2.18: CPU DATA. Execution times for n = 7632 consecutive requests are
measured and displayed on the upper left panel of Figure 2.17. The data appears
stationary and roughly normal so the auto-correlation function can be used to test
independence. The plot on the lower left panel of the figure shows a strong correla-
tion. The sub-sampled data is obtained as follows. For every index i = 1...n, decide
with probability p = 1/2 whether the point is kept. This gives the second plot on
the figure. Then repeat the process. This gives sub-sampled data with p = 1/2 to
1/27 = 1/128. The figure shows that the data looses correlation when the sampling
probability is p = 1/64. The turning point test for the subsampled data with p = 1/64
has a p-value of 0.52648, thus at confidence level 0.95 we accept the null hypothesis,
namely, the data is iid. The sub-sampled data has 114 points, and the confidence in-
terval obtained from this for the mean of the sub-sampled data is [65.5, 71.7], using the
normal asymptotic formula of Theorem 2.3.1. Compare with the confidence interval
that would be obtained if we would (wrongly) assume the data to be iid : [69.2,69.9].
The iid assumption grossly underestimates the confidence interval because the data
is positively correlated.

EXAMPLE 2.19: ETHERNET BYTE COUNT. The number of bytes transferred over
an Ethernet local area network is shown on Figure 2.18 Figure 10.3 on Page 251.
There are 360000 data points before sub-sampling. The data has correlation at all
time scales, and sub-sampling cannot remove it: after sampling only one out of 1000
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Figure 2.17: Execution times for n = 7632 requests (top left) and autocorrelation function (bottom left).
and for the data sub-sampled with probability p = 1/2 to 1/27 = 1/128. The data is correlated, but the
sub-sampled data appears to be non-correlated for p > 1/64.

data points in average, there is still correlation. This is an example of long range
dependent data. Estimating the mean of such a data set requires fitting it to a long
range dependent model such as fractional arima (Chapter 10).

In summary, sub-sampling works well if the data has short range dependence.

2.10 OTHER ASPECTSOF CONFIDENCE/PREDICTION INTER-
VALS

2.10.1 INTERSECTION OF CONFIDENCE/PREDICTION INTERVALS

In some cases we have several confidence or prediction intervals for the same quantity of interest.
For example, we can have a prediction interval I based on mean and standard deviation or I’
based on order statistics. A natural deduction is to consider that the intersection I N I’ is a better
confidence interval. Thisisamost true:

THEOREM 2.10.1. If therandomintervals I, I’ are some confidence intervalsat level v =1 — a,
v =1 — o then the intersection I N I’ is a confidence interval at level at least 1 — o« — /. The
same holds for prediction intervals.

Proof. We do the proof for a confidence interval for some quantity 6, the proof is the same for a
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Figure 2.18: Ethernet Byte Counts of Figure 10.3 on Page 251, sub-sampled with probabilities 10! to
103 (top: data plots; bottom: auto-correlation). Sub-sampling does not remove the dependence.

prediction interval. By definition P(0 ¢I) < a andP(6 ¢I’) < o/. Thus

PO ¢INT')=P((0 ¢I)or (0 ¢I')) <P (O ¢I)+P (0 ¢I') <a+d

EXAMPLE 2.20: FILE TRANSFER TIMES. (Continuation of Example 2.10 on page 34).
We can compute two prediction intervals at level 0.975, using the order statistic method
and the mean and standard deviation after rescaling (the prediction obtained with-
out rescaling is not valid since the data is not normal). We obtain [0.0394, 336.9] and
[0.0464, 392.7]. We can conclude that a prediction interval at level 0.95 is [0.0464, 336.9],
which is better than the two.

Compare this interval to the prediction intervals at level 95% for each of the two meth-
ods; they are [0.0624, 205.6] and [0.0828, 219.9]. Both are better.

Thus, for example if we combine two confidence intervals at level 97.5% we obtain a confidence
interval at level 95%. As the example shows, this may be less good than an original confidence
interval at level 95%.

QUESTION 2.10.1. Wk estimate the mean of an iid data set by two different methods and obtain 2
confidence intervals at level 95%: I, = [2.01,3.87], I, = [2.45,2.47]. Snce the second interval is

smaller, we discard the first and keep only the second. Isthis a correct 95% confidence interval ?
12

2No, by doing so we keep the interval I = I, N I, which is a90% confidence interval, not a 95% confidence
interval.
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2.10.2 THE MEANING OF CONFIDENCE

When we say that an interval [ is a confidence interval at level 0.95 for some parameter ¢, we
mean the following. If we could repeat the experiment many times, in about 95% of the cases, the
interval I would indeed contain the true value 6.

QUESTION 2.10.2. Assume 1000 students independently perform a simulation of an M/M/1 queue
with load factor p = 0.9 and find a 95% confidenceinterval for theresult. Thetrueresult, unknown
to these (unsophisticated) studentsis 9. The students are unsophisticated but conscientious, and all
did correct smulations. How many of the 1000 students do you expect to find a wrong confidence
interval, namely one that does not contain the true value ? 3

2.11 REVIEW

2.11.1 SUMMARY

1. A confidence interval is used to quantify the accuracy of a parameter estimated from the
data.

2. For computing the central value of a data set, you can use either mean or median. Unless
you have special reasons (see below) for not doing so, the median is a preferred choice asiit
is more robust. You should compute not only the median but also a confidence interval for
it, using Table 14.1 on Page 338.

3. A prediction interval reflects the variability of the data. For small data sets (n < 38) it is
not meaningful. For larger data sets, it can be obtained by Theorem 2.5.1.

4. A confidence interval for the mean characterizes both the variability of the data and the
accuracy of the measured average. In contrast, a confidence interval for the median does
not reflect well the variability of the data, therefore if we use the median we need both a
confidence interval for the median and some measure of variability (the quantiles, as on a
Box Plot). Mean and standard deviation give an accurate idea of the variability of the data,
but only if the datais roughly normal. If it is not, it should be re-scaled using for example a
Box-Cox transformation. Normality can be verified with a qg-plot.

5. The standard deviation gives an accurate idea of the accuracy of the mean if the data is
normal, but also if the data set islarge. The latter can be verified with a bootstrap method.

6. The geometric [resp. harmonic] mean is meaningful if the data is roughly normal in log
[resp. 1/x] scale. A confidence interval for the geometric [resp. harmonic] mean is obtained
as the exponential [resp. inverse] of themeanin log [resp. 1/x] scale.

7. All estimators in this chapter are valid only if the data points are independent (non cor-
related). This assumption must be verified, either by designing the experiments in a ran-
domized way, (as is the case with independent simulation runs), or by formal correlation
analysis as seen in the examples of Section 2.9. If the data set is correlated but very large,
sub-sampling a small number of samples may be a solution.

Assume that we have obtained the outputs 1, ..., z,, from n independent replications. We want a
confidence interval for the median and for the mean.

13Approximately 50 students should find awrong interval.



56 CHAPTER 2. CONFIDENCE INTERVALS

CONFIDENCE INTERVAL FOR THE MEDIAN A confidenceinterval for themedianis [z, ()],
where ;) isthe jth value in ascending order. The values of j and % are taken from Table 14.1 on
Page 338.

COMPUTING CONFIDENCE INTERVAL FOR THE MEAN

1. Test whether x4, ..., x,, roughly fitsanormal distribution (visual test on qgplot).
2. If yes, apply the student ¢-statistic to obtain a confidence interval for the mean. The confi-

denceinterval is 5

vn
with s = \/ﬁ S (s —7)? andt, 1 (n) = 2. Here, ¢, isthe student cdf withn — 1
degrees of freedom and « is the confidence level (atypical valueis o = 0.95).

We are frequently in this case because each output x; is often itself an average of many
entities, and tends to be normally distributed.

3. Else(i.e. the sample (1, ...z,,) does not appear to be normal), by the law of large numbers,
Z might still be normal, if n islarge. The confidence interval is

7+ (2.30)

T x n%
with No1(n) = 2. If n > 24, the value of 7 is within 5% of that obtained by Equa-
tion (2.30).

Test whether n is large enough by the bootstrap method (Section 2.3.3). Do a qg-plot of the
R bootstrap estimates 7™; if they appear to be normal, n is large enough.

4. Else(i.e. thesample (x4, ...x,,) does not appear to be normal and » is not large enough), use
the bootstrap percentile estimate (Section 2.3.3).

2.11.2 REVIEW QUESTIONS

QUESTION 2.11.1. Compare (1) the confidence interval for the median of a sample of »n data
values, at level 95% and (2) a prediction interval at level at least 95%, for n = 9, 39,99. 14

QUESTION 2.11.2. Call L = min{X;, X»} and U = max{X;, X»}. We do an experiment and
find L = 7.4, U = 8.0. Say which of the following statementsis correct: (1) the probability of the
event {L < 0 < U} is0.5 (2) the probability of theevent {7.4 < 0 <8.0}is0.5 °

QUESTION 2.11.3. How do we expect a 90% confidence interval to compareto a 95% one ? Check
this on the tablesin Section 14.2. ¢

14From the tables in Chapter 14 and Theorem 2.5.1 we obtain: (confidence interval for median, prediction interval):
n =9 ["E(Q), .’L'(g)], ImDOSSIble, n = 39: [.’E(lg), l’(27)], [.27(1), x(gg)], n = 99: [(E(39)7 $(61)], [x(g), l’(97)}. The
confidence interval is always smaller than the prediction interval.

51N the classical (non-Bayesian) framework, (1) is correct and (2) iswrong. There is nothing random in the event
{7.4 < 6 < 8.0}, since § isafixed (though unknown) parameter. The probability of this event is either 0 or 1, hereit
happens to be 1. Be careful with the ambiguity of a statement such as “the probability that 6 lies between L and U is
0.5”. In case of doubt, come back to a probability space. The probability of an event can be interpreted as the idea
proportion of simulations that would produce the event.

161t should be smaller. If we take more risk we can accept asmaller interval. We can check that the values of j [resp.
k] in the tables confidence intervals at level v = 0.95 are larger [resp. smaller] than at confidence level v = 0.99.
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QUESTION 2.11.4. A data set has 70 points. Give the formulae for confidence intervals at level
0.95 for the median and the mean /

QUESTION 2.11.5. A data set has 70 points. Give formulae for a prediction intervals at level 95%
18

QUESTION 2.11.6. Adata set x4, ...x,, issuchthat y; = In x; looks normal. e obtain a confidence
interval [¢,u] for the mean of y;. Can we obtain a confidence interval for the mean of x; by a
transformation of [¢, u] ? 1°

QUESTION 2.11.7. Assume a set of measurements is corrupted by an error term that is normal,
but positively correlated. 1f we would compute a confidence interval for the mean using the [1D
hypothesis, would the confidence interval be too small or too large ? 2

2.12 EXERCISES

EXERCISE 2.1. X, ..., X,, aredrawn froma distribution N (u, o%) with unknown parameters. e
want to estimate .« with confidencelevel equal t00.95. Let X = 1 3. X;and S = L. > (X; — X)Q.

1. Using the t-gtatistic, what is the confidence interval, as a function of X and S ?

2. Assume we do the following approximation. We estimate ¢ by S, and do as though it was
the true value. What confidence interval does this give ? Do a numerical comparison for
n = 5,10, 20, 40, 80, 160.

EXERCISE 2.2. Consider the example in Section ?? on Page ??, item 3. For large n, what is the
value of the confidence interval obtained by application of Theorem 2.8.1 item2 ?

ExERCISE 2.3. Find confidence intervals for the M/D/1 simulation of H1.

EXERCISE 2.4. Getting Sarted with the Slanguage: language basics, plots, arrays and functions.

1. Read the tutorial on S by Diego Kuonen, Sections 3, 4, 6 and 8. Additional documentation
for those who would like to go further is

(&) SPLUSuser guide Chapter 9 (Command Line Window)
(b) SPLUS programmer’s guide Chapter 5,“ Writing Functions’, Section “ Organizing
Computations”

YMedian: from the table in Section 14.2 [z(a7), ©(44)). Mean: from Theorem 2.3.2: /i 4 0.23435 where i is the
sample mean and S the sample standard deviation. The latter is assuming the normal approximation holds, and should
be verified by either aqgplot or the bootstrap.

18From Theorem 2.5.1: [min; z;, max; x;].

No, we know that [ef ,eu] is aconfidence interval for the geometric mean, not the mean of z;. In fact z; comes
from alog-normal distribution, whose meanise# ™ & where 1 isthe mean of the distribution of y;, and o2 its variance.

20By an analog reasoning as in Section 2.9: too small. We underestimate the error. This phenomenon is known in
physics under the term personal equation: if the errors are linked to the experimenter, they are positively correlated.
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(c) SPLUSprogrammer 'sguide, Chapter 8 “ Traditional Graphics’, Section * Frequently
Used Plot Options”

2. Analyze the following program. Write and run it.

# generates one qgplot of a normal sample
# with n elements

oneNormalSample<- function(n,...){
ggnorm (rnorm(n) ,main=paste ("Random Normal ",n," Samples"), ..
abline (1)

}

nbRows <- 3

par (mfrow=c (nbRows, nbRows) )

indexArray <- c(0: (nbRows™2-1))

lapply (10%x2"indexArray, oneNormalSample)

3. Replace the last two lines by a for loop and run your new program.

EXERCISE 2.5. Write a program in Matlab that generates a sample of n iid standard normal
variables, and display the corresponding histogram. Repeat the operation 9 times, for n =
10, 20, 40, 80... and display the results on 3 x 3 panel.

EXERCISE 2.6. Plots and Distributions

1
2.

Plot the densities of the following distributions. Normal (m, s), Sudent(n), Exponential (m).
Write a program which generates a sample of n = 500 RVs having a distribution in one of
the above. Do it for all the distributions given above. Display the corresponding standard
normal QQ-plots.

How do you interpret an S-shape in a normal QQ-plot ? A U-shape ?

EXERCISE 2.7. Exploratory Data Analysis.

1

Import the data of Table 1.3 by copying the 2 files indicated in a complementary document.
There is one file for the first period (days 1 and 2) and one for the second period (days 181
and 182)

Do a visual display of the data: 4 plots on one page for each of the two data sets, showing
the 5 values per plot.

(Factor Analysis and Box-Plot) Fix one factor (A/B, remote/local, period), and one value of
it. Plot a box plot while varying values of other factors (box plot should have 4 values on x
axis). Change the value of the fixed factor and redo the box plot. Repeat the same for other
2 factors.

Fix one value of factors A/B and period. Calculate means for remote and local. Do the
same calculation for other values of factors A/B and first/second measurement. Do box plot
with remote/local means on y axis and values of factors A/B and first/second measurement
on x axis. Do you find that distance is an important factor for the system performance?
Do the same plot by taking factor A/B on y axis. Do you find it important for the system
performance?

)
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Do you confirm the conclusions that were drawn in Chapter 2 ?

EXERCISE 2.8. Compute a confidence interval.

1

2.
3.

Import the values of achieved throughput that were used to build Figure 1.1(b) by copying
the file indicated in a complementary document (this constitutes the set of y-value of Fig-
ure 1.1(b), in the order that they were measured, whereas Figure 1.1(b), not necessarily in
the order shown on Figure 1.1(b)).

Plot the data.

Assume the data is the realization of a sequence of iid normal random variables. Find
a confidence interval for the mean. \erify the validity of your model with visual tests of
residues versus data and qgplot.

USEFUL S-PLUS COMMANDS

dnorm, dt, dgamma, dexp ...: densitiesof normal, student, gamma, exponential
distributions

rnorm, rt ...:random samples of these distributions

pnorm, pt, ...:cumulative distribution function

gnorm, gt, ...:quantilefunction (inverseof cumulative distribution function)

gaplot: QQplot
plot.design, plot.factor, interaction.plot exploratory dataanaysis

boxplot: Box-Plot (showing mean, quantiles and extreme values)

USEFUL MATLAB COMMANDS

normpdf, gammapdf, chi2pdf ...:denstiesof normal, gamma distributions
randn, chi2rnd, gammarnd: random samples of these distributions

normcdf, gammacdf, ...:cumulative distribution function

norminv, chi2inv ...: quantile function (inverse of cumulative distribution func-
tion)

e ggplot: QQ-plot
e boxplot: Box-Plot (showing mean, quantiles and extreme values).

e normfit: confidenceinterval using t-statistic
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3.1 WHATISA SIMULATION ?

A simulation is an experiment in the computer (biologists say “in silico”) where the real environ-
ment is replaced by the execution of a program.

61
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EXAMPLE 3.1: MOBILE SENSORS.  You want to build an algorithm A for a system of
n wireless sensors, carried by mobile users, which send information to a central data-
base. A simulation of the algorithm consists in implementing the essential features
of the program in computer, with one instance of A per simulated sensor. The main
difference between a simulation and a real implementation is that the real, physical
world (here: the radio channel, the measurements done by sensors) is replaced by
events in the execution of a program.

3.1.1 SIMULATED TIME AND REAL TIME

In a simulation the flow of time is controlled by the computer. A first task of your simulation
program is to simulate parallelism: severa parallel actions can take place in the real system; in
your program, you serialize them. Serializing is done by maintaining a simulated time, which
is the time at which an event in the real system is supposed to take place. Every action is then
decomposed into instantaneous events (for example, the beginning of a transmission), and we
assume that it isimpossible that two instantaneous events take place exactly at the same time.

Assume for examplethat every sensor in Example 3.1 on page 62 should send a message whenever
there is a sudden change in its reading, and at most every 10 minutes. It may happen in your
simulation program that two or more sensors decide to send a message simultaneously, say within
awindow of 10 us; your program may take much more than 10 us of real time to execute these
events. In contrast, if no event happens in the system during 5 minutes, your simulation program
may jump to the next event and take just of few ms to execute 5 mn of simulated time. The real
time depends on the performance of your computer (processor speed, amount of memory) and of
your simulation program.

3.1.2 SIMULATION TYPES

There are many different types of simulations. We use the following classification.

DETERMINISTIC / STOCHASTIC. A deterministic simulation has no random components. Itis
used when we want to verify a system where the environment is entirely known, maybe to verify
the feasibility of a schedule, or to test the feasibility of an implementation.

In most cases however, this is not sufficient. The environment of the system is better modelled
with arandom component, which makes the output of the simulation also random.

TERMINATING / NON-TERMINATING. A terminating simulation ends when specific condi-
tions occurs. For example, if we would like to evaluate the execution time of one sequence of
operations in awell defined environment, we can run the sequence in the simulator and count the
simulated time. A terminating simulation istypically used when

e We areinterested in the lifetime of some system
e or when the inputs are time dependent
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EXAMPLE 3.2: JOE’S COMPUTER SHOP. We are interested in evaluating the time it
takes to serve n customers who request a file together at time 0. We run a simulation
program that terminates at time 77 when all users have their request satisfied. This is
a terminating simulation; its output is the time T7.

ASYMPTOTICALLY STATIONARY / NON-STATIONARY. This applies to a non-terminating,
stochastic simulation only. Stationarity is a property of the stochastic model being simulated.
For an in-depth discussion of stationarity, see Chapter 11.

A stationary simulation is such that you gain no information about its age by analyzing it. For
example, if you run a stationary simulation and take a snapshot of the state of the system at times
10 and 10’ 000 seconds, there is no way to tell which of the two snapshotsis at time 10 or 10’000
seconds.

In practice, a non terminating simulation is rarely exactly stationary, but can be asymptotically
stationary. This means that after some simulated time, the simulation becomes stationary.

More precisely, a simulation program with time independent inputs can aways be thought of as
the ssimulation of a Markov chain. A Markov chain is a generic stochastic process such that, in
order to simulate the future after time ¢, the only information we need is the state of the system
at timet. Thisis usually what happens in a ssimulation program. The theory of Markov chains
(see Chapter 11) says that the ssmulation will either converge to some stationary behaviour, or will
diverge. If we want to measure the performance of the system under study, it ismost likely that we
are interested in its stationary behaviour.

EXAMPLE 3.3: INFORMATION SERVER. An information server is modelled as a queue.
The simulation program starts with an empty queue. Assume the arrival rate of re-
guests is smaller than the server can handle. Due to the fluctuations in the arrival
process, we expect some requests to be held in the queue, from time to time. After
some simulated time, the queue starts to oscillate between busy periods and idle pe-
riods. At the beginning of the simulation, the behaviour is not typical of the stationary
regime, but after a short time it becomes so (Figure 3.1 (a)).

If in contrast the model is unstable, the simulation output may show a non converging
behaviour (Figure 3.1 (b)).

In practice, there are two main reasons for non asymptotic stationarity.

1. unstablemodels: In aqueuing system wheretheinput rateislarger than the service capacity,
the buffer occupancy grows unbounded. Thelonger the smulationisrun, the larger the mean
queuelengthis. Instead of growing unbounded, an unstable system may sometimes” freeze”,
like in the unstable random waypoint (Chapter 11).

2. modelswith seasonal or growth components, or more generally, time dependent inputs; for
example: internet traffic grows month after month and is more intense at some times of the
day. Simulations that incorporate such aspects are terminating simulations, for which the
simulation duration is pre-defined.
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Figure 3.1: Simulation of the information server in Example 3.3 on page 63, with exponential service and
interarrival times. The graphs show the number of requests in the queue as a function of time, for two values
of the utilization factor.

In most cases, when you perform a non-terminating simulation, you should make sure that your
simulation is asymptotically stationary. Otherwise, the output of your simulation depends on the
length of the simulation. It is not always easy, though, to know in advance whether a given simu-
lation model is asymptotically stationary. Chapter 11 gives some examples.

QUESTION 3.1.1. Among the following sequences X,

Lo

X,,,n > 1lisiid

2. X, n > lisdrawn asfollows. X; is sampled from a given distribution F'(). To obtain X,
n > 2 wefirst flip a coin (and obtain 0 with probability 1 — p, 1 with probability p). If the
coinreturnsO welet X, = X,,_;; elsewelet X,, = a new sample from the distribution F'().

3. X,=>",%Z,n>1whereZ, n > 1isaniid sequence

say which ones are stationary. !

3.2 SIMULATION TECHNIQUES

There are many ways to implement a ssimulation program. We mention the two mostly used tech-
niquesin our context.

11. yes 2. yes (Xi,X,) has the same joint distribution as, for example (X0, X;1). In genera
(X0, Xn+1, - Xntx) has the same distribution for al n. Thisis an example of non-iid, but stationary sequence.
3. No, in general. For example, if the common distribution F'() has afinite variance o2, the variance of X, is no?,
and grows with n, which is contradictory with stationarity.
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3.2.1 DISCRETE EVENT SIMULATION

Many computer and communication systems are often simulated using discrete event simulation
for example with the ns2 simulator [ns2 home page]. It works as follows. The core of the method
isto use aglobal time currentTime and an event scheduler. Events are objects that represent
different transitions; al event have an associated firing time. The event scheduler is a list of
events, sorted by increasing firing times. The simulation program picks the first event in the event
scheduler, advances currentTime to the firing time of this event, and executes the event. The
execution of an event may schedule new eventswith firing times >current Time, and may change
or delete events that were previoudly listed in the event scheduler. The global simulation time
currentTime cannot be modified by an event. Thus, the simulation time jumps from one event
firing time to the next — hence the name of discrete event simulation. In addition to simulating the
logic of the system being modelled, events have to update the counters used for statistics.

EXAMPLE 3.4: DISCRETE EVENT SIMULATION OF A SIMPLE SERVER. A server
receives requests and serves them one by one in order of arrival. The times between
request arrivals and the service times are independent of each other. The distribution
of the time between arrivals has cdf F'() and the service time has cdf G(). The model is
in fact a GI/GI/1 queue, which stands for general independent inter-arrival and service
times. An outline of the program is given below. The program computes the mean
response time and the mean queue length.

CLASSESAND OBJECTS We describe this example using an object oriented terminology,
close to that of the Java programming language. All you need to know about object oriented
programming to understand this example is as follows. An object is a variable and a class is a
type. For example arrival23 is the name of the variable that contains all information about
the 23rd arrival, it is of the class Arrival. Classes can be nested, for example the class
Arrival is a sub-class of Event. A method is a function whose definition depends on the
class of the object. For example, the method execute is defined for all objects of the class
Event, and is inherited by all subclasses such as Arrival. When the method execute is
applied to the object arrival23, the actions that implement the simulation of an arrival are
executed (for example, the counter of the number of requests in the system is incremented).

Global Variables and Classes

e currentTime is the global simulated time; it can be modified only by the main
program.

e eventScheduler is the list of events, in order of increasing time.

e An event is an object of the class Event. It has an attribute £iringTime which
is the time at which it is to be executed. An event can be executed (i.e. the
Event class has a method called execute), as described later.

There are three Event subclasses: an event of the class Arrival represents
the actions that occur when a request arrives; Service is when a request enters
service; Departure is when a request leaves the system. The event classes
are described in detail later.
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Figure 3.2 (a) Events and their dependencies for Example 3.4 on page 65. An arrow indicates that an
event may schedule another one. (b) A possible realization of the simulation and (c) the corresponding
sequence of event execution. The arrows indicate that the execution of the event resulted in one or several
new events being inserted into the scheduler.

e The object buffer is the FIFO queue of Requests. The queue length (in num-
ber of requests) is buffer.length. The number of requests served so far is
contained in the global variable nbRequests. The class Request is used to
describe the requests arriving at the server. At a given point in time, there is
one object of the class Request for every request present in the system being
modelled. An object of the class Request has an arrival time attribute.

e Statistics Counters: queueLengthCtr is fot q(s)ds where q(s) is the value of
buffer.length attime s and ¢ is the current time. At the end of the simulation,
the mean queue length is queueLengthCtr/T where T is the simulation finish
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time.

The counter responseTimeCtr holds Y ", R,, where R,, is the response
time for the mth request and n is the value of nbRequests at the current time.
At the end of the simulation, the mean response time is responseTimeCtr/N
where N is the value of nbRequests.

Event Classes. For each of the three event classes, we describe now the actions
taken when an event of this class is “executed”.

e Arrival:. Execute Event’s Actions. Create a new object of class Request, with
arrival time equal to currentTime. Queue it at the tail of buffer.

Schedule Follow-Up Events. If buffer was empty before the insertion, create
a new event of class Service, with the same firingTime as this event, and
insert it into eventScheduler.

Draw a random number A from the distribution F'(). Create a new event of class
Arrival, with firingTime equal to this event firingTime+A4, and insert it
into eventScheduler.

e Service: Schedule Follow-Up Events. Draw a random number A from the
distribution G(). Create a new event of class Departure, with firingTime
equal to this event’s firingTime+A, and insert it into eventScheduler.

e Departure: Update Event Based Counters. Let ¢ be the request at the head
of buffer. Increment responseTimeCtr by d — a, where d is this event's
firingTime and a is the arrival time of the request c. Increment nbRequests
by 1.

Execute Event’s Actions. Remove the request ¢ from buffer and delete it.

Schedule Follow-Up Events. If buffer is not empty after the removal, cre-
ate a new event of class service, with firingTime equal to this event's
firingTime, and insert it into eventScheduler.

Main Program

e Bootstrapping. Create a new event of class Arrival with firingTime equal
to 0 and insert it into eventScheduler.

e Execute Events. While the simulation stopping condition is not fulfilled, do the
following.

Increment Time Based Counters. Let e be the first event in
eventScheduler. Increment queueLengthCtr by q(tnew — toiq) Where
g =buffer.length, tyey=e.firingTime and t,qy =currentTime.

Execute e.

Set currentTime t0 e. firingTime

Delete e

e Termination. Compute the final statistics:
meanQueuelLength=queueLengthCtr/currentTime
meanResponseTime=responseTimeCtr/nbRequests

Figure 3.2 illustrates the program.
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QUESTION 3.2.1. Isthe mean queue length an event-based or a time-based statistic ? The mean
response time ? 2

QUESTION 3.2.2. Can consecutive events have the same firing time ? 3
QUESTION 3.2.3. What are the generic actions that are executed when an event is executed ? 4

QUESTION 3.2.4. Isthe model in Example 3.4 on page 65 stationary ? °

3.2.2 STOCHASTIC RECURRENCE

Thisis another simulation method that applies to some classes of models. It is usually much more
efficient than discrete event ssmulation, but applies only to relatively simple models.

We assume here that the system to be simulated can be put in the form of a stochastic recurrence,
i.e. arecurrence of the form:
{ Xo = o (3.2)

Xn—l-l = f(Xm Zn)

where X, isthe state of the system at the nth transition (For any realization, X, isin some possibly
complicated state space X), xo isafixed, given statein X, Z,, is some stochastic process that can
be simulated (for example a sequence of iid random variables, or a Markov chain), and f is a
deterministic mapping.

The simulated time 7,, at which the nth transition occurs is assumed to be included in the state
variable X,,.

EXAMPLE 3.5: RANDOM WAY POINT.

The random waypoint is a model for a mobile point, and can be used to simulate the
mobility pattern in Example 3.1 on page 62. It is defined as follows. The state variable
is X, = (M,,T,) where M, is the position of the mobile at the nth transition (the nth
“waypoint”) and T;, is the time at which this destination is reached. The point M, is
chosen at random, uniformly in a given convex area .A. The speed at which the mobile
travels to the next waypoint is also chosen at random uniformly in [vmin, Vmax)-

The random waypoint model can be cast as a stochastic recurrence by letting Z,, =
(Mp+1, Vps1), where M, 1, V, 41 are independent i.i.d. sequences, such that M,
is uniformly distributed in A and V,,+1 in [Umin, Ymax). We have then the stochastic
recurrence

HMn+l - Mn”

Xn—i-l = (Mn-‘rlaTn-i-l) = (Mn-‘rlan + v

)

See Figure 3.3 for an illustration.

2Mean queue length: time based. Mean response time: event based.

3Yes. In Example 3.4 on page 65, aDeparture event when the queue is not empty isfollowed by aService
event with the same firing time.

41. Update Event Based Counters 2. Execute Event’s Actions 3. Schedule Follow-Up Events.

51t depends on the parameters. Let a [resp. b] be the mean of F'() [resp. G()]. The utilization factor of the queue
isp= g If p < 1thesystemis stable and thus asymptotically stationary, else not (see Chapter 6).
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Figure 3.3: Simulation of the random waypoint model.

Once asystem is cast as a stochastic recurrence, it can be simply simulated as a direct implemen-
tation of Equation (3.1), for example in Matlab.
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QUESTION 3.2.5. Isthe random waypoint model asymptotically stationary ? ©

STOCHASTIC RECURRENCE VERSUS DISCRETE EVENT SIMULATION It is always possi-
ble to express a stochastic ssimulation as a stochastic recurrence, but both representations may
have very different memory and CPU requirements. Which representation is best depends on the
problem at hand.

EXAMPLE 3.6: SIMPLE SERVER AS A STOCHASTIC RECURRENCE. (Continuation of
Example 3.4 on page 65). Consider implementing the simple server in Example 3.4
on page 65 as a stochastic recurrence. To simplify, assume we are interested only in
the mean queue length and not the mean response time. This can be implemented
as a stochastic recurrence as follows.

Let X, represent the state of the simulator just after an arrival or a departure, as
follows:

X = (tna bn» Adn, Gn, dn)

with ¢,, = the simulated time at which this transition occurs, b, =buffer.length,
¢n» = queueLengthCtr (both just after the transition), a,, = the time interval from this
transition to the next arrival and d,,= the time interval from this transition to the next
departure.

Let Z, be a couple of two random numbers, drawn independently of anything else,
with distribution uniform in (0, 1).

The initial state is
toZO, b():O, q0:0, GOIF_I(U), d():OO

where u is a sample of the uniform distribution on (0, 1). The reason for the formula
ap = F~1(u) is explained in Section 3.6: ag is a sample of the distribution with cdf F'().

The recurrence is defined by f((¢,b,q,a,d), (z1,22)) = (t',¥,¢',d’,d") with

if a < d // this transition is an arrival

A=a
t'=t+a
V=b+1
qd = q+bA
d =F1(z)

if b==0thend =G (z)elsed =d— A
else // this transition is a departure

A=d
t'=t+d
bV=b—-1

8For v, > 0 itisasymptotically stationary. For v,,i, = 0 itisnot: the model “freezes’ (the number of waypoints
per time unit tends to 0). See Chapter 11 for ajustification).
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¢ =q+bA
ad=a—-A

if o > 0thend = G (z) else d' = o

3.3 COMPUTING THE ACCURACY OF STOCHASTIC SIMULA-
TIONS

A simulation program is expected to output some quantities of interest. For example, for asimula-
tion of the algorithm A it may be the average number of lost messages. The output of a stochastic
simulation is random: two different simulation runs produce different outputs. Therefore, it is not
sufficient to give one simulation result; in addition, we need to give the accuracy of our results.

3.3.1 INDEPENDENT REPLICATIONS

A simple and very efficient method to obtain confidence intervalsisto use replication. Perform n
independent replications of the simulation, each producing an output x4, ..., x,,. Be careful to have
truly random seeds for the random number generators, for example by accessing computer time
(Section 3.5).

3.3.2 COMPUTING CONFIDENCE INTERVALS

You have to choose whether you want a confidence interval for the median or for the mean. The
former is straightforward to compute, thus should be preferred in general.

Methodsfor computing confidence intervalsfor median and mean are summarizedin Section 2.11.1.

EXAMPLE: APPLICATION TO EXAMPLE 3.2 ON PAGE 63. Figure 3.4 shows the time to
transfer all files as a function of the number of customers. The simulation outputs
do not appear to be normal, therefore we test whether n is large, by looking at the
ggplot of the the bootstrap replicates. We find that it looks normal, so we can use the
student statistic. By curiosity, we also compute the bootstrap percentile estimate and
find that both confidence intervals are very close, the bootstrap percentile estimate
being slightly smaller.

There are other methods of obtaining confidence intervals, but they involve specific assumptions
on the model; see [LawKelton-2000].
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Figure 3.4: Time to serve n files in Joe’s computer shop (Example 3.2 on page 63): (a) results of 30 inde-
pendent replications, versus number of customers (b) 95%confidence intervals for the mean obtained with
the normal approximation (left), with the bootstrap percentile estimate (middle); 95% confidence interval
for the median (right). (c) ggplot of simulation outputs, showing deviation from normality (d) qg-plots of the
bootstrap replicates, showing normality.

3.3.3 NON-TERMINATING SIMULATIONS

Non-terminating simulations should be asymptotically stationary (Section 3.1.2). When you sim-
ulate such amodel, you should be careful to do transient removal. Thisinvolves determining:

¢ when to start measuring the output (thisis the time at which we consider that the ssmulation
has converged to its stationary regime
¢ when to stop the simulation

Unfortunately, there is no simple, bullet proof method to determine these two numbers. In theory,
convergence to the stationary regime is governed by the value of the second eigenvalue modulus
of the transition matrix of the markov chain that represents your simulation. In al but very special
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cases, it isimpossible to estimate this value. A practical method for removing transientsisto ook
at the data produced by the simulation, and visually determine a time after which the simulation
output does not seem to exhibit a clear trend behaviour. For example, in Figure ?? (a), the mea-
surements could safely start at time ¢ = 1. This is the same stationarity test as with time series
(Chapter 9).

Determining when to stop a simulation is more tricky. The simulation should be large enough for
transients to be removable. After that, you need to estimate whether running the simulation for a
long time reduces the variance of the quantities that you are measuring. In practice, thisis hard to
predict a priori. A rule of thumb is to run the ssmulation long enough so that the output variable
looks gaussian across several replications, but not longer than necessary.

3.4 MONTE CARLO SIMULATION

Monte Carlo simulation is a method for computing probabilities, expectations, or, in general,
integrals when direct evaluationsisimpossible or too complex. It simply consistsin estimating the
expectation as the mean of a number of independent replications.

Formally, assume we are given amodel for generating a data sequence X . The sequence may be

—

iid or not. Assume we want to compute g = E <g0(X )) . Note that this covers the case where we
want to compute a probability: if ¢(7) = 1zc4) for someset A, then 3 = P(X € A).

Monte-Carlo simulation consistsin generating R iid replicates)f“’, r=1,..., R. TheMonte-Carlo
estimate of 3 is

L1 L
B=2> w(X7) (32)

A confidence interval for 5 can then be computed using the methods in Chapter 2 for a confidence
interval for the mean. By adjusting R, the number of replications, we can control the accuracy of
the method, i.e. the width of the confidence interval.

EXAMPLE 3.7: p-VALUE OF A TEST. Let Xjy,..., X,, be a sequence of iid random
variables that take values in the discrete set {1,2,...,1}. Let ¢; = P(X; = i). Let
N; = > 51 1{x,=4 (number of observation that are equal to 7). Assume we want to
compute

k N,

pz]P’(ZNilnl >a> (3.3
i=1 s

where a > 0 is given. This computation arises in the theory of goodness of fit tests,

when we want to test whether X; does indeed come from the model defined above.

For large values of the sample size n we can approximate 3 by a 2 distribution (see

Section 7.5), but for small values there is no analytic result.

We use Monte-Carlo simulation to compute p. We generate R iid replicates X7, ..., X,
of the sequence (r = 1,...,R). This can be done by using the inversion method
described in this chapter. For each replicate r, let

k=1
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| R | p | margin|
30 | 0.2667 | 0.1582
60 | 0.2500 | 0.1096
120 | 0.2333 | 0.0757
240 | 0.1917 | 0.0498
480 | 0.1979 | 0.0356
960 | 0.2010 | 0.02%4
1920 | 0.1865 | 0.0174
3840 | 0.1893 | 0.0124
7680 | 0.1931 | 0.0088

Table 3.1: Computation of p in Example 3.7 on page 74 by Monte Carlo simulation. The parameters of the
model are I =4, g1 = 9/16,9> = g3 = 3/16, g4 = 1/16, n = 100 and a = 2.4. The table shows the estimate
p of p with its 95% confidence margin versus the number of Monte-Carlo replicates R. With 7680 replicates
the relative accuracy (margin/p) is below 5%.

The Monte Carlo estimate of p is

. 1
b= R Z 1{Zf:1 N;In %>a} (35)

r=1

We compute a confidence interval by using a normal approximation, as explained in
Example 2.14 on page 40. The sample variance is estimated by

p(1 = p)
R

o=

(3.6)

and a confidence interval at level 0.95 is p+1.965. Assume we want a relative accuracy
at least equal to some fixed value e (for example ¢ = 0.05). This is achieved if

1.966
%67 . (3.7)
p
which is equivalent to
92 /1
Rx 32 (1) @
€ p

We can test for every value of R whether Equation (3.8) is verified and stop the sim-
ulation when this happens. Table 3.1 shows some results; we see that p is equal to
0.19 with an accuracy of 5%; the number of Monte Carlo replicates is proportional to
the relative accuracy to the power —2.

3.5 RANDOM NUMBER GENERATORS

The simulation of any random process uses a basic function (such as rand in Matlab) that is
assumed to return independent uniform random variables. Arbitrary distributions can be derived
from there, as explained in Section 3.6.
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In fact, rand is a pseudo-random number generator. It produces a sequence of numbers that
appear to be random, but is in fact perfectly deterministic, and depends only on one initialization
value of its internal stated, called the seed. There are several methods to implement pseudo
random number generators; they are all based on chaotic sequences, i.e. iterative processes where
asmall difference in the seed produces very different outputs.

Simple random number generators are based on linear congruences of thetype x,, = ax,,_; mod
m. Here the internal state after n callsto rand isthe last output x,,; the seed is x,. Like for any
iterative algroithm, the sequence is periodic, but for appropriate choices of a and m, the period
may be very large.

ExAMPLE 3.8: LINEAR CONGRUENCE. A widespread generator (for example the
default in ns2) has a = 16’807 and m = 23! — 1. The sequence is z, = -medm
where s is the seed. m is a prime number, and the smallest exponent h such that

= 1 mod m is m — 1. It follows that for any value of the seed s, the period of z,, i
exactly m — 1.Figure 3.5 shows that the sequence z,, indeed looks random.

The period of arandom number generator should be much smaller than the number of timesit is
called in asimulation. The generator in Example 3.8 on page 75 has aperiod of ca. 2 x 10°, which
may be too small for very large simulations. There are other generators with much longer periods,
for example the “Mersenne Twister” [Matsumoto-98] with a period of 21937 — 1, They use other
chaotic sequences and combinations of them.

Perfect pseudo-random number generators do not exist; only truly random generators can be per-
fect. Such generators exist: for example, quantum mechanics generator is based on the fact that
the state of a photon is believed to be truly random. For a general discussion of generatorsin the
framework of simulation, see [Hechenleitner-02]. Figure 3.6 illustrates a potential problem when
the random number generator does not have along enough period.

USING A RANDOM NUMBER GENERATOR IN PARALLEL STREAMS For some (obsolete)
generators as in Example 3.8 on page 75, choosing small seed values in parallel streams may
introduce a strong correlation (whereas we would like the streams to be independent).

EXAMPLE 3.9: PARALLEL STREAMS WITH INCORRECT SEEDS. Assume we need to
generate two parallel streams of random numbers. This is very frequent in discrete
event simulations; we may want to have one stream for the arrival process, and a
second one for the service process. Assume we use the linear congruential generator
of Example 3.8 on page 75, and generate two streams z,, and ], with seeds s = 1
and s’ = 2. Figure 3.7 shows the results: we see that the two streams are strongly
correlated. In contrast, taking s’ = the last value z of the first stream does not have
this problem.

More modern generators as mentioned above do not have this problem either.
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Figure 3.5: 1000 successive numbers for the generator in Example 3.8 on page 75. (a) QQplot against the
uniform distribution in (0, 1), showing a perfect match. (b) autocorrelation function, showing no significant
correlation at any lag (c) lag plots at various lags, showing independence.
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Figure 3.6: Simulation outputs for the throughput of TCP connections over a wireless ad-hoc network.
The wireless LAN protocol uses random numbers for its operation. This simulation consumes a very large
number of calls to rand. The simulation results obtained with both generators are different:. Lecuyer’s
generator produces consistently smaller confidence intervals.

SEEDING THE RANDOM NUMBER GENERATOR A safeway to make surethat replicationsare
reasonably independent isto usetheinternal state of the generator at the end of the 1st replication as
seed for the second replication and so one. Thisway, if the generator has along enough sequence,
the different replications have non overlapping sequences.

In practice, though, we often want independent replications to be run in parallel, so this mode of
operation isnot possible. A common practiceisto take as seed atruly random number, for example
derived from the computer clock.

3.6 HOW TO SAMPLE FROM A DISTRIBUTION

In this section we discuss methods to produce a sample X for arandom variable that has a known
distribution. We assume that we have a random number generator, that provides us with indepen-
dent samples of the uniform distribution on (0, 1). We focus on two methods of general applica-
bility: inversion and rejection sampling.

3.6.1 BY INVERSION OF CDF
This appliesto real or integer valued random variable, when the cdf is easy to invert.

THEOREM 3.6.1. Let F' bethe cdf of a random variable X with valuesin R. Define the pseudo-
inverse, F~! of I’ by

F~!(p) = sup{z : F(z) < p}

Let U be a sample of a random variable with uniform distribution on (0, 1); F~(U) isa sample
of X.
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Figure 3.7: z,, versus 2/, for two streams generated with the linear congruential in Example 3.8 on page 75.
(a) seed values are 1 and 2 (b) seed values are (1, last value of first stream).

Proof. Take some arbitrary ¢ € R. Let E betheevent E = {F~}(U) < c}. We want to show that
P(E) = F(c).

We have the following equivalences (the following statements have the same truth value):

{F'(U) <c}
< {sup{z: F(x) <U} <c}
< {(VzeRF(z)<U=z<c}
& {(VzeRaz>c= F(z)>U}
< {Vz>cF(z)>U}

Thefirst equivalence is by definition of the pseudo-inverse. The second is by the definition of asup. The
third is by the boolean equivalence of (A = B) and (notB =-notA). The fourth is simple re-writing.
Thuswe have shownthat £ = {U < inf,~ . F(x)}. Now, by definition of an inf:

{U < giﬂr;ch(:L')} C{Ve>cF(z)>U}C {U < inf F(x)}

x>c
and, because F'() isright-continuous, we have inf, .. F'(z) = F(c). Thus
{U<F(e)} C{Ve >cF(x)>U} C{U < F(c)}

AsU isuniformly distributed on (0,1), P(U < F(c)) = P(U < F(¢)) = F(c) thus F(c) < P(E) <
F(e).
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O

Application to real random variable. In the case where X has a positive density over some
interval 7, then F' is continuous and strictly increasing on I, and the pseudo-inverse is the inverse
of F', asin the next example. It is obtained by solving the equation F'(x) = p, where = is the
unknownin 1.

EXAMPLE 3.10: EXPONENTIAL RANDOM VARIABLE. The cdf of the exponential distri-
bution with parameter \ is F(z) = 1—e~**. The pseudo-inverse is obtained by solving
the equation

l—e™M=p
where z is the unknown. The solution is z = —ln(&_p). Thus a sample X of the
exponential distribution is obtained by letting X = —2U=Y) o since U/ and 1 — U
have the same distribution: |

X =— D(AU) (3.9)

where U is the output of the random number generator.

Application to integer random variable. Assume NV isarandom variable with valuesin N. Let
pr = P(N = k), thenforn € N:
F(n) = Zpk
k=0

and for z € R;

{ if x <0 then F(z)=0
else F(z) =P(N <z)=P(N < |z]) = F(|z])

We now compute F~*(p), for 0 < p < 1. Let n bethe smallest integer such that p < F(n). The set
{z : F(x) < p} isequa to (—oo,n) (Figure 3.8); the supremum of this set isn, thus F~!(p) = n.
In other words, the pseudo inverse is given by

Flp=neFhn-1)<p< F(n) (3.10)

Thus, an integer valued random variable NV can be sampled by: N = the index n such that
F(n—1) <U < F(n), where U isthe output of the random generator.

EXAMPLE 3.11: GEOMETRIC RANDOM VARIABLE. Here X takes integer values
0,1,2,.... The geometric distribution with parameter ¢ satisfies P(X = k) = 6(1 — 0)*,
thus for n € N:

F(n) = Zn:H(l —0F =1-(1- )"t
k=0

by application of Equation (3.10):
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FN) [ -—
p [T
Fne1) [T IS
Ml in=Fip

FX) - p } X

Figure 3.8: Pseudo-Inverse of cdf F() of an integer-valued random variable

hence In(1 )
_ n(l—op
aCN =

and, since U and 1 — U have the same distribution, a sample X of the geometric

distribution is (D)
X = Ln(l—G)J (3.11)

QUESTION 3.6.1. Consider the function defined by coIN (p)= if rand()<p 0 else 1. What
doesit compute ? ’

QUESTION 3.6.2. Consider the sampling method: Draw coIn (p) until it returns 0. The value of
the sample N is the number of iterations. Isthis a good method for generating a sample from a
geometric distribution ? 8

QUESTION 3.6.3. Compare Equation (3.9) and Equation (3.11). °

3.6.2 REJECTION SAMPLING

This is a method of large applicability. It can be used to generate samples of random variables
when the inversion method does not work easily. It applies to random vectors of any dimension.

’It generates asample of the Bernoulli random variable that takes the value 0 with p and the value 1 with probability
1—p.

8The distribution of IV is geometric with § = 1 — p. so this method does produce a sample from a geometric
distribution. However it draws in average % random numbers from the generator, and the random number generator
isusually considered an expensive computation compared to a floating point operation. If 6 is small, the procedure in
Example 3.11 on page 80 is much more efficient.

9They aresimilar, infact wehave N = | X | if welet A\ = In(1 —6). Thisfollowsfrom thefact that if X ~ exp()\),
then | X | is geometric with parameter = 1 — e=*
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The method is based on the following result, which is of independent interest. It allows to sample
from a distribution given in conditional form.

THEOREM 3.6.2 (Rejection Sampling for a Conditional Distribution). Let X be arandomvariable
in some space S such that the distribution of X is the conditional distribution of X given that
Y € A, where (X,Y) isarandomvariablein S x S” and A is a measurable subset of S.

A sample of X isobtained by the following algorithm:

do

draw a sample of (X, Y')
untilY € A
return(X)

The expected number of iterations of the algorithmis m.

Proof. Let N be the (random) number of iterations of the algorithm, and let (Xk, ffk) be the sample
drawn at the kth iteration. (These samples are independent, but in general, X, and Y}, are not indepen-
dent). Let @ = P(Y € A). Weassume ¢ > 0 otherwise the conditional distribution of X isnot defined.
The output of the algorithmis X = X .

For some arbitrary measurable B in S, we compute P(X € B):
P(XxeB) = > P

XkeBandN:k)

XpeBand Vi ¢A, ... Vi1 ¢A, Y € A)

> X ol
I\/M |\/M \V,
= — =

1

_ P (Xl € BlY; e A) S 01— 6)+!

k>1

= IP’(fQ € BV, EA)

B
[\

The second equality is by definition of N. Thethird is by the independence of (X}, Y;) and (X, Yi)
for k # k. Thelast equality is because 6 > 0. This shows that the distribution of X is as required.

N — 1 isgeometric with parameter 6 thus the expectation of N is1/6.

EXAMPLE 3.12: DENSITY RESTRICTED TO ARBITRARY SUBSET. Consider a random
variable in some space (R,R", Z...) that has a density fy(y). Let A be a set such that
P(Y € A) > 0. We are interested in the distribution of a random variable X whose
density is that of Y, restricted to A:

fx() = Kfy(y)liyeay (312



82 CHAPTER 3. SIMULATION

where K—! = P(Y € A) > 0 is a normalizing constant. This distribution is the condi-
tional distribution of Y, given that Y € A.

QUESTION 3.6.4. Show this. 1°

Thus a sampling method for the distribution with density in Equation (3.12) is to draw
samples of the distribution with density fy until a sample is found that belongs to A.
The expected number of iterations is 1/P(Y € A).

For example, consider the sampling of a random point X uniformly distributed on
some bounded area A C R2?. We can consider this density as the restriction of the
uniform density on some rectangle R = [Zmin, Tmax] X [Umin, Ymax] that contains the
area A. Thus a sampling method is to draw points uniformly in R, until we find one
in A. The expected numbers of iterations is the ratio of the area of R to that of A,
thus one should be careful to pick a rectangle that is close to A. Figure 3.9 shows a
sample of the uniform distribution over a non-convex area.

QUESTION 3.6.5. How can one generate a sample of the uniform distribution over R ? 1

Figure 3.9: 1000 independent samples of the uniform distribution over A = the interior of the cross. Sam-
ples are obtained by generating uniform samples in the bounding rectangle and rejecting those samples
that do not fall in A.

EXAMPLE 3.13: HALF-NORMAL DENSITY. [6] The half-normal distribution is the distri-
. . . 9 42
bution of the absolute value of normal random variable. It has density —2—e S 1y}

It can easily be seen that it is also the conditional distribution of a standard normal
random variable given that it is positive. We could derive a sampling method from

10For any (measurable) subset 5 of the space, P(X € B) = K [, fy (y)1{yeaydy = KP(Y € Aand Y € B) =
P(Y e BlY € A).

1The coordinates are independent and uniform: generate two independent samples U, V' ~Unif(0, 1); the sample
iS ((1 - U)xmin + Uxma)n (1 - V)ymin + Vymax-
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this, using Example 3.12 on page 81, if we knew how to sample from a normal distrib-
ution. In fact, the method presented in this example is used to generate a sample from
the normal distribution, so we do not follow this track. Instead, we use the following
observation.

Let Y, Z be two independent, exponential random variables, with parameter A\ = 1.
The conditional distribution of Y given that Z > (1 — Y)? is half-normal.

To see why, compute, for an arbitrary function ¢:

E(¢(Y)l{z>%(1—y)2})

where K is some constant. Thus

E(H(V)|Z > S (1-Y)") = T s =K oty

where K’ is some other constant. This shows that the conditional distribution of Y is
half-normal.

Since sampling from an exponential distribution can easily be done by inversion of
the cdf, we can now apply the previous theorem with X = Y and obtain a sampling
method for the half-normal distribution: draw independent samples Y, Z of the expo-
nential distribution with A = 1 until the condition Z > 1(1 — Y)? is true. The sample is
the value of Y.

Now we come to avery general result, for al distributions that have a density.
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THEOREM 3.6.3 (Rejection Sampling for Distribution with Density). Consider two random vari-
ables X, Y with values in the same space, that both have densities. Assume that:

e We know a method to draw a sample of X

e the density of Y is known up to a normalization constant K: fy (y) = K f{*(y), where f{ is
a known function

e there exist some ¢ > 0 such that

fy(z)
fx(z) =¢

A sample of Y is obtained by the following algorithm:

do
draw independent samples of X and U, where U ~Unif(0, ¢)

; fy(X)
until U < fi(x)

return(X)

The expected number of iterations of the algorithmis .

Proof. Apply Theorem 3.6.2with X = X andY = (X, U). All we need to show is that the conditional
density of X giventhat U < fY(X) is fy.

To thisend, pick some arbitrary function ¢. We have

= (s < 7570

= KiE X)1 n
(o001, gy

= 1 [E (o)1, s X =) fxle)is

fx(f)

- K1/¢(x) Yi fx(x)dx
- 2 [o@ir@de = L@

where K is some constant. Thisistrue for al ¢ thus, necessarily, K; /K =1 (take ¢ = 1).

A frequent use of Theorem 3.6.3 isasfollows.

EXAMPLE 3.14: ARBITRARY DISTRIBUTION WITH DENSITY. Assume that: Y takes
values in the bounded interval [a,b], has a density fy = K fj}(y) that can easily be
computed but for the multiplicative constant K, and that we know an upper bound M
on fy. We take X uniformly distributed over [a, b] and obtain the sampling method:

do

draw X ~Unif(a,b) and U ~Unif(0, M)
until U < f3(X)
return(X)
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Note that we do not need to know the multiplicative constant K. For example, consider
the distribution with density

.2
Sin
Iy (y) =K yg(y) 1{—a§y§a} (313)

K is hard to compute, but a bound M on f{: is easy to find (M = 1).

EXAMPLE 3.15: A STOCHASTIC GEOMETRY EXAMPLE. We want to sample the ran-
dom vector (X, X») that takes values in the rectangle [0, 1] x [0, 1] and whose distrib-
ution has a density proportional to | X; — X5|. We take fx = the uniform density over
[0,1] x [0,1] and f§(x1,z2) = |x1 — z2|. An upper bound on the ratio IP12) 459 The

) ) ) Ix (@1,22)
sampling algorithm is thus:

do

draw X, Xy and U ~Unif(0,1)
until U < |X1 —X2|
return(Xy, Xs)

Figure 3.10 shows an example. Note that there is no need to know the normalizing
constant to apply the sampling algorithm.

90
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Figure 3.10: (a) Empirical histogram (bin size = 10) of 2000 samples of the distribution with density fx (z)
proportional to S“{;,(I)l{_agyga} with ¢ = 10. (b) 2000 independent samples of the distribution on the

rectangle with density fx, x,(x1,z2) proportional to |z; — x2|.
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3.6.3 AD-Hoc METHODS

The methods of inversion and rejection sampling may be improved in some special cases. We
mention in detail the case of the normal distribution, which isimportant to optimize because of its
frequent use.

Sampling a Normal Random Variable. The method of inversion cannot be directly used, as the
cdf is hard to compute. An alternative is based on the method of change of variables.

PROPOSITION 3.6.1. Let (X, Y') beindependent, standard normal random variables. Let

R=VX2+Y2

O = arg(X + jY)
R and © areindependent, R has a Rayleigh distribution (i.e is positive with density m%z) and ©
is uniformly distributed on [0, 27].

Proof. Apply the formulafor a change of variablesin Section 12.1.2. We have

X = Rcos(0)
{ Y = Rsin(0)

The jacobian of thistransformationis R, thus

R _r2
fro(r,0) = 7

O

The cdf of the Rayleigh distribution can easily be inverted: F(r) = P(R < r) =1 — e /2 and
F~(p) = v/—2In(1 — p). A sampling method for a couple of two independent standard normal
variablesis thus (Box-Miller method):

draw U ~Unif(0, 1)
R=+/—2In(U)

draw © ~Unif(0, 27)

X = Rcos(0),Y = Rsin(0)
return(X,Y)

QUESTION 3.6.6. In Example 3.13 on page 82 we obtained a method to sample from the half-
normal density. How can this be used to sample a normal random variable ? 12

Correlated Normal Random Vectors.  We want to sample (X7, ..., X,,) as a normal random
vector with zero mean and covariance matrix §2 (see Section ??). If the covariance matrix is
diagona (i.e. 2i,7 = 0 for i # j) then the X;s are independent and we can sample them one by
one (or better, two by two). We are interested here in the case where there is some correlation.

12|_et Y be asample from the standard half-normal distribution. Let Z be an independent coin tossing variable with
Z = +1 with equal probabilities. Let X = ZY. Z has the same distribution as —Z therefore X also has the same
distribution as — X. X > 0 meansthat Z = 1 therefore the conditional distribution of X given that X > 0 isthat of
Y, i.e. isthe conditional distribution of a standard normal variable given that it is > 0. By symmetry, the same holds
for the conditional distribution given that X < 0. Thus X has a standard normal distribution.
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The method we show here is again based on a change of variable. There exists always a change
of basisin R™ such that, in the new basis, the random vector has a diagonal covariance matrix. In
fact, there are many such bases (one of them is orthonormal and can be obtained by diagonalisation
of 2, but is much more expensive than the method we discuss next). An inexpensive and stable
algorithm to obtain one such basisis called Choleski’s factorization method. It amounts to finding
amatrix L such that Q = LLT. Let Y be a standard normal vector (i.e. an iid sequence of n
standard normal random variables). Let X = LY. The covariance matrix of X is

E(XXT) =E(LY(LY)")) =E(L(YY)L") = LE(YY")LT = LLT = Q

Thus a sample of X can be obtained by sampling Y first and computing LY . Figure 3.6.3 shows
an example.

I I I I I I I - I I I I I I I
-4 -3 2 1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

(8 X1, X, independent (b) X1, X5 dependent

Figure 3.11: 1000 independent samples of the normal vector X, X, with 0 mean and covariance Q; ; =
0?2 =1,09=03=1and Qo = Qs =0 (left), Q1 o = Q21 = 1/2 (right). The right sample is obtained by
the transformation X = LY with Yiid ~ Ny, and L = (1,0;1/2,1/3/2).

Other Methods There are many ways to optimize the generation of samples. Good references are
[6] and [7]

3.7 REVIEW

QUESTION 3.7.1. What arereal time and simulated time ? %3

QUESTION 3.7.2. Why do we need to run independent replications of a simulation ? How are they
obtained ?

13The time taken by the computer to run the simulation program; the time as experienced by the system being
simulated.

14To obtain confidence intervals. By running multiple instances of the simulation program; if done sequentially,
the seed of the random generator can be carried over from one run to the next. If replications are done in parallel on
several machines, the seeds should be chosen independently by looking up atable of random numbers.
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QUESTION 3.7.3. Why do we need to verify normality when computing confidence intervals ?

QUESTION 3.7.4. Why do we need the bootstrap method to test whether the sample size is large
enough, when computing confidence intervals ? 16

3.8 EXERCISES

Floyd: simulating the Internet

15Because the computation of the confidence interval assumes that either (1) the data is approximately normal or
(2) the mean of the data converges in distribution to anormal random variable.
16Because we have only one value of the statistic ¢, o we cannot perform a normality test on it.



CHAPTER 4

MODEL FITTING

In this chapter we study how to derive amodel from data, for example, fitting a curve to a series of
measurements. Using a motivating example, we illustrate that fitting a model can be misleading,
and that the issue can be circumvented if we interpret the model fitting problem as a statistical es-
timation problem. The widely used least square fitting method corresponds to the homoscedastic
assumption, i.e., when the noise can be assumed to be normal iid. Verification of assumptions can
be done by examination of residuals. Linear regression is a specia case, also called “ANOVA”,
which occurs when the dependency of the model parametersis linear; there are closed form solu-
tions for computing the model (and confidence intervals). We see that linear regression is much
more genera than the term “linear” suggests. In some very specific cases, the ANOVA model
can be used to simplify factorial analysis, i.e. a quantitative assessment of the importance of fac-
tors. Last, we will point out to modelling patterns: the hidden factor and Simpson’s paradox. The
proofs of the theorems in this chapter are all based on a few geometrical properties of gaussian
independent (but not identical) vectors, which are explained in appendix in Chapter 12.
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4.1 WHAT ISMODEL FITTING ?

We start with a simple example.

EXAMPLE 4.1: VIRUS SPREAD DATA. The number of hosts infected by a virus is
plotted versus time in hours.
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The plot suggests an exponential growth, therefore we are inclined to fit these data to
a model of the form
Y (t) = ae™ (4.1)

where Y (¢) is the number of infected hosts at time ¢. We are particulary interested in
the parameter «, which can be interpreted as the growth rate; the doubling time (time
for the number of infected hosts to double) is 1“72 On the plot, the dashed line is the
curve fitted by the method of least squares explained later. We find o« = 0.5173 per
hour and the doubling time is 1.34 hour. We can use the model to predict that, 6 hours
after the end of the measurement period, the number of infected hosts would be ca.
100°000.

In general, model fitting can be defined as the problem of finding an explanatory model for the
data, i.e. amathematical relation of the form

-,

yi = fi(B) (4.2)

that “explains the data well”, in some sense. Here y; is the collection of measured data, i is the
index of a measurement, f; isan array of functions, and 3 isthe parameter that we would like to
obtain. In the previous example, the parameter is = (a, ) and f;(6) = fi(a, ) = ae™’ where
t;, isthe time of the ith measurement, assumed here to be known.

What does it mean to “explain the data well” ? It is generally not possible to require that Equa-
tion (4.2) holds exactly for all datapoints. Therefore, acommon answer isto require that the model
minimizes some metric of the discrepancy between the explanatory model and the data. A very

4\ 2
common metric is the mean square distance ) (yi - fi(ﬁ)) . The value of the growth rate «
in the previous example was obtained in this way, namely, we computed a and « that minimize

2 i(yi — ae™)?.
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QUESTION 4.1.1. How would you compute e and o ? *

But this raises another question. What metric should one use ? What is so magical about least

- - 2
squares ? Why not use other measures of discrepancy, for example . |y;— fi(3)|or >, (ln(yi) — In( fz-(ﬁ))> ?
The following example shows the importance of the issue.

EXAMPLE 4.2: VIRUS SPREAD DATA, CONTINUED. AMBIGUITY IN THE OPTIMIZATION
CRITERION. We also plotted the number of infected hosts in log scale:

10"

and computed the least square fit of Equation (4.2) in log scale (plain line). Namely,
we computed a and « that minimize 3, (In(y;) — In(a) — at;)*. We found for a the
value 0.39 per hour, which gives a doubling time of 1.77 hour and a prediction at time
+6 hours equal to ca. 39’000 infected hosts (instead of previously 100'000).

The two different models are compared below (in linear and log scales).
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M . . . 107

Both figures show that what visually appears to be a good fit in one scale is not so in
the other. Which one should we use ?

An answer to the issue comes from statistics. The idea is to add to the explanatory model a
description of the “noise” (informally defined as the deviation between the explanatory model and

1This is a non constrained optimization problem in two variables; we used a generic solver (fminsearch in
meatlab)
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the data), and obtain astatistical model. We can also think of the statistical model as a description
of asimulator that was used to produce the data we have. Its parameters are well defined, but not
known to us.

The statistical model usually has afew more parameters than the explanatory model. The parame-
ters of the statistical model are estimated using the classical approach of maximum likelihood. If
we believe in the statistical model, this answers the previous issue by saying that the criterion to
be optimized isthe likelihood. The belief in the model can be checked by examining residuals.

EXAMPLE: VIRUS SPREAD DATA, CONTINUED. A STATISTICAL MODEL.One statistical
model for the virus spread data is

Y; = ae® + ¢; with ¢; iid ~ Ny, o2 (4.3

in other words, we assume that the measured data y; is equal to the ideal value given
by the explanatory model, plus a noise term ¢;. Further, we assume that all noises are
independent, gaussian, and with same variance. The parameter is § = (a, a, 0).

In Equation (4.3), we write Y; instead of y; to express that Y; is a random variable.
We think of our data y; as being one sample produced by a simulator that implements
Equation (4.3).

We will see in Section 4.2 that the maximum likelihood estimator for this model is the
one that minimizes the mean square distance. Thus, with this model, we obtain for «
the value in Example 4.1 on page 90.

A second statistical model could be:
In(Y;) = In (ae™) + ¢; with ¢; iid ~ Np 2 (4.4

Now, we would be assuming that the noise terms in log-scale have the same variance,
in other words, the noise is proportional to the measured value. Here too, the maxi-
mum likelihood estimator is obtained by minimizing the least square distance, thus we
obtain for « the value in Example 4.2 on page 91.

We can validate either model by plotting the residuals:
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We see clearly that the residual for the former model do not appear to be normally
distributed, and the converse is true for the former model, which is the one we should
adopt. Therefore, an acceptable fitting is obtained by minimizing least squares in
log-scale.
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QUESTION 4.1.2. How would you compute the residuals ? 2

We summarize what we have learnt so far as follows.

FITTING A MODEL TO DATA
1. Define astatistical model that contains both the deterministic part (the one we are interested

in) and amodel of the noise.

2. Estimate the parameters of the statistical model using maximum likelihood. If the number
of data pointsis small, use a brute force approach (e.g use fminsearch). If the number of
data points is large, you may need to look in the literature for efficient, possibly heuristic,
optimization methods.

3. Validate the modél fit by screening the residuals, either visually, or using tests (Chapter 7).

4.2 LEAST SQUARES CORRESPOND TO GAUSSIAN, SAME VARI-
ANCE
A very frequent case is when the statistical model has the form
Y, = fi(B) 4 ¢ fori=1,... I withe; iid ~ Ny (4.5)
asin the examples before (Models in Equations (4.3) and (4.4)). Namely, the discrepancy between
the explanatory model and the data is assumed to be gaussian with same variance. In some

literature, the “same variance” assumption is called homoscedasticity.

THEOREM 4.2.1 (Least Squares). For the model in Equation (4.5), the maximum likelihood esti-
mator of the parameter (3, o) isgiven by:

1 B = arg mingzi (?Ji - fz(ﬁ)>2
52 = %ZZ (yi - fz(3)>2

Proof. Thelog likelihood of the datais

I
ly = —gln (2r) —Iln(c QL Z ( = fi g) (4.6)

S\ 2
For any fixed o, it is maximum when Zle (y, — fi (ﬁ)) is minimum, which shows item 1. Take the

N 4N\ 2
derivative with respect to o and find that for any fixed 3, it is maximum for o = % > (yl — fi(ﬁ)) ,
which shows item 2.

2The residuals are estimates of the noisetermse;. Let ¢ and & be the values estimated by maximum likelihood, for
either model. Theresidualsarer; = y; — ae®'i for the former model, r; = Iny; — In (ae®'*) for the latter.
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-

The theorem explains what we do when we fit the explanatory model y; = f;(3) to our datausing
least squares. we implicitly assume that the error termsin our data are independent, gaussian, and
of same amplitude. We have seen in the examples above that care must be taken to validate this
assumption.

The set of pointsin R’ that have coordinates of the form fi(ﬁ) constitue a “manifold” (for p = 2,
itisasurface). Item 1 saysthat 5 isthe parameter of the point ¢ on thismanifold that isthe nearest
to the data point 3/, in euclidian distance. The point 3 is called the predicted response; itisan
estimate of the value that 3 would take if there would be no noise. It is equal to the orthogonal
projection of the data ¢/ onto the manifold.

QUESTION 4.2.1. How would you compute confidence intervals for g3

4.3 LINEAR REGRESSION

A special case of the previous section is when the explanatory model depends linearly on its para-
meter 3. Thisiscalled the linear regression model. The main fact here is that everything can be
computed easily, in matrix forms.

Assume thus that the statistical model of our experiment has the form:

DEFINITION 4.3.1 (Linear Regression Model).

-,

Y, = (XB)i+ e fori=1,...,Twithe iid ~ Ny, 4.7)

where the unknown parameter FisinRr and X isa l x p matrix. The matrix X supposed to be
known exactly in advance. e also assume that

H X hasrank p

Assumption H meansthat different values of 3 give different values of the explanatory model X 3,
i.e. the explanatory model isidentifiable.

The elements of the known matrix X are sometimes called explanatory variables, and then the
y;S are caled the response variables.

EXAMPLE 4.3: JOE’S SHOP AGAIN, FIGURE 1.1(B). We assume that there is a thresh-
old £ beyond which the throughput collapses (we take ¢ = 70). The statistical model
is

Y, = (CL + bxi)lmigé + (C + dg)l{a:i>f} T € (48)

where we impose
a+bf=c+dE (4.9

30ne method is to use the asymptotic confidence interval of Theorem 2.8.1. A second method is the bootstrap:
draw R bootstrap replicates of Y and obtain R estimates of 5. Use the order statistics of the bootstrap estimates to
obtain confidence intervals.
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In other words, we assume the throughput response curve to be piecewise linear.
Equation (4.9) expresses that the curve is continuous. Recall that x; is the offered
load and Y; is the actual throughput.

Here we take § = (a, b, d) (we can derive ¢ = a + (b — d)¢ from Equation (4.9)). The
dependency of Y; on § is indeed linear. Note that we assume that £ is known (see in
exercise how to handle the case where ¢ is to be identified).

Assume that we sort the ;S in increasing order and let i* be the largest index i such
that z; < £. Re-write Equation (4.8) as

&

a+br;+efori=1...7"
Vi = a+b+dx;,—§) +efori=i"+1...1

thus the matrix X is given by:

1 I 0
1 x 0
1 Tj* 0

I & zpp1—¢

& zr—¢
It is simple to see that a sufficient condition for H is that there are at least two distinct

values of x; < £ and at least one value > ¢&.

QUESTION 4.3.1. Show this. 4

A model as in this example is sometimes called Intervention Analysis.

With the linear regression model, the manifold mentioned in the discussion after Theorem 4.2.1is
alinear manifold (for p = 2, aplane). Itisequal to the linear sub-space spanned by the columns of
matrix X. The nearest point is given by an orthogonal projection, which can be computed exactly.
The details are given in the following theorem.

4We need to show, if the condition is true, that the matrix X hasrank p = 3. Thisis equivalent to saying that the
equation

has only the solution a = b = d = 0. Consider first ¢ and b. If there are two distinct values of x;, i < i*, say
and x5 thena + bxy = a + bxs = 0thusa = b = 0. Sincethereisavaue x; > &, it followsthat i* + 1 < I and
d(xy — &) =0thusd = 0.
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THEOREM 4.3.1 (Linear Regression). Consider the model in Definition 4.3.1; let i/ bethe I x 1
column vector of the data.

1. Thep x p matrix (X7 X) isinvertible
2. (Estimation) The maximum likelihood estimator of 3 is 3 = Kjwith K = (X7X)~1 X7
3. (Standardized Residuals) Define the ith residual as e; = (gj— X B) . The residuals are

zero-mean gaussian but are correlated, with covariance matrix o2(1 d; — H), where H =
X(XTX)1XT,
Let s* = - lell> = 7= > ¢; (rescaled sum of squared residuals). s* is an unbiased
estimator of 2.
The standardized residuals defined by r; := ﬁ have unit variance and r; ~ ty_, .

This can be used to test the model by checking thatwn- are approximately normal with unit
variance.

4. (Confidence Intervals) Let v = le u;3; be a (non-random) linear combination of the
o ~ 2
parameter 3; 4 = >, u;[3; isour estimator of v. Letg = >, (Z]. quj’k> (variance

bias). Then 'Yf;gz ~ tn_p. Thiscan be used to obtain a confidence interval for .

Proof. thd

O

Comments. Item 3 statesthat the residuals are (dlightly) biased, and it is better to use standardized
residuals.

The matrix H isthe projection onto the subspace spanned by the columns of X.
The predicted responseis § = X 3. It isequal to the orthogonal projection of . and is given by

y=Hy (4.10)

The scaled sum of squared residuals s is also equal to 3 (||7]* — [|9]1*). Itsdistributionis 3x3_.
This can be used to compute a confidence interval for o.

The proof of the theorem shows a slightly stronger result than item 4: the joint distribution of Bis
gaussian with mean 3 and covariance matrix o2 K K, and 3 is independent of e.

EXAMPLE: JOE’'S SHOP AGAIN. CONTINUATION OF EXAMPLE 4.3. We can thus apply
matrix computations given in Theorem 4.3.1; item 2 gives an estimate of (a, b, d) and
thus of ¢. Item 4 gives confidence intervals. The values and the fitted linear regression
model are shown in the table and figure below.
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10

oo oo

Achieved Throughput (tps)

a 0.978 £0.609

b 0.0915+ 0.0137
Cc
d

15.8 +2.99
—0.121 + 0.037 % 10 20 30 40 50 60 70 80 90 100

Offered Load (tps)

We also computed the residuals e; (crosses) and standardized residuals r; (circles).
There is little difference between both types of residuals. They appear reasonably nor-
mal, but one might criticize the model in that the variance appears smaller for smaller
values of x. The normal qgplot of the residuals also shows approximate normality (the
ggplot of standardized residuals is similar and is not shown).
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QUESTION 4.3.2. Can we conclude that there is congestion collapse ? °

WHERE ISLINEARITY ? Inthe previous example, we see that that y; is alinear function of 3,
but not of z;. Thisisquite general, and you should avoid awidespread confusion: linear regression
is not restricted to models where the data y; is linear with the explanatory variables z;.

BEYOND THE LINEAR CASE

EXAMPLE: JOE’S SHOP - ESTIMATION OF £. In Example 4.3 on page 94 we assumed
that the value ¢ after which there is congestion collapse is known in advance. Now we
relax this assumption. Our model is now the same as Equation (4.8), except that £ is
also now a parameter to be estimated.

SYes, since the confidence interval for d is entirely positive [resp. negative].
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To do this, we apply maximum likelihood estimation. We have to maximize the log-
likelihood I5(a, b,d, &, o), where 3/, the data, is fixed. For a fixed £, we know the value of
(a,b,d, o) that achieves the maximum, as we have a linear regression model. We plot
the value of this maximum versus ¢ (Figure 4.1) and numerically find the maximum. It
is for £ = 77.

To find a confidence interval, we use the asymptotic result in Theorem 2.8.2. It says

N

that a 95% confidence interval is obtained by solving [(§) — [(£) < 1.9207, which gives
¢ € [73,80].

-190

-200 g

-2101 q

-220 b

-230| .

240~ -

250 I I I I I I I
10 20 30 40 50 60 70 80 90

Figure 4.1: Log likelihood for Joes’ shop as a function of &.

4.4 N-WAY ANOVA

Called N-Way ANOVA, it isaspecial case of linear regression, which is often used to capture the
effect of n qualitative factors. ANOVA stands for “Analysis of Variance”, because all statistical
tests and estimations can be expressed from the sample variance (sums of squares). Itisalso a
specia case of the ANOVA model introduced in Section 7.4.1.

We describe the model for n = 2 (it is called in the statistics literature “2-way ANOVA with
replicates’). For general values of n, the concepts are similar, but the notation becomes heavy.

DEFINITION 4.4.1 (2-Way ANOVA). The statistical model is
Vi, j,r] = a+ bli] + c[j] + dli, j] + e[i, j,7] (4.11)

withi=1,..1,7=1,...,J,r=1,..., Rand ¢[i, j,r] areiid ~ Ny ,2.

Thevariablesi, j are called factors (they take valuesin a discrete set). A possible value of a factor
is called a level (herethe levelsare 1...1 for thefirst factor). Y|i, j, r| represents the value of the
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rth replicate of an experiment with 2 factors, when factor 1 has the value i and factor 2 has value
7.

The coefficients a, b[i], c[j], d[i, j] are called effects. The coefficients d|, j] are called interac-
tions.

The additive model is a variant model where we force d[i, j] = 0.
To avoid under specification, we impose the constraints:

2. bli] =
>.iclil=0 (4.12)
for all j >, d[i,j] = 0 and foralli}_, d[i,j] =0

The N-Way ANOVA model is a special case of linear regression, and everything we saw in Sec-
tion 4.3 applies. The parameter 3 isthe array (a, b]], [], d[,]), subject to the constraints in Equa-
tion (4.12). Itsdimensionis p = I.J. The manifold spanned by the columns of the matrix X isthe
set of arrays z[i, 7, r] that depend only on i and j. Itsdimension isaso p = I.J, which shows that
condition H in Definition 4.3.1 is satisfied. For the additive model, the dimension of the parameter
isp=1+J—1.

N-Way ANOVA is aso a specia case of the ANOVA model used for tests in Section 7.4.1: the
random variables Y'[i, 7, r] are gaussian with mean

yli 3] = a + bfi] + clj] + dli, j) (4.13)

and common variance 2. Note that the constraints in Equation (4.12) do not put any restrictions
on ul[i, j]: any function u[z, j] can be put in the form of Equation (4.13) with the constraints in
Equation (4.12) being satisfied.

QUESTION 4.4.1. Provethis. ©

EXAMPLE 4.4: MoOBILE ROUTING. Consider the results of simulations that aim to
compare 4 different routing protocols (A to D) proposed for mobile ad-hoc networks.
Three mobility models (U, W and C) are used, and every experiment is repeated 4
times. The performance metric is the throughput achieved by the network. The figures
show the values of the mean and median of 6 replicates.

d[] such that Equation (4.13) and Equation (4.12)

We are given the array p[i, j], we want to find a, b[] c[] and d
7 2 mliy j] —a, and dfi, ] = pli, j] = bli] — c[j] — a.

hold. Takea = 75 3=, ; pli, gl bli] = 3 3 pli. j] — a. clj] =
One can verify that all required equations hold
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The model is 2-way ANOVA with 6 replicates.

If we believe that mobility does not affect the performance of a routing protocol, then
we should have all interaction terms equal to 0. We will see in this section that this
can be exactly tested.

Theresultsin Theorem 4.3.1 have asimpler form, given by the following result.

THEOREM 4.4.1 (Estimation of ANOVA Model). The maximum likelihood estimate of the para-
meters of the model in Definition 4.4.1 is given by

~

A a - g

dfi, j
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where j = ﬁ > ir yli, 7,] and a notation such as 3|, ., .] means the average of the subar-

ray of y obtained when i is fixed. So for example y[i,.,.| = += > ylisdorl and gli, g, ] =
£ 2, ylis g
The variance biases are
B 1
Jo = TIR
11
Gvli] = TJR
J—1
U = TIR
(I-1)(J-1)
g} = IJR

For the additive model, the estimates a, b[i], ¢[j] are given by the same formulae, and so are the
variances biases.

Proof.1. show that a, b[], c[], d[, ] satisfy the conditionsin Equation (4.12).

2. Let §[i,j] = a+ b[i] + é[i] + d[i, j]. We want to show that 7 is the orthogonal projection on the
subspace spanned by the columns of X. First, ¢ belongs to the subspace by construction. So al we
need now isto show that ¢/ — g is orthogonal to the subspace. Check this by computing the inner product
of asystem of generating elements of the subspace.

3. tbd

EXAMPLE 4.5: MOBILE ROUTING, CONTINUED. We applied the formulae and com-
puted the residuals. The histogram and ggplot indicate a large deviation from normal-
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We try a Box-Cox transformation and find that changing Y to 1/Y does give more

satisfactory residuals.
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We also tried the additive model to the transformed data, namely
1/Y[i, j, k] = a+ bli] + c[j] + €[, j, k]

We re-apply the formulae to this model and find residuals as shown below.
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For the additive model, the estimated effects are:

Tables of effects (effect, 0.95 confidence interval)
routing
A B C D
0.37544 -0.31829 0.13596 -0.19311
0.10321 0.10321 0.10321 0.10321
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They show that A and C perform significantly better (if we believe in the additive model,
which we will discuss next)

QUESTION 4.4.2. Can you compare a confidence interval for b[1] — b[3] ? 7

4.5 FACTORIAL ANALYSIS

4.5.1 INTRODUCTION

The goal of factorial analysis is to understand the impact of each factor on some performance
metric. In generd, it is performed by an exhaustive application of the scientific method, asillus-
trated in Section 1.4.1. This may be time consuming as the number of possible combinations of
factors may suffer from combinatorial explosion.

In some special cases where the “ANOVA” linear regression model holds, it is possible to have
powerful results in relatively few computations. This is the main result of this section. Before
studying the ANOVA Factoria Analysis model, we first see in the next section the nature of the
difficulty.

4.5.2 |TERATIVE APPLICATION OF TWO FACTOR ANALYSIS

A simple way to do factorial analysis, when there are few factors, is to test the inclusion of factors
one by one. Thisis called Two Factor Analysis. We explain it on one example:

EXAMPLE 4.6: We would like to interpret the data in Figure 4.2 with the model
Zi =a+bx; + cy; + ¢ (4.19)

where Z; is the measured response time for a transaction ¢ submitted to an information
system, x; is the number of database accesses required by this transaction, and y; is
the number of disk accesses.

We first ask whether the combination of database and disk accesses is required to
explain the data. Since the model in Equation (4.14) fits in the ANOVA framework,
we can apply Theorem 7.4.1. More precisely, we test Hy: b = ¢ = 0 versus H;:
(b,c) # (0,0). The result shows that we should reject Hy, i.e. the parameter (b, c) is

significant.
Df Sum of Sq Mean Sq F Value Pr (F)
diskAc+dbAc 2 19685.91 9842.95 5.4e+002 0
Residuals 97 1780.22 18.35

"We need to compute the variance bias g for b[1] — b[3]. Wefind g = -2-. Thus the variance of the estimator of

b[1] — b[3] is % = 0.0842. The confidence interval for b[1] — b[3] is thus 0.23948 + 0.1701. It does not contain 0
thus A is better than B.
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(b) Responsetimes Z; versus disk access counts y;

Figure 4.2: Data for Example 4.6 on page 103
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So, at this point, we conclude that the full model in Equation (4.14) is required, namely
the response time is influenced by the disk and memory access counts.

We continue the analysis and ask whether, given that we accept database access in
the model (b # 0), the second factor disk access is also required. We test Hy: ¢ =0
versus Hi: ¢ # 0. The result below shows that ¢ is not significant at size 0.05 (given
that b is accepted in the model).

Df Sum of Sq Mean Sq F Value Pr (F)
dbAc 1 55.02 55.02 2.998 0.087
Residuals 97 1780.22 18.35

We repeat the analysis, but now adding ¢ before b, i.e. we test Hy: b = 0 versus H;:
b # 0 . The result shows that the addition of b is significant !

Df Sum of Sq Mean Sg F Value Pr (F)
diskAc 1 1413.42 1413.42 77.0141 5.87308e-014
Residuals 97 1780.22 18.35

We see that now, both database access and disk access are significant. To under-
stand why this happened in this example, take a look at Figure 4.3. We see that data
base access and disk access are strongly correlated, so adding data base access to
disk access does not explain the data better (but the converse is not true).
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Figure 4.3: Database access counts z; versus disk access counts y;.

This exampleillustrates that when testing factors one by one, the answer may depends on the order
with which the factors are considered. This is annoying, but is in the nature of the explanatory
model, and is not an artifact of the statistical method.

We see next a case where this annoying phenomenon cannot occur.
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4.5.3 FACTORIAL ANALYSISWITH ORTHOGONAL FACTORS

This is a practical case where we can analyze factors for themselves, independent of the order
where we add them. In practice, we use it when the factors take a small number of discrete values,
with an ANOVA model. The method is based on the following theoretical framework.

DEFINITION 4.5.1 (Orthogonal Factors). Assume a Linear Regression Model asin Definition 4.3.1
and:

1. The parameter can be decomposed in a unique way as B=PBi+B+..+ ﬁmo, where the
component (3, € B,, represents factor m. ,, isalinear subspace of the set of parameters.
2. The decomposition iswith orthogonal factors, i.e X (B,,) L X (B,, ) for all m # m/.

EXAMPLE: RESPONSE TIME AGAIN.What is the decomposition of factors being tested
in Example 4.6 on page 103 ?

The model is Z; = a + bx; + cy; + ¢;.
One possible decomposition, in two factors, is

(a,b,¢) = (a,0,0) + (0,b,c)

The first factor is a, the second is (b,c). The first test in Example 4.6 on page 103
says that the presence of (b,c) is significant, which is equivalent to accepting that

(b,¢) # (0,0).
Are the factors orthogonal ? B is the set of (a,0,0),a € R, and X (B;) is the set of
vectors of length I = 100 of the form

a 1
a 1

=a = aeq
a 1

Similarly, B2 is the set of (0,b,¢),b,c € R, and X (B.) is the set of vectors of the form
bey + bey with

L1 W
52 = xT; and 53 = Y
Ly Yr

The factors are orthogonal if and only if < €1, é; >=< €1, €3 >= 0. This is not the case
as < €1,€y >=y . x; # 0.

An alternative decomposition, in three factors, is
(a,b,¢) = (a,0,0) + (0,b,0) + (0,0, c)

There are three spaces X (B;), j = 1, 2, 3, each generated by €;. They are not mutually
orthogonal either, so this model does not satisfy Definition 4.5.1.
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EXAMPLE: N-WAY ANOVA 1SWITH ORTHOGONAL FACTORS. As in Definition 4.4.1, we
give the details for V = 2.

The parameter J is the array (a,b[],c[],d[,]) and B is the set of 3 that satisfy the
constraints in Equation (4.12). The set X (B) is the set of arrays z[i, j, r] that depend
only on ¢ and j. Its dimensionis p = IJ.

Consider the decomposition of 3 into 4 factors: a, b[], ¢[] and d[,]. The first factor is not
a real factor, it represents the constant term, the second b[] represents the first true
factor, the third factor c|[] represents the second true factor; the fourth factor d[, | is the
interaction between the two true factors.

With the constraints of the ANOVA model, the model is with orthogonal factors. To
see why, we determine the spaces X (B,,), m = 1...4.

e X(B,) is obtained by letting b[] = ¢[] = d[,] = 0 in 4. Thus it is the set of arrays
2'[i, j, k] that are constants: z![i, j, k] = a. The dimension is k; = 1.

e X(B,) is the set of arrays 22 of the form 2%[i, j, k] = b[i] for some values of b]]
such that >, b[i] = 0. The dimension is ky = I — 1.

It comes < 2!, 2% >= Ja ", bli] = 0 thus X (B;) L X(Bs).

e Similarly, X (Bs) is the set of arrays 23 of the form 23[i, j, k] = ¢[j] for some values
of c[] suchthat }_, c[j] = 0. The dimension is k3 = J — 1 and X (B1) L X(B3).
Further, < 2%, 2% >= 37, - bilc[j] = (32, bi]) (3 clj]) = 0 thus X (B2) L X (Bs).

e X(B,) is the set of arrays z* of the form z*[i, j, k] = d[i, j] for some values of d||
such that >, d[i, j] = >_,d[i,j] = 0. The dimensionis ks = (I —1)(J —1). It
follows similarly that X (Bs4) is orthogonal to X (B,,), m = 1,2, 3.

THEOREM 4.5.1. Consider a linear regression model with orthogonal factors. Let g, be the
predicted response if we consider only factor m (i.e. if welet 5,,, = 0 for all m’ # m). Let

SS(m) = |[gml (4.15)
o 2
SSR = ||Y = (§1+ -+ Umo) ’ (4.16)
e The predicted response (under the model without restrictions) iS¢, + ... + U, -
e Thelikelihood ratio statistic for the test Hy: 3,, = 0 versus Hy: 3,, # 0 is

T SSR/(N = (k1 + . + kmy))

It has a Fisher distribution with degrees of freedom as in the fraction. Its p-valueis 1 —
Bl N— (k1 ot kg ()

The test with size o accepts the inclusion of the mth factor if the p-value is less than «;, i.e. if the
F-gtatistic in the theoremis large.
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SSR isthe sum of squared residuals, S.S(m) is classically interpreted as the variation in the data
explained by factor m. To see why, let model m be defined as the model obtained if we accept
only factors 1 tom (i.eif welet 5,, = 0 for m’ > m). Under model m the predicted response is

N 2
¥ + ... + U and the residual sum of squaresis HY — (Gma1 + -+ QmO)H . Thusthereductionin
residual sum of squares obtained when we go from model m — 1 to model m (i.e. we add factor
m)isSS(m).
Note that, with our assumptions, this reduction is independent of the order of the factors, and the
annoying phenomenon reported in Example 4.6 on page 103 cannot occur here.

Proof. thd in details. Follows from Theorem 12.5.1 and Theorem 12.5.2.

EXAMPLE: MOBILE ROUTING, CONTINUED. Since the factors are orthogonal, we can
apply Theorem 4.5.1 to the original model. The F'-tests indicate that the interactions
are non-significant.

Df Sum of S Mean Sq F Value Pr (F)

routing 3 52580.60 17526.87 13.80558 0.0000038

mobilityModel 2 58962.28 29481.14 23.22174 0.0000003

routing:mobilityModel 6 14277.35 2379.56 1.87433 0.1122506
Residuals 36 45703.77 1269.55

However, we found in Example 4.5 on page 101 that the residuals indicate a large
deviation from normality and that changing Y to 1/Y does give satisfactory residuals.
The F-tests for 1/Y indicate that the interactions are non significant:

Df Sum of Sg Mean Sq F Value Pr (F)

routing 3 3.576561 1.192187 28.34307 0.0000000

mobilityModel 2 6.110433 .055216 72.63475 0.0000000

routing:mobilityModel 6 0.275198 0.045866 1.09042 0.3867329
Residuals 36 1.514259 0.042063

O O W K

This shows that an additive model is adequate, namely

1/Y[i,j, k] = a + bli] + c[j] + €[i, 7, k]

We re-apply Theorem 4.5.1 to this model and find the results below. This shows that
both routing and mobility model play a role in the final result.

Df Sum of Sq Mean Sg F Value Pr (F)

routing 3 3.576561 1.192187 27.98160 4.19193e-010

mobilityModel 2 6.110433 3.055216 71.70843 2.86000e-014
Residuals 42 1.789456 0.042606
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SPECIAL CASE: FACTORS WITH ONLY 2 LEVELS. When theindicesi,j in Equation (4.11)
take only two values (there are only two levels), then all factor subspaces B; have dimension 1.
The convention in this case is to label the two levels —1 and 1. The 2-way ANOVA modé in
Equation (4.11) can then be re-written as

Yi,j k] = a+bi + cj + dij + e[i, j, K]

where a, b, c,d arescalarsand i = +1,j = +1,k = 1...K. Thismodel is sometimes called 2
factorial analysis (herewith £ = 2 and r = K). See exercise 4.7 for an example.

4.6 APPLICATIONTO MODELING: HIDDEN FACTORS

ExamMPLE 4.7: TCP THROUGHPUT. The data on Figure 4.4, left, suggests that
throughput increases with mobility. The right plot shows the same data, but reveals
the window size. The conclusion is inverted: throughput decreases with mobility. The
hidden factor influences the final result: all experiments with low speed are for small
window sizes.
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Figure 4.4: Left: plot of throughput versus speed for a mobile node. Right: same plot, but showing window
size; s = small window, L = large window.

Avoiding hidden factors may be done by proper randomization of the experiments. On the example
above, a proper design would have distributed window sizes randomly with respect to the speed.
If randomization is not possible, then all factors have to be incorporated in the model.

QUESTION 4.6.1. Give a linear regression model for Figure 4.4. 8

In conclusion: before stating that some factor has a given impact on the overall performance, make
sure that there is no hidden factor that playsarole.

8Let Y; be the throughput of the ith data point, s; the speed, and w; = 1 Wpen the window sizeis small, w; = 2
otherwise. A model isY; = ay, + by, s; + €. The unknown parameter is 5 = (aq, a2, b1, be) With 4 degrees of
freedom. Thelinesy = a,z + b; are shown on Figure 4.4, right.



110 CHAPTER 4. MODEL FITTING

4.7 EXERCISES

EXERCISE 4.1. Compute confidence intervals for Example 1 in Section 4.3.

EXERCISE 4.2. Compute the confidenceinterval for Example 3 by using Theorem ?? item5instead
of the method above.

EXERCISE 4.3. Homework

1. Import the data of Table 1.3 by copying the file indicated in a complementary document.
Thereis one singlefile for the whole dataset.

2. Do a linear regression of the response time as a function of the three factors and their
interaction: user type, compiler option and experiment period. Give confidence intervals for
the effects. Verify the residuals. Doesit look convincing ? What effects are significant ? Can
you conclude which compiler option is better

3. Do the same with 1000/ (response time). What is now the conclusion ?

Do the same analysis with user type =" R’ and userType="L" separately. Can you con-

clude?

>

USEFUL MATLAB COMMANDS

e anoval, anova2, anovan perform linear regression for the N-way ANOVA mode, i.e.
for N = 2:
Vi, j, k] = a+ b[i] + c[j] + d[i, j] + €[i, j, K] (4.18)

e regress Solvesthe general model asin Theorem 4.3.1.

USEFUL ScoOMMANDS Read the S-PLUS guide to statistics, Chapter “Designed Experiments
and Analysis of Variance”, Section “ The Two-Way Layout with Replicates”

Useful commands:

fac.design, data.frame: create datastructures

plot.design, plot.factor, interaction.plot: graphica exploration

X <- aov, coefficients(x), model.tables(x,se=T): peform anayss of
variance and display results with estimate of standard deviation of effect

1m, glm, gam: normal, non normal linear regression (best least square estimator)



CHAPTER 5

PERFORMANCE PATTERNS

5.1 CONGESTION COLLAPSE

Consider anetwork where sources may send at arate limited only by the source capabilities. Such
anetwork may suffer of congestion collapse, which we explain now on an example.

We assume that the only resource to allocate is link bit rates. We also assume that if the offered
traffic on some link [ exceedsthe capacity ¢; of the link, then all sources seetheir traffic reduced in
proportion of their offered traffic. This assumption is approximately true if queuing isfirst in first
out in the network nodes, neglecting possible effects due to traffic burstiness.

Consider first the network illustrated on Figure 5.1. Sources 1 and 2 send traffic to destination
nodes D1 and D2 respectively, and are limited only by their access rates. There are five links
labeled 1 through 5 with capacities shown on the figure. Assume sources are limited only by their
first link, without feedback from the network. Call )\; the sending rate of source i, and \'i the
outgoing rate.

For example, with the values given on the figures we find \; = 100kb/s and A, = 1000kb/s, but
only A} = X, = 10kb/s, and the total throughput is 20kb/s ! Source 1 can send only at 10 kb/s
because it is competing with source 2 on link 3, which sends at a high rate on that link; however,
source 2 is limited to 10 kb/s because of link 5. If source 2 would be aware of the global situation,
and if it would cooperate, then it would send at 10 kb/s only aready on link 2, which would allow
source 1 to send at 100 kb/s, without any penalty for source 2. The total throughput of the network
would then become 6 = 110kb/s.

The first example has shown some inefficiency. In complex network scenarios, this may lead to a
form of instability known as congestion collapse. To illustrate this, we use the network illustrated
on Figure5.2. Thetopology isaring; it iscommonly used in many networks, becauseitisasimple
way to provide some redundancy. There are I nodes and links, numbered 0, 1, ..., I — 1. Source
i enters node ¢, uses links [(¢ + 1) mod /] and [(z + 2) mod ], and leaves the network at node
(¢ + 2) mod I. Assume that source i sends as much as \;, without feedback from the network.
Cdll )\, the rate achieved by source i on link [(i + 1) mod 7] and A/ the rate achieved on link
[(¢ 4+ 2) mod I]. This corresponds to every source choosing the shortest path to the destination. In

111
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Source 1 1link 1 link 4
cl = 100 kb/s c4 = 100 kb/s
c3 = 110 kb/s
X

link 2 link 5
Source 2 ©2 = 1000 kb/s c5 = 10 kb/s

Figure5.1: A simple network exhibiting some inefficiency if sources are not limited by some feedback from
the network

the rest of this example, we omit “mod I” when the context is clear. We have then:

[ 1 LG ).
A; = min ()\1, /\i+A271/\’>

n __ 3 / Ci+1 /
A; = min ()\Z—, N )\i>

(5.1)

source i
node
i+1

node 1

link (i-1) link (i+1)

Figure 5.2: A network exhibiting congestion collapse if sources are not limited by some feedback from the
network

Applying Equation 5.1 enables us to compute the total throughput 6. In order to obtain a closed
form solution, we further study the symmetric case, namely, we assumethat ¢; = c and \; = \ for
al i. Then we have obvioudy \; = X and A/ = \” for some values of \" and \" which we compute
now.

If A < 5 thenthereisnolossand \” = X' = A and the throughput is & = I \. Else, we have, from
Equation (5.1)
cA

TN
We can solve for \' (a polynomial equation of degree 2) and obtain

A c
=l 14 1+ 4
A 2( +1/+A)

cN
A+ N

)\/

We have also from Equation (5.1)
)\/l —
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Combining the last two equations gives

A c
N =c—= 1+4——1
¢ 2(\/ RN )

Using the limited development, valid for u — 0

1 1
Vidtu=1+ -u— -u®+o(u?)

2 8
we have ) .
c
)\/l: - -
3 +0()\)

Thus, the limit of the achieved throughput, when the offered load goes to +oc, is0. Thisiswhat
we call congestion collapse.

Figure 5.3 plots the throughput per source \” as a function of the offered load per source \. It
confirms that after some point, the throughput decreases with the offered load, going to 0 as the
offered load goes to +oc.

1: /\
R
4 / \

/ o

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Figure 5.3: Throughput per source as a function of the offered load per source, in Mb/s, for the network of
Figure 5.2. Numbers are in Mb/s. The link rate is ¢ = 20Mb/s for all links.

The previous discussion hasillustrated the following fact:

FAcT 5.1.1 (Efficiency Criterion). In a packet network, sources should limit their sending rate
by taking into consideration the state of the network. Ignoring this may put the network into
congestion collapse. One objective of congestion control isto avoid such inefficiencies.

Congestion collapse occurs when some resources are consumed by traffic that will be later dis-
carded. This phenomenon did happen in the Internet in the middle of the eighties. At that time,
there was no end-to-end congestion control in TCP/IP. As we will see in the next section, a sec-
ondary objectiveisfairness.

QUESTION 5.1.1. Can you imagine a congestion collapse scenario due to customer impatience ?
1

1to be done —see Hébuternes notes.
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5.1.1 PuT MORE, GET LESS

QUESTION 5.1.2. Can you imagine a system where adding capacity to a bottleneck makes things
worse for every user ? 2

5.2 MULTI-USER PERFORMANCE

In many complex systems, there is not a single user and a global performance objective is not
obviously defined. Maximizing the overall sum of individual performance metrics is not always
intuitive.

5.2.1 EFFICIENCY VERSUS FAIRNESS

Assume that we want to maximize the network throughput, based on the considerations of the
previous section. Consider the network example in Figure 5.4, where source i sends at arate x;,
1 =0,1...,1,and al links have a capacity equal to c. We assume that we implement some form
of congestion control and that there are negligible losses. Thus, the flow on link 7 isngxg + n;x;.
For a given value of ng and =y, maximizing the throughput requires that n;z; = ¢ — ngxo for
i=1,...,1. Thetota throughput, measured at the network output, isthus Ic — (I — 1)ngzo; itis
maximum for zo = 0!

n0 Type 0 link i
Sources at rate x0 capacity c
[
| | [ Vi [
| | ] |
\ / Yy . \ \/
ni Typé i

Sources at rate xi

Figure 5.4: A simple network used to illustrate fairness (the“parking lot” scenario)

The example shows that maximizing network throughput as a primary objective may lead to gross
unfairness; in the worst case, some sources may get a zero throughput, which is probably consid-
ered unfair by these sources.

52.2 MAX-MIN FAIRNESS

In a simple vision, fairness simply means allocating the same share to all. In the simple case of
Figure 5.4 with n; = 1 for al 4, this would mean alocating z; = 5 to al sourcesi = 0,..., 1.
However, in the case of a network, such asimple view does not generally make sense.

’Hereis one example. Consider Figure 5.2 and assume now that the access link rate rate for every sourceislimited
to 6 Mb/s. For every user, the bottleneck is the access link, and the throughput per user is 6 Mb/s. Assume now that
we multiply the access link rate by 10. Figure 5.3 shows that the throughput decreases to 4 Mb/s.
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Consider again the example of Figure 5.4, now with general valuesfor n;. If wefollow the previous
line of reasoning, we would alocate the fractio o ; sources using link
i. Thisyidds z; = o fori > 1 for i =0, the reasonlng of the previous section indicates that
we should allocate xp = minj<;<; —— n0+n For example, with I = 2, ng = n; = 1andny = 9,

we would alocate zy = 0.1¢, ;1 = 0.5¢ and zo = 0.1c. This alocation however would not
fully utilize link 1; we could decide to increase the share of sources of type 1 since this can be
done without decreasing the shares of other sources. Thus, afinal allocation could be 2o, = 0.1¢,
x1 = 0.9c and zo = 0.1c. We have illustrated that allocating resources in an equal proportion is
not a good solution since some sources can get more that others without decreasing others' shares.
Formally, thisleads to our first definition of fairness called max-min fairness.

Consider an allocation problem; define the vector z whose ith coordinate is the allocation for user
i. Let X bethe set of all feasible allocations.

DEFINITION 5.2.1 (Max-min Fairness). [1] A feasible allocation of rates 7 is “ max-min fair” if
and only if an increase of any rate within the domain of feasible allocations must be at the cost of
a decrease of some already smaller rate. Formally, for any other feasible allocation 7, if y, > z,
then there must exist some s’ suchthat z, < z, and yy < x.

Depending on the problem, amax-min fair allocation may or may not exist. However, if it exists, it
isunique (see later for a proof). We develop the theory in a special case where existence is aways
guaranteed. For a general set of results, see [RadunovicO2-Allerton].

NETWORK MODEL We use the following simplified network model in the rest of this section.
We consider a set of sources s = 1,...,S and links1,..., L. Let A, be the fraction of traffic
of source s which flows on link [, and let ¢; be the capacity of link I. We define a network as the
couple (Z, A).

A feasible allocation of rates z, > 0 is defined by: ZfZI A sxs < ¢ foralll.

Our network model supports both multicast and load sharing. For agiven source s, the set of links
[ suchthat A;; > 0 isthe path followed by the data flow with source s. In the simplest case (no
load sharing), A; s € {0,1}; if aflow from source s is equally split between two links /; and /5,
then 4;, s = A;, s = 0.5. Inprinciple, 4;, < 1, but thisis not mandatory (in some encapsulation
scenarios, aflow may be duplicated on the same link).

It can be seen (and thisis|eft as an exercise) that the allocation in the previous example is max-min
fair. The name“max-min” comesfrom theideathat it is forbidden to decrease the share of sources
that have small values, thus, in some sense, we give priority to flows with small values.

In general, we might ask ourselves whether there exists a max-min fair allocation to our network
model, and how to obtain it. Thiswill result from the key concept of “bottleneck link”.

DEFINITION 5.2.2 (Bottleneck Link). With our network model above, we say that link [ is a bot-
tleneck for source s if and only if

1. link [ issaturated: ¢, = >, A;;x;
2. source s on link [ has the maximum rate among all sourcesusing link I: z, > z for all &
such that 4; » > 0.

Intuitively, a bottleneck link for source s isalink which is limiting, for a given allocation. In the
previous numerical, example, link 2 is a bottleneck for sources of type 0 and 2, and link 1 is a
bottleneck for the source of type 1.
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THEOREM 5.2.1. A feasible allocation of rates ' is max-min fair if and only if every source has a
bottleneck link.

PROOF: Part 1. Assumethat every source has a bottleneck link. Consider a source s for which
we can increase the rate =, while keeping the allocation feasible. Let [ be a bottleneck link for s.
Since [ is saturated, it is necessary to decrease = for some s’ such that A; , > 0. We assumed
that we can increase the rate of s: thus there must exist some s’ # s that shares the bottleneck link
[. But for dl such s, we have =, > z., thus we are forced to decrease x,, for some s’ such that
rs > e thisshowsthat the allocation is max-min fair.

Part 2. Conversely, assume that the alocation is max-min fair. For any source s, we need to
find a bottleneck link. We proceed by contradiction. Assume there exists a source s with no
bottleneck link. Call L the set of saturated links used by source s, namely, L; = {I such that ¢, =
> Az and A, > 0}. Similarly, call L, the set of non-saturated links used by source s. Thusa
link iseither in L, or Lo, or isnot used by s. Assume first that L, is non-empty.

source
(11
link 11
source s
link 12

source
o(11)

Figure 5.5: A network example showing one multicast source

By our assumption, for al [ € L, , there exists some s’ such that A4, > 0 and zy > x,. Thus
we can build a mapping o from L, into the set of sources {1,...,S} such that 4, ,; > 0 and
T, > x, (See Figure 5.5 for an illustration). Now we will show that we can increase the rate
in away that contradicts the max-min fairness assumption. We want to increase x, by some value
9, at the expense of decreasing x by some other values §,, for al s’ that are equal to some o (I').
We want the modified allocation to be feasible; to that end, it is sufficient to have:

Al,s(5 < Alp(l)(sg(l) foralll € Ly (52)
A <o =Y Ay foralll € Ly (5.3)
50(1) < Zo) foralll € L, (5.9

Equation (5.2) expresses that the increase of flow due to source s on a saturated link [ is at least
compensated by the decrease of flow due to source o(1). Equation (5.3) expresses that the increase
of flow due to source s on a non-saturated link [ does not exceed the available capacity. Finally,
equation (5.4) states that rates must be non-negative.
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This leads to the following choice.

5—m1n{ o) Aot }/\ m{ — 2 A“mz} (5.5

€L, Aps I€Ly As

which ensures that Equation (5.3) is satisfied and that 6 > 0.

In order to satisfy Equations (5.2) and (5.4) we need to compute the values of d,(; for all I in L.
Here we need to be careful with the fact that the same source s" may be equal to o (1) for more than
onel. We define 6(s’) by

§(s') = 0if thereisno! such that s’ = o(l) (5.6)
6(s") = maxy such that o ()=s'}{ jij’(‘;)} otherwise (5.7)

This definition ensures that Equation (5.2) is satisfied. We now examine Equation (5.4). Consider
some s’ for which thereexistsan l with o (1) = s, and call [, the value which achieves the maximum
in (5.7), namely:

0A;
§(s') = —22 5.8
(s') A, (5.8)
From the definition of 4 in (5.5), we have
5 < To(io) Aly,olle) _ s Aty
Alo,s Alo,s

Combined with (5.8), this shows that Equation (5.4) holds. In summary, we have shown that we
can increase x; at the expense of decreasing the rates for only those sources s’ such that s = (1)
for some [. Such sources have a rate higher than x,, which shows that the allocation % is not
max-min fair and contradicts our hypothesis.

It remains to examine the case where L; is empty. The reasoning is the same, we can increase x,
without decreasing any other source, and we also have a contradiction. ]

THE ALGORITHM OF PROGRESSIVE FILLING The previous theorem is particularly useful in
deriving a practical method for obtaining a max-min fair allocation, called “progressive filling”.
Theideais asfollows. You start with al rates equal to 0 and grow all rates together at the same
pace, until one or several link capacity limits are hit. The rates for the sources that use these
links are not increased any more, and you continue increasing the rates for other sources. All the
sources that are stopped have a bottleneck link. This is because they use a saturated link, and all
other sources using the saturated link are stopped at the same time, or were stopped before, thus
have a smaller or equal rate. The algorithm continues until it is not possible to increase. The
algorithm terminates because L and S arefinite. Lastly, when the algorithm terminates, all sources
have been stopped at some time and thus have a bottleneck link. By application of Theorem 5.2.1,
the allocation is max-min fair.

EXAMPLE Let us apply the progressive filling algorithm to the parking lot scenario. Initially,
weletz; =0forali=0,...,7I;thenwelet x; = t until we hit alimit. The constraints are

noro + nr; <cforalli=1,...,1
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Thusthefirst constraint is hit at t; = min{ v } and it concerns sources of type 0 and type i, for

all values of index i, which minimize the expression above. Thus

C

ng + n;

}

xo = min{
In order to compute the rates for sources of other types, we continue to increase their rates. Now
all constraints become independent and we finally have

C — NogXo
Ty —= ——
14

If dl n,’s are equal, the we see that al sources obtain the same rate. In some sense, max-min

fairness ignores the fact that sources of type 0 use more network resources than those of type 1,

i > 1. Inthat case, the total throughput for the parking lot network is 1< which is almost half

2
of the maximum admissible throughput of 7c.

THEOREM 5.2.2. For the network defined above, with fixed routing parameters A4, ;, there exists a
unique max-min fair allocation. It can be obtained by the algorithm of progressive filling.

PROOF: We have already proven the existence. Assume now that ¥ and ¢/ are two max-min fair
alocationsfor the same problem, with &’ #£ 3. Without loss of generality, we can assume that there
exists some ¢ such that z; < ;. Consider the smallest value of z; that satisfies z; < y;, and call i
the corresponding index. Thus, z;, < v;, and
if z; < y; then x;, < x; (5.9

Now since  is max-min fair, from Definition 5.2.1, there exists some j with

Y; < Ty < T, (510)
Now 7/ is also max-min fair, thus by the same token there exists some & such that

T < Yk < Y (5.12)
Combining (5.10) and (5.11), we obtain

T <Yp S Y < x5 STy

which contradicts (5.9). O
The notion of max-min fairness can be easily generalized by using weightsin the definition [1, 3].

5.2.3 PROPORTIONAL FAIRNESS

The previous definition of fairness puts emphasis on maintaining high valuesfor the smallest rates.
As shown in the previous example, this may be at the expense of some network inefficiency. An
alternative definition of fairness has been proposed in the context of game theory [4].
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DEFINITION 5.2.3 (Proportional Fairness). An allocation of rates 7 is* proportionally fair” if and
only if, for any other feasible allocation i/, we have:

S — X
Dl <
T

s=1

In other words, any change in the alocation must have a negative average change. Let us con-
sider for example the parking lot scenario with n, = 1 for al s. Isthe max-min fair allocation
proportionaly fair ?

To get the answer, remember that, for the max-min fair alocation, =, = ¢/2 for all s. Consider a
new allocation resulting from a decrease of z, equal to 4:

Yo =5-90

ys =5+0o0s=1,...,1

For ¢ < 5, the new allocation i/ isfeasible. The average rate of changeis

(iz_a) 25 2(1-1)3

s=1

which ispositivefor I > 2. Thusthe max-min fair alocation for this exampleis not proportionally
fair for I > 2. Inthisexample, we see that a decrease in rate for sources of type 0 islessimportant
than the corresponding increase which is made possible for the other sources, because the increase
is multiplied by the number of sources. Informally, we say that proportional fairness takes into
consideration the usage of network resources.

Now we derive a practical result which can be used to compute a proportionally fair alocation. To
that end, we interpret the average rate of changeas VJz - (¢ — %), with

J(Z) = Z In(x,)

Thus, intuitively, a proportionally fair allocation should maximize .J.

THEOREM 5.2.3. There exists one unique proportionally fair allocation. It is obtained by maxi-
mizing J(z) = ), In(x,) over the set of feasible allocations.

PROOF:  We first prove that the maximization problem has a unique solution. Function J is
concave, as a sum of concave functions. The feasible set is convex, as intersection of convex sets,
thus any local maximum of J is an absolute maximum. Now J is strictly concave, which means
that

if 0 < a < 1then J(aZ+ (1 —a)y) < aJ(Z) + (1 — ) J ()
This can be proven by studying the second derivative of the restriction of J to any linear segment.
Now astrictly concave function has at most one maximum on a convex set (Chapter ?7?).

Now J is continuous if we alow log(0) = —oo and the set of feasible allocations is compact
(because it is a closed, bounded subset of R®). Thus.J has at least one maximum over the set of
feasible allocations.
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Combining all the arguments together proves that .J has exactly one maximum over the set of
feasible allocations, and that any local maximum is also exactly the global maximum.

Then for any 6 such that Z + ¢ isfeasible,

- I - -
J(@+0)— J(F) =VJg-6+ 3 V226 + o(||6]%)

Now by the strict concavity, V2 J is definite negative thus
1t - -
3 5V2Jz6 + o(||6]*) <0

for ||6|| small enough.
Now assumethat ' is a proportionally fair alocation. This means that

V(J)z-6<0
and thus J hasalocal maximum at , thus also aglobal maximum. This also shows the uniqueness
of aproportionally fair allocation.

Conversely, assume that J has a global maximum at Z, and let 4/ be some feasible allocation. Call
D the average rate of change:
D=V(J)z (§—7)

Since the feasible set is convex, the segment [z, ¢/] is entirely feasible, and

b JEHHT—3) = (@)

t—0+ t

and thus D < 0. O

EXAMPLE Let us apply Theorem 5.2.3 to the parking lot scenario. For any choice of xy, we
should set x; such that
noTo +nr; =c,o=1,...,1

otherwise we could increase x; without affecting other values, and thus increase function J. The
value of z, isfound by maximizing f(z), defined by

I

f(zo) = noln(zo) + Zni(ln(c — noxo) — In(n;))

i=1

overtheset 0 < zy < n—co The derivativeof fis

I
n n
f(wo) = — - ° an
0%0 527

To C€c—n

After some algebra, we find that the maximum is for

C

Zfzo n;

o =
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and
C — NogTo
T, = ————
1
For example, if n;, = 1foral:=0,...,1, weaobtan:
J— C
To =1
_
i = 14

Compare with max-min fairness, where, in that case, the alocation is ¢ for all rates. We see that
sources of type 0 get asmaller rate, since they use more network resources.

The concept of proportional fairness can easily extended to rate proportional fairness, where the
allocation maximizes a weighted sum of logarithms|[2].

UTILITY APPROACH Proportional fairness is an example of a more general fairness concept,
called the “utility” approach, which is defined as follows. Every source s has a utility function u
where u4(z,) indicates the value to source s of having rate x,. Every link [ (or network resource
in general) has a cost function g;, where g;(f) indicates the cost to the network of supporting
an amount of flow f on link [. Then, a “utility fair” allocation of rates is an allocation which
maximizes H (%), defined by

s L
H(Z) = usz) =Y alf)
s=1 =1

with f; = 32° | A, x,, over the set of feasible allocations.

Proportional fairness corresponds to u, = In for al s, and g;,(f) = 0 for f < ¢, gi(f) = +oco for
f > ¢;. Rate proportional fairness corresponds to u,(xs) = w; In(x) and the same choice of ¢;.

Computing utility fairness requires solving constrained optimization problems; areferenceis[5].

MAX-MIN ASLIMITING CASE OF UTILITY FAIRNESS It can be shown that max-min fair-
nessisalimiting case of utility fairness — see [Radunovic02-Allerton].

52.4 PUT MORE, GET LESS FOR SOME

If a multi-user performance criterion is used, then it can happen that adding some capacity de-
creases the performance experienced by some.

QUESTION 5.2.1. Give an example where this happens. 3

3Consider the parking lot scenario above, with I = 2 nodes, ng = n1 = 1,m2 = 9, ¢; = ¢ = 1, and assume the
system distributes rates in a max-min fair way. The max-min fair rateis o = x5 = 0.1, z; = 0.9. Now increase the
capacity of link 2to ¢o = 10. The max-min fair allocation isnow zy = z; = 0.5, zo = 1.044. The rate of source 1
has decreased.
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5.3 BRAESS PARADOX

We have seen earlier that adding capacity may decrease the performance seen by some users.
In some cases, adding capacity may decrease the performance seen by all users. The Braess
paradox in one such example, found in networking. It is another example of “Put more, get less’.

Here is Braess' origina example, dightly modified. Consider a network where users pick the
routes with minimum delay. See Figure 5.6. Assume first that the delay on link 5 is infinite
(the link is not open). The delay on link j is a function D;(p,), where p; is the load. Take
Di(p) = Dy(p) = 2+ 10p, Do(p) = Ds(p) = 48 + p and let the total load be by = 6. Every user
has the choice of anumber of routes. Assumethere are infinitely many small users. Asaresult, the
traffic for a given source destination pairs uses only routes that minimize the delay. The resulting
rate distribution is said to satisfy the Wardrop Equilibrium condition.

Figure 5.6: Network where the Braess paradox occurs. There are 5 links, labeled 1 to 5. Links 2 and 3
have a long fixed delay but high throughput. Links 1 and 4 have a small fixed delay but low throughput. Link
5 has medium fixed delay and high throughput. Assume all users pick a shortest delay path. Delays get
worse for all users in the equilibrium reached after link 5 is opened.

For example, if wetake p; = 1, po = 5, thedelay onroute 1 — 3 is61, and onroute 2 — 4 it is 105;
thisisnot a Wardrop equilibrium. But if wetake p; = p, = 3, we have a Wardrop equilibrium and
the mean delay for al is 83.

More generally, consider a network model as follows [Kelly91-nr]. J isthe set of links and we
define p; D; as above. S isthe set of source destination pairs and R is the set of possible routes
(not necessarily digoint), where routes joining different source destination pairs considered to be
distinct. Let H,, = 1;,uses,y and 4;, =1 iison - Let b, be the total traffic demand of s, v,
the distribution of route . The Wardrop equilibrium is defined by the following conditions:

Hyv=1b
Av=p
vr > 0=, Dipj) =minyy, =13 e, Di(py)
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QUESTION 5.3.1. Write the Wardrop equilibrium conditions for the example above.

THEOREM 5.3.1 (Kelly91-nr). Consider the network model above, and assume that D;(p) is con-
tinuous and increasing. Thereis one unique Wardrop equilibrium.

The proof can be found in [Kelly91-rt]. It consists in associating the Wardrop equilibrium condi-
tions to a convex optimization problem, and applying the strong duality principle.

Now let us come back to the example in Figure 5.6. Open link 5 and let its delay function be
f5(p) = 6+ p. Theold alocation is not a Wardrop equilibrium; the new equilibriumisfor p; = 4,
p2 = 2, p; = 2 and the mean delay is92 for all. Adding anew link has made things worse for all !

This is because the equilibrium obtained by the individual decisions is not a socia optimum. A
general discussion of such conceptsis the topic of game theory. We can also relate this exampleto
our general discussion of bottlenecks: adding link 5 does not improve the capacity of the network,
whichislimited by links 1 and 3. However, thisillustrates that adding capacity at the wrong place
may make things worse.

A Wardrop equilibrium is, in some sense equivalent to what is called a Nash equilibrium in game
theory. See [Altman0l-survey] for a more accurate statement and a first introduction to game
theory. See Exercise 5.5 for an example of Braess paradox with elastic traffic. See [Altman01-
ITC17] for sufficient conditions for avoiding the Braess paradox.

5.4 NON MONOTONE EFFECTSIN QUEUING

5.4.1 PRIORITY QUEUES

Bramson queues. To be done from Deleval’s simulation.

54.2 FIFO SYSTEMS

Matthew Andrew’s paper on instability.

543 BELADY'SANOMALY

Storing page references in FIFO mode leads to a situation similar to Braess' s paradox. See Ta
ble5.1.

5.5 EXERCISES

EXERCISE 5.1. Consider the intranet on Figure 5.7. There are three Ethernet segments at 10
Mb/s,each corresponding to a net : subnet prefix noted n,, n, and ns. Every Ethernet segment
is connected to two routers as indicated on the figure. There is no external connection to this
intranet. Each Ethernet segment has a number of hosts directly attached to it. The Ethernet
segments are shared media, there is no Ethernet switching equipment.

“to be done
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ReferenceString | 3121|032 |4(3]2(1{0/4|2(3|2|1|0/|4
Cache|3/2(1/0|3[2|4|3(2|1/0/4]2|3|3|1|0/|4
3/2/1/]0/3(2|4|3|2|1|0/4|2]|2|3|1|0

ReferenceString | 3210|3243 ]2(1{0|4|2(3|2|1|0]|4
Cache|3/2|1/0|3[2|4/4|4/1/0/0]2|3|3|1|0/|4
3(2/1|{0|3|2/2|2(4]1|1|0|2]|2|3|1]|0
3/2/1|0(3[{3/3/2|4/4]1|0|0]2|3|1

ReferenceString | 3(2(1(0(3 | 2(4[3]2|1|0/4|2(3|2|1|0/|4
Cache|3|/2/1|0/0|0|4({3]|2|1|0|/4|4(3|2/1|0]|4
3(2/1|{1|1|/0/4(3|2|1|0|0|4|3|2/1]|0
3/2/2|2|1/0|4(3|2]1|1/0/4|3|2]|1
3/3|/3(2(1(0(4/3|2|2|1/0/4|3|2

Table 5.1 Belady’s anomaly. A Cache with First In, First Out replacement policy. Top: first line: list of
references to objects labeled 1 to 4. References not in bold face represent cache misses. Following lines:
content of the cache. The cache can hold 2 entries. Middle, Bottom: same, but cache can hold 3 [resp. 4]
entries. The number of cache misses is worst (15) with the large cache than with the middle one (14).

x1 R1
X2
nl n2 \
/
R2 R3

5}35

Figure 5.7: The network for Exercise 4.5

We assume that the IP routing tables in R1, R2 and R3 are setup in such a way that traffic from
subnet n, to a subnet n;, with ¢ # j goes through exactly one router.

We call z; the total traffic generated by all hosts directly attached to segment ;. \WWe neglect the
effect of collisions on one Ethernet and thus assume that the maximum amount of traffic possible
on every Ethernet segment is 10 Mb/s. We further assume that the destination of traffic originating
from subnet 7 is uniformly distributed among the three subnets. Thus, for example, the amount of
traffic originating from subnet 1 which has a destination in subnet 2 is%!.

1. What is the maximum value of the total traffic 1 + x5 + x3 which is possible with these
assumptions ?

2. We assume that there are u; flows per segment, eachwithrate \;, 7 = 1,2, 3. Thusz; = u;\;.
If we apply max-min fairness per flow, what is the value of \; for the two following cases:
() u; =ufori=1,2,3,and (i) u; = 4, us = 3 and uz = 2 ? What is then the maximum
throughput ?

3. Same question if we apply proportional fairness.



5.5. EXERCISES 125

EXERCISE 5.2. |s max-min fairness equivalent to maximizing F(z) = ming(z) ? (Examine
separately each of the tow sides of the equivalence).

EXERCISE 5.3. Consider n sources. The rate x; of source i is constrained by z; < r;, for some
fixed numbers r;, 1 < n. In addition, we require that Z?Zl x; < C for some fixed C'. With these
constraints, are the max-min fair and proportionally fair rate allocations the same ?

EXERCISE 5.4. Consider the examplein Figure 5.1.

1. Givean explicit formula for the throughput as a function of the parameter .
2. In the general case for this sample example, what is the maximum throughput available ?
Doesit correspond to an equal allocation of resources ?

EXERCISE 5.5. Read [Kelly01l-mmi] Sections 14, then answer the following questions.

1. What is a Pareto efficient rate allocation ?

2. What is a Wardrop stable point (also called equilibrium) in this paper ?

3. For the single path routing and TCP flows, is the Wardrop equilibrium Pareto efficient ?
4. For the multiple path routing and TCP flows, is the Wardrop equilibrium Pareto efficient ?
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CHAPTER 6

QUEUING THEORY FOR THOSE WHO
CANNOT WAIT

Queuing phenomena are very frequent in computer and communication systems, and explain a
large number of performance patterns. We focus here on fundamental queuing aspects, |eav-
ing out the analytical solution of particular queuing systems; the interested reader should con-
sult [Thiran02-LN], [Nain98-Umass] or [Kleinrock76-book] for a classical treatment of queuing
systems.
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6.1 DESCRIPTION OF A QUEUING SYSTEM WITH CUMULA-
TIVE FUNCTIONS

6.1.1 CUMULATIVE FUNCTIONS

Consider a system which is viewed as a black box. It may be a network node, an information
system... We use the following definitions and assumptions.

[0, 1]

D(t) output function isthe amount of work done in the time interval [0, ¢]

o Q(t) :== A(t) — D(t) isthe backlog (unfinished work) at time.

e Assume that thereis sometimet, < 0 at which A(tg) = D(to) = 0. We interpret ¢, as an
instant at which the system is empty.

o Let Q(t) := A(t) — D(t); weinterpret Q)(t) asthe backlog (unfinished work) at time ¢.

e Thereisno loss of work.

e A(t) input function is the amount of work that arrives into the system in the time interval
[ J

Also define
d(t) =min{u>0: A(t) < (D(t+u)}

The FIFO assumption means that d(t) is the response time for a hypothetical atom of work that
would arrive at time ¢. See Figure 6.1.

A bits A(t) 0 / D(t)

Q(Y)

time

Figure 6.1: Use of cumulative functions to describe a queuing system.
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EXAMPLE 6.1: PLAYOUT BUFFER. Consider a packet switched network that carries
bits of information from a source with a constant bit rate » (Figure 6.2) as is the case
for example, with circuit emulation. We have a first system S, the network, with input
function A(t) = rt. The network imposes some variable delay, because of queuing
points, therefore the output A’() does not have a constant rate ». What can be done
to re-create a constant bit stream ? A standard mechanism is to smooth the delay

A bits A(t)
A(Y) A'(Y) D(Y)
—» S —» S’
&
Q\\

d(0) - A d(0) d(0) + A

Figure 6.2: A Simple Playout Buffer Example

variation in a playout buffer. It operates as follows. When the first bit of data arrives, at
time d(0), it is stored in the buffer until some initial delay has elapsed. Then the buffer
is served at a constant rate r whenever it is not empty. This gives us a second system
S’, with input A’() and output D(). What initial delay should we take ? We give an
intuitive, graphical solution. For a formal development, see see [LeBoudecThiran02-
book], Section 1.1.1.

The second part of Figure 6.2 shows that if the variable part of the network delay
(called delay jitter) is bounded by some number A, then the output A’(¢) is bounded
by the two lines (D1) and (D2). Let us the output D(t) of the playout buffer to the
function represented by (D2), namely D(t) = rt — d(0) — A. This means that we read
data from the playout buffer at a constant rate r, starting at time d(0) + A. The fact
that A'(¢) lies above (D2) means that there is never underflow. Thus the playout buffer
should delay the first bit of data by an amount equal to a bound on delay jitter.

QUESTION 6.1.1. What is the required playout buffer size? *

6.1.2 SINGLE SERVER QUEUE

Consider a lossless, FIFO, system, with the same assumptions as in Section 6.1.1, and assume
further that it isasingle server queue. Formally, this means the following.

o Let 3(s) isthe service capacity during an interval of duration s where there is some work to
do. For example:

A bound on buffer sizeisthe vertical distance between A(t) and A’(¢); from Figure 6.2, we see that it is equal to
2rA.
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— constant rate server: (3(t) = ct where ¢ is some constant
— server with latency: 3(t) = ¢(t — to)™: this server make take some time < ¢, to wake
up when some new jobs arrive

e Define s(t) asthe largest time < ¢ where the system is empty, i.e. we have either
— Q(t)=0andthens(t) =t
- Q(s(t)) =0and Q(u) > 0foru = s(t+1),...,¢

s(t) + 1 is beginning of the busy period at ¢. By definition, the single server queue is
characterized by
Qt) = A(t) — A(s(t)) — B(t — s(1))

THEOREM 6.1.1 (Reich). For the single server, infinite buffer queue defined above:

Q(t) = max (A(t(—A(s) — B(t — s))

s<t

Proof. thd

6.1.3 APPLICATION TO SCALING OF INTERNET DELAY

We are interested in knowing whether queuing delays are going to disappear when the Internet
grows to broadband. The following analysis is due to Norros [Norros94-QS] and Kelly [Kelly99-
smi].

Assume traffic on an internet link grows according to three scale parameters. volume (v), speedup
(s) and number of users (u). Thisis captured by the relation:

Alt) =wv Z A;(st) (6.1)

We are interested in the delay; assuming the link is a constant rate server with rate ¢, thisis the
backlog divided by c. We also assume that the capacity of the link is scaled with the increase in
volume: ¢ = cyvsu. The question is now: how does the delay depend on v, s, u ?

The maximum delay, D(v, s, u) isderived from Reich’s formula:

D(v, 5,u) = max (A(t) _ t>

t>0 C

The dependence on v and s issimple to analyse. It comes

D(v,s,1) = max (“Al(St) _ t) = max (Al(t) _ f) _ éD(l, 1,1)

t>0 C >0 CoS S

and similarly for u # 1 wehave D(v, s,u) = 1D(1,1, u). Thusthedelay isindependent of volume
scaling, and isinversely proportional to the speedup factor s. The dependence on u requires more
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assumptions. To go further, we assume a stochastic model, such that the queue length process Q(t)
is stationary ergodic. We can use Reich’s formula:

Q(0) = max (A(—t) — ct)

t>0

where A(—t) is now the amount of work that has arrived in the interval [—¢,0]. We assume that
Equation (6.1) continues to hold. Further, we model A;(—t) by a fractional brownian traffic
[Norros94-QS]. This is a ssimplified model which captures long range dependence. This means
that

Ai(=t) = M+ VaBy(t)
where B¢, isfractional brownian motion, \ the traffic intensity, and a a variance parameter. Frac-

tional brownian motion is a gaussian process, with mean A\t and variance \at?’’. Remember that
By (t) isself-similar in the sense that the process By, (kt) has the same distribution as k! By (t).

Assumethat the A;s areindependent. It follows from the properties of fractional brownian motion
that A(—t) isalso fractional brownian traffic. Itsmeanisu)\ and its variance is uat®, thusit has
intensity u\ and same variance parameter a.

By Reich’'sformula

D(1,1,u) = max (A(t) —t) = max Ki - 1) £+ VXaBy(t)— }

>0 \ c,u >0 | \ co coN/u

Do the change of variable t = k7. It comes

A " 1
D(1,1,u) ~ max [(a — 1) kT 4+ VAak BH(T)CO\/E}

H .

where ~ means same distribution. Take k suchthat k = 2~ i.e. k = u_2<1£H>. Then we have

D(1,1,u) ~u 2m D(1,1,1)

In summary, the delay scales according to

1
D(v,s,u) = JD(l,l,l)

with b = ﬁ In practice, we expect the Hurst parameter usualy lies in the range [0.67, 0.83]
thus 1.5 < b < 3. In summary, delay decreases with speedup more rapidly with the number of

users.

6.2 CLASSICAL RESULTSFOR A SINGLE QUEUE

The single queue has received much attention, and there are analytical results available for alarge
class of systems with random arrivals and service.
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6.2.1 OTHER REPRESENTATION OF A SINGLE SERVER QUEUE

There are other representations than cumulative functions, which are more adapted if we are in-
terested not only in the workload but aso in other state information. For example, consider a
computer that receives tasks to process, with task n arriving at time «,,, having a processing re-
quirement s,,, and departing at time d,,. The representation with cumulative functions can be used,
by defining A(t) = >, o, spand D(t) = > ., _, sn, but it does not directly give information
about the number of tasksin the systems. -

A general definition of asingle server queue is by means of the sequences a,,, d,,, s,,. The system
isaFIFO single server queueif it satisfies

d, = max (a,,d,_1) + S (6.2

Classical queuing theory for the FIFO single server queue isinterested in Equation (6.2) where the
an,w, isstochastic. a,, and d,, are interpreted as arrival and departure times of “customers’. In the
rest of this section we replace a,,, d,, with A,,, D,, to emphasize that they are random.

6.2.2 KENDALL SNOTATION

The classical notation for a queue, in its smplest form, is of thetype A/S/s/K where:

e A (character string) describes the type of arrival process: G stands for the most general
arrival process, A =Gl means that the arrival processis a point process with iid interarrival
times, M isfor a Poisson arrival process.

e S (character string) describes the type of service process: G for the most general service
process, S =Gl means that the service times are iid and independent of the arrival process,
S =M isthe specia case of Gl with exponentia service times, S =D with constant service
times.

e sand K areintegers representing the number of servers and the capacity (maximum number
of customers allowed in the system, queued + in service). When K = oo, it may be omitted.

e The marked point process A,,, S,, is stationary.

e The servicedisciplineis by default FIFO, otherwise it is mentioned explicitly.

6.2.3 SUMMARY OF SOME CLASSICAL RESULTSFOR THE SINGLE SERVER
QUEUE

We focus now on the case s = 1. Quantities of interest are

e the arrival rate \ the intensity of the arrival process a,, (mean number of customer arrivals
per second, also equal to the inverse of the mean interarrival time (Chapter 11)
e p = \S (server utilization) where S is the mean service time (Palm expectation of S,,).
e theresidencetime R, = D,, — A,, and waitingtime W,, = R,, — S,, for customer n
e the number of customersin the system N (t), the number of customers waiting N,,(t), given
by
N(t) = Z Lia,<ty1{D.>ty
nez

Nu(t) = (N(t) - 1)"
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STABILITY Animportant issue in the analysis of the single server queue is stability. In mathe-
matical terms, it means whether N (t) is stationary. When the system is unstable, atypical behav-
iour isthat the backlog grows to infinity.

THEOREM 6.2.1 (Loynes). Thesingle server queue is unstable for p > 1 and stablefor p < 1.

Thefirst part saysthat a necessary condition for stability is p < 1. We give a heuristic explanation
for the necessary condition is as follows. If the system is stable, all customers eventually enter
service, thus the mean number of beginnings of service per second is \. From Little's law applied
to the server (see Section 6.3), we have p = the probability that the server is busy, whichis < 1.
The proof of the second statement is more complex — see [Baccelli88-book] for details. For p = 1
there may or may not be stability, depending on the specific queue.

Be careful that this intuitive stability result holds only for a single queue. For networks of inter-
connected queues, there is no such general resullt.

For the finite capacity queue, stability is usually for any value of p.

QUESTION 6.2.1. Consider a queuing system of the form G/G/1 where the service time w,, of
customer n is equal to theinter-arrival time a,, ., — a,,. What arethevaluesof p, N ? 2

QUESTION 6.2.2. Give an example of stable single server queue with p = 1. 3

Classical quantitative results for smple, but useful, queues are given below. The notation is ex-
plained at the end of this chapter.

M/GI1/1 QUEUE Stability isfor p < 1

Stability isfor p < 1 for all the examples below.

M/M/1 QUEUE Stability isfor p < 1.

(N = 2
LT,
s-
R=t
°
W=
-
_ /P
URlep .
P(N =Fk) = (1-p)p"
| PP(R<z)=1—¢ U5

2\ = % thus p = 1. Thereis always exactly one customer in the queue. Thus N = 1.
3The example in Question 6.2.1.
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M/M/1/K QUEUE Stability isfor any p.
]P)EN = k) =n(1 - p)p"Lo<r<ky

= 1
7] 17pK+1

PO( arriving customer isdiscarded ) = P(N = K)

M/D/1 QUEUE Stahility isfor p < 1.

( ]\:[ = z(fig) +p
gw _gé(i{))
o 2(1-p)
W= 2(ffp)
oN = 150/ P — 15p? + gpP — ot
| or=15\/50 — 1P
QUESTION 6.2.3. Which of the quantities N, N,,, R, W are Palm expectations ? 4

6.2.4 CLASSICAL RESULTSFOR MULTIPLE SERVER QUEUES

The multiple server queue is defined by the fact that at most s customers can be served in parallel.
The utilization p is now defined by p = 22

THEOREM 6.2.2 (Loynes). The multiple server queue is unstablefor p > 1 and stable for p < 1.

M/M/s QUEUE Stability isfor p < 1. Let

s—1 (sp)’
o Lo 1—
u:—zz*o 7’!1_ andp: u
Yo R L= pu
P
R A
N, = P
e
—_ _Pp
_ _D
W= S(lgp)
( )\/p(Q—p)+82(1—p)2
= /pp(1+p — pp)
77(5,5, if0<k<s
ne p if k > 5
-1 _ s 1 (sp sp
- 7, 0 ' I(1—p)
IP’O(W <z)=1- pe s(=p)5
P(al serversbusy) = P(N > s) = p (Erlang-C formula)
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M/M/s/s QUEUE (Erlang Loss Formula) Stability isfor any p.

P°( arriving customer isdiscarded ) = P(N = s) Erlang-B formula

P(N =k) = nl{ogkgs}%
n~'suchthat Y7 (P(N =i) =1

6.2.5 PROCESSOR SHARING

to be done, with application to TCP.

6.2.6 OTHER RESULTS

There is a huge literature on queuing systems, most of which is concerned with finding analytical
expressions for specific systems. It is worth mentioning that numerical solutions of the represen-
tation of the queue is sometimes possible, thus avoiding the need for an analytical expression.

DIRECT SoLuUTION Consider for example the GI/GI/1 queue, for which no explicit solution
exists. The following equation can be used to obtain anumerical solution.

Qn = (anl + Snfl - An + AAnfl)Jr

where Q,, = N(A4,,) is the number of customers in the system just before the nth arrival. The
knowledge of (),, can be used to derive or approximate many other quantities. Let U,, = Q,,_1 +
Spo1— A, + A1 WehavePY(Q, = k) =P (U, = k) if k > 0 and P°(Q,, = 0) = P(U" < 0).
Assume p > 1 and the system is stationary. Let ¢, := PY(Q, = k),us, := PO(U, = k)s :=
PY(S, =k),ar =P°(A, — A,_1 = —k). Q,_1, (A, — A,_1) and S,,_; are mutually independent
(because we consider a GI/GI/1 queue) thus « is the convolution © = ¢ * s * a. Thusthe array ¢
satisfies the fixed point equation

{qk:(q*s*a)kif/{>0
Go = 2ico(q ¥ 5 % a);

This equation can be solved numerically by iteration. The convolution can be computed using the
fast Fourier transform. See [ Grossglauser96-Sigcomm] for an example where this method is used.
Thereisaso alargeliterature on advanced, analytical methods for solving the fixed point equation.

MARKOVIANISATION Consider again the GI/GI/1 queue. The distributions of the inter-arrival
and service times can be approximated by PH-type distributions (Section 11.8). There exist numer-
ical, efficient solutions for the stationary probability of the PH/PH/1 queue [LeBoudec88-Questa).

6.2.7 NON-LINEARITY OF RESPONSE TIME
The response time, queue occupancy, and for finite capacity queues, the loss probability, grow

dramatically as p comes close to 1; see Figure 6.3 for an example. This strong non-linearity is
important in practice.
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Mean Response Time in seconds

Requests per Second
0

Figure 6.3: Average response time versus requests per second for a database server modeled as M/Gl/1
queue

EXAMPLE 6.2: A database system services requests that can be modeled as a Pois-
son process. The time needed to process a request is 0.1 second and its standard
deviation is estimated to 0.03. How does the average response time depend on the
number of requests per second that can be served ? The solution is found by the
M/GI/1 queue model and is plotted in Figure 6.3.

QUESTION 6.2.4. What is the maximum load that can be served if an average response time
of 0.5 second is considered acceptable ? °

QUESTION 6.2.5. What happensif this |oad is exceeded by 10% ? by 20% ? ©

Figure 6.4 shows how the response time of the M/GI/1 queue depends on the coefficient of variation
%,

S
QUESTION 6.2.6. How do the M//D/1 and M /M /1 queue compare to Figure 6.4 ? 7

ExAmMPLE 6.3: We would like to compare a two-processor, shared memory ma-
chine versus a collection of two independent processors, with static load sharing

58.8 requests per second.

6By 10%: the response time becomes 1.75 (thus is multiplied by a factor of 3.5. By 20%: the system becomes
unstable p > 1; in practice it will lose requests, or enter congestion collapse.

"The bottom curve (cv = 0) isfor M/D/1, the middle curve for M/M/1 (cv = 1).
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Mean Response Time

14;
12;
10;

8

6
4 L
2

Utilization

Figure 6.4: Mean response time for M/GI/1 queue, relative to service time, for different values of coefficient
of variation %: from top to bottom: 2, 1 and 0.

(Figure 6.5). Assume processing times and job inter-arrival times can be modeled
as independent iid exponential sequences. Thus the first [resp. second] case is mod-
eled as one M/M/2 queue [resp. a collection of two parallel M/M/1 queues]. Assume
load is balanced evenly between the two processors. Both systems have the same
utilization p. The mean response for the first system is obtained from Section 6.2.4;
we obtain %. For the second system it is simply fsp (Figure 6.5).

We see that for very small loads, the systems are similar, as expected. In contrast,
for large loads, the response time for the first system is much better, with a ratio equal
to 1 + p. For example, for p = 0.5, the second system has a response time 1.5 times
larger. However, the capacity is the same for both systems.

6.3 OPERATIONAL LAWS FOR QUEUING SYSTEMS

For systems that are stationary, there is a number of relations that directly derive from Chapter 11.
Among them isthe celebrated Little law. In this section we give the most common ones. There are
many others; they can be derived from Chapter 11, in particular using the ergodic interpretation
method explained in Section 11.3.5.
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Mean Response Time

6

System 1 System 2 i

3

. ® , e ;

4>:| 4>.<: )
@ & :|@ 0.2 0.4 0.6 08 Utilization

Figure 6.5: Mean response time for systems 1 (bottom) and 2 (top), relative to the service time.

6.3.1 LITTLE'SLAW AND APPLICATIONS

In practice, by the ergodic interpretation, the laws apply to large samplesif we can assume that the
system is stationary and ergodic. For queuing systems, this usually means that the utilization is
lessthan 1.

THEOREM 6.3.1 (Operationa Law). Consider a stationary system that is visited by a flow of cus-
tomers. For a formal definition, see Theorem 11.4.2.

e [Throughput] The throughput, defined as the expected number of arrivals per second, is
also equal to the inverse of the expected time between arrivals.

o [Little]

AR =N

where )\ isthe expected number of customersarriving per second, R isthe expected response
time seen by an arbitrary customer and N is the expected number of customers observed in
the system an arbitrary time

e [Utilization Law] If the systemisa single server queue:

P(server busy) = p := \S
If it isan s-server queue,
E(number of busy servers) = sp

S

S

with p :=

Proof. The first item is Proposition 11.3.2; the second item is Theorem 11.4.2. The third item is
obtained by applying Little's law to the set of servers.

O

QUESTION 6.3.1. Single server queue: with the notation in Section 6.2.3, show that N, = N — p
8

8Follows from items 2 and 3 in Theorem 6.3.1.
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THE INTERACTIVE USER MODEL The interactive user model is illustrated inFigure 6.6. n
users send jobs to a service center. The think time is defined as the time between jobs sent by one
user. Call R the expected response time for an arbitrary job at the service center, Z the expected
think time and X the throughout of the system.

THEOREM 6.3.2 (Interactive User).
MZ+R)=n

Proof. Apply Little's law to the entire system.

N
Pyl

A . Service
Center

00000

n users

Figure 6.6 The Interactive User Model

EXAMPLE 6.4: SERVICE DESK. A car rental company in a large airport has 10 service
attendants. Every attendant prepares transactions on its PC and, once completed,
send them to the database server. The software monitor finds the following averages:
one transaction every 5 seconds, response time =2 s.

QUESTION 6.3.2. What is the average think time ? ©

6.3.2 NETWORKSAND FORCED FLOWS

We often find systems that can be modeled as a directed graph, called a network. We consider
models of the form illustrated on Figure 6.7. If the total number of customers is constant, the
network is called “closed”, otherwise “open”.

THEOREM 6.3.3 (Network Laws). Consider a stationary network model

948 s
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A

A 1\ node k

Figure 6.7: Network Model

e [Forced Flows] A\, = AV, where )\, is the expected number of customers arriving per
second at node k£ and V, is the expected number of visits to node £ by an arbitrary customer
during its stay in the network.

e [Total Response Time] Let R [resp. R;] be the expected total response time R seen by an
arbitrary customer [resp. by an arbitrary visit to node k].

R= ZRka
k

Proof. (Forced Flows). We apply Campbell’s formula. Let F'(s,t) be the random function which
returns1 if ¢ > s and the last customer who arrived before or at —¢ isin node k at time s, else returns

0. By definition of intensity:
Ao =E (Z F(—A,, 0))

ne”Z
where A,, isthe point process of customer arrivals. Campbell’s formula applied to F'(—t, 0) gives:

E() " F(=An,0) =AY ET(F(t,0) =AY _E°(F(0,t))
nez teN teN

where the last part is by stationarity. Thus
Ak = AE° (Z F(O,t)) = \Vi
teN

(Total Response Time) Let ]57 [resp. {Vk] be the expected number of customers in the service system
[resp. innode k]. Wehave N = >, N,.. Apply Little’ and the Forced Flows laws.

EXAMPLE 6.5: Transactions on a database server access the CPU, disk A and disk
B (Figure 6.8). The statistics are: Vopy = 102,Vp = 30,Vg = 68 and Ropy =
0.192s, Ry = 0.101s, Rg =0.016 s

QUESTION 6.3.3. What is the average response time for a transaction ? 1°

109375
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6.3.3 BOTTLENECK ANALYSIS

Common sense (PE step G5) tells usto analyze bottlenecksfirst. Beyond this, simple performance
bounds in stationary regime can be found by using the following two principles:

1. waiting timeis> 0
2. aserver utilization is bounded by 1

We illustrate the method on one generic example.

O j
—3re :>
Jia=To4

nusers
in think time

Figure 6.8: Network example used to illustrate bottleneck analysis. n attendants serve customers. Each
transaction uses CPU, disk A or disk B. Av. numbers of visits per transaction: Vopy = 102, Va =30, Vg =
17; av. service time per transaction: Scpyy = 0.004s, Sy = 0.011s, Sg = 0.013s; think time Z = 15s.

Consider a queuing network, an example of which is given in Figure 6.8. It is a combination of
Figure 6.6 and Figure 6.7. Transactions are issued by a pool of n customers which are either idle
(inthink time) or using the network. In addition, assume that every network node isasingle server
queue, and let S;, be the average service time per visit at node k. Thus R;, — S, is the average
waiting time per visit at node k. The throughput ) is given by the interactive user model:

n

A —
Z+ > ViR,

and by forced flows, the utilization of the server at node k is p, = AVi.S,. Applying the two
principles above gives the constraints on A:

(6.3)

A<

— maxy Vi Sk

N< =—"
{ PRI (6.4)

Similarly, using Equation (6.3) and Equation (6.4), we find the following constraints on the re-
sponsetime R = >, Vi, Ry:

R>>", ViSh

Figure 6.9 illustrates the bounds.
QUESTION 6.3.4. Draw the response time bounds for this example. 1
QUESTION 6.3.5. Which of the bounds is accurate for low load ? For high load ? *2

thd

12For low load, the former bound in Equation (6.4) is accurate because queuing times are small. For high loads, we
do not know. If the system suffers from congestion collapse, the bounds may be very optimistic. In contrast, for an
ideal system, the throughput is driven by its bottleneck and the latter bound may be accurate.




A

throughput n/(Z+ 2ViS)

1/Cv, S,)
1/(VCPU SCPU) —

Figure 6.9: Throughput bound (B0) obtained by bottleneck analysis for the system in Figure 6.8, as a
function of the number of users n. B1, B2: typical throughput values for a system without [resp. with]
congestion collapse.

BOTTLENECK A node k that maximizes V},S;, is caled, in this model, a bottleneck. To see
why a bottleneck determines the performance, consider improving the system by decreasing the
value of V;,S;, (by reducing the number of times the resource is used, or by replacing the resource
by afaster one). If k is not a bottleneck, this does not affect asymptote on Figure 6.9, and only
marginally increases the slope of the bound at the origin, unlike if £ is a bottleneck.

QUESTION 6.3.6. What is the bottleneck on the example of Figure 6.8 ? 13

QUESTION 6.3.7. What happensto the example of Figure 6.8 if the CPU processing timeisreduced
from 0.004 t0 0.003 ? t0 0.002 ? 1

6.4 PRIORITIES
Kleinrock’s Conservation law (derived from Campbell). p.c rule. Daigle’squeuing models. Priority
gueuing and Daigle. Instability results.

6.5 CASE STuDY

Consider the question asked by the picture on the cover: “double the throughput, divide the re-
sponsetime by 2 ”. Does this statement hold ?

First we apply the principlesin Chapter 1.

e Goal: evaluate impact of doubling the capacity of a skilift on the response time.
e Factors: ¢ = capacity of skilift in people per second.

13The CPU.
14The disk A becomes the bottleneck. Decreasing the CPU processing time to 0.002 does not improve the bound
significantly.

11
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e Maetrics. response time. A more detailed reflection leads to considering the waiting time,
as this is the one that affects customer’s perception. We are interested in average and peak
values.

e Load: we consider two load models: (1) heavy burst of arrival (after atrain or abus arrives
to the skilift) (2) peak hour stationary regime

6.5.1 QUEUING MODEL

We can model the skilift as the queuing system illustrated in Figure 6.10. The first queue models
the gate; it isasingle server queue. Its service time is the time between two passages through the
gate, when thereis no idle period and is equal to 1/c. The second queue represents the transporta-
tion time. It is an infinite server queue, with no waiting time. Since our performance metric is the
waiting time, we ignore the second queue in the rest of the analysis.

Waiting room

—_ e~

Figure 6.10: Queuing Model of Skilift

6.5.2 TRANSIENT ANALYSIS

Assume the arrival of skiersis one single burst (all arrive at the same time). Also assume that all
skiers use the same time to go through the gate, which is roughly true in this scenario. The model
in Section 6.1.1 applies, with A(t) = the number of skiersarrivingin [0, ¢] and D(¢) = the number
of skiers that entered the skilift in [0,¢]. Thus the delay d(¢) is the waiting time, excluding the
time spent on the skilift. We also have 3(t) = ct, with ¢ = the capacity of the skilift, in skiers per
second. We have A(t) = B for t > 0. Figure 6.11 shows that doubling the capacity does divide
the worst case waiting time by two.

QUESTION 6.5.1. Isthe average waiting time also divided by 2 ? 1°

QUESTION 6.5.2. Assume the arrival of skiersis bursty, but not as sudden. For example, we take
A(t) = ketfor 0 <t < tgand A(t) = A(ty) for t > to, with &£ > 1. What is now the conclusion ?

16
6.5.3 STATIONARY ANALYSIS

Assume now we are observing the system in the middle of the peak hour. We can model the gate
asa G/D/1 queue. It isdifficult to give amore accurate statement about the arrival process without

15Yes, the waiting time seen by an average customer arriving as number y (0 < y < B) islinear iny, thusis equal
to the worst case response time divided by a 2.
16The response time is reduced by afactor higher than 2 (draw a picture).
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Figure 6.11: Transient Analysis: A burst of skiers arrives at time 0. Impact of doubling the capacity of the
skilift.

performing actual measurements. If a Poisson model is acceptable (many independent arrivals of
skiers from various slopes) then the M/G/1 results apply and the average response timeis givenin
Figure 6.3. The queuing time is the value on the curve minus the offset at 0, and the utilization p
(z-value of Figure 6.3) is 2.

Doubling the capacity means that the utilization factor is halved, assuming this has no effect on
the arrival rate. The effect on the response time depends on where we stood on the curve. If the
system was close to saturation, the effect is a large reduction of the average waiting time. The
effect on the peak waiting time (here: 0.95-quantile) requires more sophisticated formulae (see
[Cost224-book]) but is similar.

It is probably unrealistic to assume that a reduction in waiting time has no effect on the arrival rate.
A better, though simplified, model is illustrated in Figure 6.12. It is a variant of the interactive
user model in Figure 6.6. Here we assume that the mean number N of skiers in the system is
independent of c. We apply bottleneck analysis. Let 7' be the throughput of the skilift and Z the
time spent on the lift or on the slope. We have

N
T§+
T<c

_ N—-1 _
WZmax( —Z,O)

C

=
M

and thus

Figure 6.12 shows the bound as a function of % for sake of comparison with Figure 6.3. A few
points obtained by simulation are also plotted. This strongly suggests that the function f that maps
% to the average response time is convex; the graph of a convex function is below its chords, thus

flo) < 3/C)

and reducing the capacity doesreduce the waiting time by at least a factor 2.
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think time

e—0€

Waiting room

4 waiting time

Z/(N-1) 1/c

Figure 6.12: First: A Model that accounts for dependency of arrival rate and waiting time. Second: Waiting
time for this model in Figure 6.12 as a function of % where c is skilift capacity. Thick line: bound predicted
by bottleneck analysis. A few simulation results are shown with 95% confidence interval.

We also see that akey valueis ¢ = 1. If ¢ is much larger than ¢*, the waiting time is small,
so doubling the capacity has little effect anyhow. For ¢ much smaller than ¢*, the waiting time
increases at an almost constant rate. Thus we should target ¢ of the order of ¢*. For a highly
congested system (2¢ much smaller than ¢*) the offset at 0 becomes negligible and the response
timeisamost linear in 1/¢, thus doubling the capacity does reduce the waiting time by 2, roughly
speaking — but the system is still congested after doubling the capacity.

QUESTION 6.5.3. For which values of ¢ should the bound be accurate ? *’

For small ¢ and for large c.
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6.6 SUMMARY OF NOTATION

Notation Definition
A/SISIK Kendall notation: arrival process/service process/ number of servers/
capacity of queue including customersin service

arrival rate
s number of servers
S, og mean and standard deviation of servicetime
p=23 server utilization

N,N, ;N number of customersin system, its mean and standard deviation
Ny, Ny, on, number of customers waiting, its mean and standard deviation
R,R,oR time spent in system (residence time), its mean and standard deviation
W, W ,ow  waiting time, its mean and standard deviation
Vi mean number of visits per customer to node &
Z av. think timein interactive user model

6.7 EXERCISES

EXERCISE 6.1. Consider the Surge model with one UE. Assume the average inactive off period id
7, the average active off period is 7', the average number of URLS requested per active period is
V', and the average response time for a URL request is R: What is the throughput of A of one UE ?

EXERCISE 6.2. Consider again Question 9.8.20. How do you interpret the fact that the response
time varies linearly with the number of processes active in the system ?

EXERCISE 6.3. Read [ Tan02-Sgmetrics| and answer the following questions.

isthe goal of the evaluation well defined ? What isit ?

are the factorsidentified ? What are they ?

what performance indices are chosen ?

how is the workload generated ?

are there implicit assumptions that should have been formulated ?

are the experiments or results reproducible ?

what conclusions can be drawn from the study ?

is the approach scientific ? do you believe the conclusions ? why ?

what techniques are used for the evaluation ?

isthe level of sophistication adequate ?

. was a performance analysis justified (aren’'t the results obvious or too dependent on input
factors, which are arbitrary) ?

12. isthere any part that can be removed ?

13. arethe graphics OK ?

14. what aspects of the evaluation do you like or dislike ?

CLoWoo~NoTA~AWDNE

B
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TESTS

“No test can prove me right, asingle test can prove me wrong” .
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7.1. INTRODUCTION

7.1

INTRODUCTION

151

We use tests to decide whether some assertions on some distributions are true or not. We have seen
in Chapter 2 that visual tests may be used for such a purpose. Tests are an objective way to reach

the same goal .

EXAMPLE 7.1: NON PAIRED DATA.

A simulation study compares the execution time,

on a log scale, with two compiler options. See Figure 7.1 for some data. We would
like to test the hypothesis that compiler option 0 is better than 1. For one parameter

set, the two series of data come from different experiments.

We can compute a confidence interval for each of the compiler options. The data looks
normal, so we apply the student statistic and find the confidence intervals shown on

the figure.

For parameter set 1, the confidence intervals are disjoint, so it is clear that option 0
performs better. For parameter sets 2 and 3, the intervals are overlapping, so we

cannot conclude at this point.

% o
o
o J o

P
o %o
99" 6%,

(@) Parameter set 1

(b) Parameter set 2

(c) Parameter set 3

Parameter Set | Compiler Option 0 | Compiler Option 1

1 [—0.1669; 0.2148] | [0.3360; 0.7400]
2 [—0.0945; 0.3475] | [0.2575; 0.6647]
3 [—0.1150;0.2472] | [—0.0925; 0.3477]

Figure 7.1: Data for Example 7.1 on page 151. Top: Logarithm of execution time, on a log scale, with two
compiler options (o=option 0, x=option 1) for three different parameter sets. Bottom: confidence interval for

the means.

We see from this example that confidence intervals may be used in some cases for hypothesis
testing, but not always. We study in this chapter how tests can be used to disambiguate such cases.

QUESTION 7.1.1. (Example 7.1 on page 151) For one parameter set, the two data series come
from different experiments. Assume, in contrast, they would come from matching pairs, i.e. the
nth data point for compiler options 0 and 1 come from the same transaction. How could you decide
whether compiler option 1 is better ? 2

2Compute the differences and a confidence interval for the median or the mean of the difference, and see if the

confidence interval in entirely positive.
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7.2 THE NEYMAN-PEARSON FRAMEWORK

7.2.1 DEFINITIONS

We are given a data sample z;, i = 1,...,n. We assume that sample is the output generated by
some unknown model. We consider two possible hypotheses about the model, H, and H;, and
we would like to infer from the data which of the two hypothesesis true. In the Neyman-Pearson
framework, the two hypotheses play different roles. Hy, the null hypothesis, is the conservative
one. We do not want to reject it unless we are fairly sure. H; isthe alternative hypothesis.

For example, with Example 7.1 on page 151, the model could be: all data points for compiler
option O [resp. 1] are generated asiid random variables with some distribution F;, [resp. F7]. Then
Hyis “Fy = Fy” and H, is"“ Fy and F; differ by ashiftinlocation”. Thisisthe model used by the
Wilcoxon Rank Sum test (see Example 7.9 on page 177 for more details).

Another, commonly used model, for the same example could be: all data points for compiler
option O [resp. 1] are generated as iid random variables with some normal distribution N, 2
[resp. N, .2]. Then Hyis. “po = " and Hy is“pg # 1", Thisis the model used by the
so-called “Analysis of variance” (see Example 7.4.1 on page 161 for more details).

Thecritical region, also called rejection region C of atestisaset of valuesof thetuple (x4, ..., x,,)
suchthat if (z4, ..., z,,) € C wergect Hy, and otherwise we accept H,. The critical region entirely
defines the test.

The output of atest is thus a binary decision: “accept H,", or “reject H,". The output depends
on the data, which is random, and may be wrong with some (hopefully small) probability. We
distinguish two types of errors

e Atype 1 error occursif wergect Hy when Hy istrue
e Conversely, atype 2 error occursif accept H, when H; istrue.

The art of test development consistsin minimizing both error types. However, it isusually difficult
to minimize two objectives at atime. The probability of atype 1 error is called the size of the
test. A Neyman-Pearson test is designed such that the size has a fixed, small value (in our setting,
typicaly 5%); agood test is one that, in addition, minimizes the probability of atype 2 error.

EXAMPLE 7.2: COMPARISON OF TwWO OPTIONS, REDUCTION IN RUN TIME. The re-
duction in run time due to a new compiler option is given in Figure 2.3 on Page 17.
Assume that we know that the data comes from some iid X;~ N, ;2. Assume we know
that o = 50. This is not realistic and we will remove such assumptions in practice, but
this is convenient to make the point here.

Assume also that we want to test Hy: u = pg against Hy: = pq with g = 0 and
u1 = 40. We build a test by taking a rejection region of the form

(7.)

¢= {(951, ..., Tp) such that A BURIIULI k}
n

In other words, we reject H, if the sample mean is too large (since the alternative
hypothesis H; assumes p = p; > o). We want a test of size o = 0.05. This allows
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us to compute k, as follows (where X = %Zi X;). We want k& such that
a = Py, (Xy,....,X,) €0)

— Py, (X > k) = Pg, <fo > {f%)

Now, under Hy, @X has a standard normal distribution. Thus we want k such that

@k =1, With Ny 1(n) = 1 — o (n = 1.645 for o = 0.05). Thus we reject Hy when the
sample mean is larger than k = 10122 (= 8.23 for n = 100). We have z = 26.1, so

_ NG
we reject Hy.
The probability of an error of type 2 is

o= ]P)Hl(XSk>
= Py, <\/EX_M1)<\/7;I€_UM1>

o =

X —
= No1 (\/ﬁ UM)

For n =100, 8 ~ 10~10,

Now reverse the hypotheses, so that we have Hy: i = 0 against H1: = 1. We take
a rejection region of the form

(7.2)

C= {(:vl, .., Tp,) such that Tt < k’}
n

and we compute £ in a similar way. We find
7
vn

Since the sample mean is in the rejection region, we also reject Hy in this case ! This
shows how the preferential treatment given to H, by the Neyman-Pearson framework.

K = n+pu =31.77

7.2.2 p-VALUE OF A TEST.

For many tests, the rejection region has the form {7'(z) > my}, where z is the observation, 7'()
some mapping, and myis a parameter that depends on the size of the test. (In Example 7.2 on
page 152 we have T'(x) = z for the former case, T'(x) = —z for the latter.)

The p-value of atest is defined as the probability, under H,, that T is larger than the observed
value.

DEFINITION 7.2.1. The p-value of an observation xz isPy, (7'(X) > T'(x)).

Inthisformula, X isarandom variable that represents a hypothetical replication of the experiment,
wheresas x is the data that we have observed.

More formally, call ¢ the mapping

[0,+00) — [0,+00)
m i+ Supgep, Po {T(X) > m}
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Here 0 isamode, and 6 € H, means that the model satisfies the hypothesis H,. Note that ¢ is
wide-sense decreasing. The p-value of an observation z is

p(x) == ¢(T(x))

PROPOSITION 7.2.1. Assume that ¢ is strictly decreasing. The test is equivalent to: reject H iff
p*(z) < «, where « isthe size of the test.

Proof. Thergjectionregionis

C:={z: Tx)>mot={z: ¢(T(X)) <a}={z: p*(z) <a}
0

The assumption that ¢ is strictly decreasing is usually true in practice. In other words, the test
rejects Hy when the p-valueis smaller than the test size a.

The interest of the p-value is the explicit dependence on «. It gives more information than just a
binary answer.

QUESTION 7.2.1. What isthe relation between o, ¢ and m, ? 2

EXAMPLE: CONTINUATION OF EXAMPLE 7.2 ON PAGE 152. For the first test (ug = 0
versus i = 40), the rejection region is {z > k} and T'(z) = z. Thus

P = Py (X > 1)
X v
- PHO(\/E > “0>
g g
= 1-—Noa <\/ﬁ$—/ﬁ0>
g

We find p* = 1.0489¢ — 010 which is small, therefore we reject Hy.

In the second test, the rejection region has the form {z < k}. The p-value is now

pt = Py, (—X > —:f) =Py, (X < f)
= Noi (Vn(@—pm)/o)

We find p* = 0.0027 which is less small but still smaller than 0.05, therefore we also
reject Hy.

7.3 LIKELIHOOD RATIO TESTS

In this section we introduce a generic framework, used in most of this chapter, for constructing
tests. We give the application to simple tests for paired data and for goodness of fit.

3 = ¢(mo)




7.3. LIKELIHOOD RATIO TESTS 155

7.3.1 DEFINITION OF LIKELIHOOD RATIO TEST

ASSUMPTIONS AND NOTATION We assume some probability space parameterized by some
0 € ©. Consider Oy C © (nested models.). We have H, := “0 € ©,” whereas H, := “0 €
© \ O©y". For agiven statistic (random variable) X and value = of X, define:

For example, assume some data comes from an iid sequence of normal RVs ~ N(u, o). We want
totest u = 0 versus i # 0. Here® = {(u,0 > 0)} and ©y = {(0,0 > 0)}.

If Hy is true, then, approximately, the likelihood is maximum for 6 € ©, and thus [,.(H,) =
l.(H1). Inthe opposite case, the maximum likelihood is probably reached at some 6 ¢0, and thus
l.(Hy) > l.(Hy). Thisgivesan ideafor ageneric family of tests:

DEFINITION 7.3.1. Thelikelihood ratio test is defined by the rejection region
C ={l.(H) —l.(Hy) > k}
where k& is chosen based on the required size of the test.

The test statistic [,.(H) — I.(Hy) iscalled likelihood ratio for the two hypotheses H, and H;.

Thus we reject 6 € ©, when the likelihood ratio statistic is large. The Neyman-Pearson lemma
([Weber-C11] Section 6.3) tells usthat, in the simple case where ©, and ©; contain only one value
each, the likelihood ratio test minimizes the probability of type 2 error. Most tests used in this
lecture are actually likelihood ratio tests. As we will see later, for large sample size, there are
simple, generic results for such tests.

There isalink with the theory of maximum likelihood estimation. Under the conditionsin Defini-
tion 2.8.1, define

o . the MLE of 8 when we restrict 6 to bein ©,

o0
e 0 : the unrestricted MLE of ¢

Then 1,,(Hy) = I.(60) and I,(H) = L(6).

QUESTION 7.3.1. Why can we be sure that 7,,(6) — I,,(6,) > 07?2 *

EXAMPLE: CONTINUATION OF EXAMPLE 7.2 ON PAGE 152. We want to test Hy: u = ppo
against Hy: u = p1. Thus ©9 = {uo} and © = {ug,u1}. The log-likelihood of an
observation is

Lo (1) = _7” In (270?) — % Z (i — 1)

4Aslong asthe MLEs exist: by definition, I, (é) > 1.(0) forany 6.
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and the likelihood ratio statistic is

lo(H1) — lo(Ho) = max{lo (1), Lo (110)} — lo(pt0) = [lo(p1) — Lo (p10)] ™

where [r]* denotes the maximum of » and 0. The likelihood ratio test is of the form
[lo(p1) — 1z(p0)]" > k, which, for k > 0 is equivalent to (1) — 1. (10) > k. After some
algebra, it comes

n

L(H) = Lo(Ho) = 5

(2% (1 — po) + (i — 11)?)

which is an increasing function of z, thus for ;1 > pg, as in the first case (u; = 40 and
1o = 0), the rejection region for the likelihood ratio test has the form z > k. In contrast,
if 41 < po, it has the form z < k. Thus the tests derived heuristically in Example 7.2
on page 152 are in fact likelihood ratio tests.

7.3.2 STUDENT TEST FOR SINGLE SAMPLE (OR PAIRED DATA)

This test applies to a single sample of data, assumed to be normal with unknown mean and vari-
ance. It can also be applied to two paired samples, after computing the differences.

Themoded is: X, ..., X, ~iid N, > where i and o are not known. The hypotheses are:

Ho: p = po against Hy: pu # pio

where p is afixed value.
We compute the likelihood ratio statistic. We have, after some algebra:

lm(‘Hl) - Z:B(HO) = magdn fX(x|M7 02) - m%Xhl fX(x|M07 02)
1,0 o

_ <—ln (Z(“" _ @2) +1n (Z(x - uo)2>>

— g <_ In (Z(xi — x)2> +In(> (2 —2)* +n(z - uo)?))

i .

Let 7'(x) be the student statistic (Theorem 2.3.1):

T(x) = ™ L (7.3)

with 62 = L= %" (x; — )?. We can write the likelihood ratio statistic as

L(Hy) — 1,(Ho) = gln (1 + T(”“")2> (7.4)

n—1
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which is an increasing function of |7'(x)|. The rejection region thus has the form
C={T(@)]>n}

We compute 7 from the condition that the size of the test is «. Under H,, T'(X) has a student
distribution t,,_; (Theorem 2.3.1). Thus

n=t1 (1-3) (7.5)

For example, for « = 0.05 and n = 100, n = 1.98.

The p-valueis
pr =201 =t (T(x))) (7.6)

EXAMPLE 7.3: PAIRED DATA. This is a variant of Example 7.2 on page 152. Consider
again the reduction in run time due to a new compiler option, as given in Figure 2.3 on
Page 17. We want to test whether the reduction is significant. We assume the data is
iid normal and use the student test:

Hy: p=0against Hy: p # 0

The test statistic is T'(z) = 5.08, larger than 1.98, so we reject Hy. Alternatively, we
can compute the p-value and obtain p* = 1.80e — 006, which is small, so we reject Hy.

We can compare this test to the use of a confidence interval. A confidence interval for p is (Theo-
rem23.1)

T+ n% (7.7

We could decide to reject Hy iff o isnot in the confidence interval, i.e.

~

o
|Z — pio| > Uﬁ (7.8)
which isexactly the same asthe condition 7'(x) > n, which isthe rejection condition of the student
test. Thus there is equivalence between testing for the mean equal to 1, and asking whether 1 is
in a confidence interval for the mean.

Thisresult is quite general: consider a generic model parametrized with some € © C R. There
is equivalence between tests of the form

0 =6, agalnst Hi: 0 7é 0,
with computing confidence intervals for # [Weber-C11]. For such cases, we do not need a generd

theory of tests, since we can simply use confidence intervals as discussed in Chapter 2. However,
there are many tests that cannot be put in this form.
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7.3.3 THE SIMPLE GOODNESSOF FIT TEST

Assume we are given n data points =, ..., x,,, assumed to be generated from an iid sequence, and
we want to verify whether their common distribution is a given distribution £'(). A traditional
method is to compare the empirical histogram to the theoretical one. Applying this idea gives the
following likelihood ratio test. We call it the simple goodness of fit test as the null hypothesis
is for agiven, fixed distribution F'() (as opposed to a family of distributions, which would give a
composite goodness of fit test).

To compute the empirical histogram, we partition the set of values of X into bins B;. Let N; =
> i1 1imi (Xi) (number of observation that fall in bin B;) and ¢; = P{X; € B;}. If the data
comes from the distribution £() the distribution of N is multinomia M, 4, i.e.

n! o om

Thetestis
Hy: N; comes from the multinomial distribution A, 7
against
H,: N; comesfrom amultinomial distribution M, ; for some arbitrary p.

We now compute the likelihood ratio statistic. The parameter is ¢ = p. Under H,, there is only
one possible value so 0, = ¢. From Equation (7.9), the likelihood is

k
Ip(T) = C'+ Z n; In(p;) (7.10)

wheren; = >/ _ 11{3}(mk) and C' = In(n!) — 32F  In(n;!). C isaconstant and can beignoredin

the rest. To find 4, we have to maximize Equation (7.10) subject to the constraint Z 1 pi=1.The
function to maximize is concave in p;, so we can find the maximum by the lagrangian technique.
Thelagrangianis

k k
=D _min(p) + A1 -3 p) (7.11)

The equations g—}fi = 0 give n; = \p;. Consider first the case n; # 0 for all i. We find A by the
constraint Zlep,- = 1, which gives A\ = n and thus p; = “. Finally, the likelihood ratio statistic

is
Ly, (Z) — g, (T Z n; In -

In the case where n; = 0 for some ¢, the formulais the same if we adopt the convention that, in
Equation (7.38), the term n; In - |s replaced by 0 whenever n; = 0.

ni ) (7.13)
ng;

(7.12)

ng;

We now compute the p-value. It isequal to

k
P(ZNil T]lv
=1
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where N has the multinomial distribution M,, .

For large n, we will see in Section 7.5 a simple approximation for the p-value. If n is not large,
thereis no known closed form, but we can use Monte Carlo simulation as discussed in Section 3.4.

EXAMPLE 7.4: MENDEL [WEBER-C11]. Mendel crossed peas and classified the re-
sults in 4 classes of peas ¢ = 1, 2, 3, 4. If his genetic theory is true, the probability that
a pea belongs to class i is ¢ = 9/16,q2 = g3 = 3/16,q4 = 1/16. In one experiment,
Mendel obtained n = 556 peas, with N; = 315, No = 108, N3 = 102 and N4 = 31. The
testis

— “w—

Hy : “¢'= p” against Hy : “p'is arbitrary”

The test statistic is

k
Y niln —4 = 0.3092 (7.14)
i=1 i

We find the p-value by Monte-Carlo simulation (Example 3.7 on page 74) and find
p = 0.9191 + 0.0458. The p-value is (very) large thus we accept Hy.

7.4 ANOVA

In this section we cover a family of exact tests when we can assume that the data is normal. It
applies primarily to cases with multiple, unpaired samples.

7.4.1 ANALYSISOF VARIANCE (ANOVA) AND F-TEST

Analysisof variance (ANOVA) isused when we can assume that the dataisafamily of independent
normal variables, with an arbitrary family of means, but with common variance. The goal isto test
some property of the mean. The name ANOVA is explained by Theorem 7.4.1.

ANOVA is found under many variants, and the basis is often obscured by complex computations.
All variants of ANOVA are based on a single result, which we give next; they differ only in how a
projection is computed.

ASSUMPTIONS AND NOTATION FOR ANOVA

e Thedataisacollection of NV independent, normal random variables X,., where the index r
isin somefinite set R (with N = number of elementsin R).

o X, ~ N(u,,0?%),i.e al variables have the same variance (this is pompously called “ho-
moscedasticity”). The common variance is fixed but unknown.

e Cal ji := (u,)rer- We assume that i € M, where M is alinear subspace of R". Let
k = dim M. The parameter is¢ = (i, o) and the parameter spaceis© = M x (0, +o0)

e We want to test the nested model i € M,, where M, is a linear sub-space of M. Let
ko = dim My. We have ©g = Mj x (0, +00).
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o II, [resp. II,,,] isthe orthogonal projector on M [resp. M)
o F,.»() isthe Fisher distribution with degrees of freedom m, n

EXAMPLE: NON PAIRED DATA.(Continuation of Example 7.1 on page 151) Consider
the data for one parameter set. The model is

Xi=m+e,; YVj=p+ey (7.15)

with €5 ™~ iid NO,O'Q'

We can model the collection of variables as X1, ..., X,,, Y1,..., Y, thus R = {1,...,m +
n} and N = n + m. We have then

o M ={(p1,...pt1,p2,...12), 11 € R, e € R} and k = 2

o Mo ={(pty eptypty...t), p € R} and kg = 1

o Inr(z1,.s Tps Y15 oosYn) = (Z,...,Z,9,...,7), Wwhere z = (31", z;)/m and § =
(5, 45/,

o Ity (1, ey Ty Y1, v Yn) = (2505 2, 2, .o, Z), Where 2 = (300 @ +3 00 y5) /(m+

This model belongs to the family of “one way ANOVA” models, and can be solved
using statistical packages.

EXAMPLE 7.5: FRUITFLIES. [Weber-C11] The longevity of different varieties of fruit-
flies was measured, on groups of 25 flies. The results are:

Group | Mean life (days) | standard deviation
1 63.56 16.4522
2 64.80 15.6525
3 63.36 14.5398

(here the standard deviation is \/ﬁ S (z; — %)2). The model is
Xij=pit+e; 1<nii=1..k (7.16)

with ¢; ; ~ iid Ny ,2. It is also called the generic one-way ANOVA model (one way
because there is one “factor”, index i. Here i represents the variety of fruitflies, and j
the index of a sample within a variety.

The collection is X, = X;; so R = {(4,j),i = 1,...,k = 3andj = 1,...,n;} and
N =>".n;. We have

o M = {(pi;) such that p; ; = p; is independent of j}; the dimension of M is k =
3.

o Moy = {(u,;) such that p; ; = p is independent of 4, j} and kg = 1.

e II,/(%) is the vector whose (4, j)th coordinate is independent of j and is equal to

Ti. = (X07L ig) /.
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e 1,7, (%) is the vector whose coordinates are all identical and equal to the overall
mean 7. := (Zi’j xi;)/N.

THEOREM 7.4.1 (ANOVA). 1. The Maximum Likelihood Estimators for both restricted and

general models are given by
o o =T, (2), 65 = |17 — fuo”
o i=1y(7), 6% = 57— al?
where 7 is the value of the random variable X .
2. Thelikelihood ratio for thetest of Hy: “ ji € My, o0 > 0" against Hy: “ i€ M\ My, 0 > 0"

IS

N SSL_N () SS2
2 "gs0 2 551

where
SS0 = ||# — fio]|* = N62 = SS1 + 552
SS81:= ||7 - ju||* = N&*
§52 = i — fuol* = N x (6% — 57)
3. Definethetest statistic f by

_ 552/(k — k)
1= g8 =n)

The distribution of f (when we replace x by )f) under Hy iS Fy_, N—k-
F isoften called the F'-value of the test.

4. The likelihood ratio test of size o rgjects i € M, when f islarge, i.e, when f > n, where
kako,ka(m =1-na. Thep'ValueiSIf’< =1 kako,ka(f)-

Proof . Apply Theorem 12.5.3

EXAMPLE: APPLICATION TO EXAMPLE 7.1 ON PAGE 151. We assume homoscedastic-
ity. We can test this hypothesis by applying the test in Section 7.4.4.

The theorem gives the following computations:

e f=(X,. ., XY, ., Y)and 6 = (3 ,(Xi — X)2+3,(Y; = V)?)
o o= (Z,..,.Z,Z,...Z) with Z = (mX +nY)(m +n) and 69 = ﬁ(zz()(l _

Z)+ 3,V - 2)?)

e $SS2=m(Z-X)?+n(Z-Y) =(X-Y)2/(1/m+1/n)
e the f valueis 5§52/5S51/(m +n — 2).
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Figure 7.2: lllustration of quantities in Theorem 7.4.1

Parameter Set 1 SS df MS F Prob>F
Columns 13.2120 1 | 13.2120 | 13.4705 | 0.0003116
Errors 194.2003 | 198 | 0.9808
total 207.4123 | 199
Parameter Set 2 SS df MS F Prob>F
Columns 5.5975 1 55975 | 4.8813 0.0283
Errors 227.0525 | 198 | 1.1467
total 232.6500 | 199
Parameter Set 3 SS df MS F Prob>F
Columns 0.1892 1 | 0.1892 | 0.1835 0.6689
Errors 204.2256 | 198 | 1.0314
total 204.4148 | 199

Table 7.1: ANOVA Tests for Example 7.1 on page 151 (Non Paired Data)

The ANOVA tables for parameter sets 1 to 3 are given in Table 7.1. The F-test rejects
the hypothesis of same mean for parameter sets 1 and 2, and accepts it for parameter
set 3. The software used to produce this example uses the following terminology:

e SS2: “Columns” (explained variation, variation between columns, or between
groups)

e SS1: “Error” (residual variation, unexplained variation)
e SSO: “Total” (total variation)

QUESTION 7.4.1. Compare to the confidence intervals given in the introduction. °

QUESTION 7.4.2. What are S0, SS1 and S for parameter set 1 ? ©

SFor parameter set 1, the conclusion is the same as with confidence interval. For parameter sets 2 and 3, confidence
intervals did not allow one to conclude. ANOVA disambiguates these two cases.
5The column “SS’ gives, from top to bottom: SS2, SS1 and SSO.
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INTERPRETATION. Item 2 in the theorem justifies the name “ANOVA”: the likelihood ratio
statistic depends only on estimators of variance. Note that thisis very specific of homoscedasticity.

The equality
SS0 =551+ 552

can be interpreted as a decomposition of sum of squares, as follows. Consider 6, as the base
model, with &, dimensions for the mean; we ask ourselves whether it is worth considering the
more complex model ©, which has k > k&, dimensions for the mean. From its definition, we can
interpret those some of squares as follows.

e SS2 isthe sum of squares explained by the model ©, or explained variation.
e SS1istheresidual sum of squares
e S50 isthetotal sum of squares

The likelihood ratio test accepts © when S52/5S1 islarge, i.e.,, when the percentage of sum of
squares S52/5S1 (also called percentage of variation) explained by the model © is high.

The dimensions are interpreted as degrees of freedom:

e SS2 (explained variation) is in the orthogonal of M, in M, with dimension & — ky: the
number of degrees of freedom for SS2isk — ko

e SS1 (residud variation) inin the orthogonal of M/ inIR%. The number of degrees of freedom
for SS1isN — k

EXAMPLE: FRUITFLIES.The numerical solution of Example 7.5 on page 160is shown
in the table below.

Source SS df MS F Prob>F
Columns | 30.427 2 | 15.213 | 0.0628 | 0.9392
Errors | 17449.92 | 72 | 242.36
total 17480.35 | 74

Thus we accept Hy, hamely, longevity is not impacted by the variety.

QUESTION 7.4.3. Write down the expressions of MLEs, SS1, 552 and the F-value. 7

~

e /i isthe vector whose (z, 4)th coordinate is independent of j and isequal to X; := Z?;l Xi /.
o S51 =752 ;(Xi i.)?

o 62 = %551

e Jiy isthe vector coordinates are all identical and equal to the overall mean X := (>0 Xij)/N
e 550=551+552

o 63 =550

o =552/SS1% (N —k)/(k—1)
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7.4.2 STUDENT TEST ASSPECIAL CASE OF ANOVA

In the specilacase where k — ky = 1 (asin Example 7.1 on page 151) the F'-statistic is the square
of a student statistic, and a student test could be used instead. This is sometimes used by some
statistics packages.

7.4.3 TESTING FOR SPECIFIC VALUES

By an additive change of variable, we can extend the ANOVA framework to the case where M, C
M are affine (instead of linear) varieties of R”. Thisincludes testing for a specific value.

For example, assume we have the model
Xij =i + € (7.17)
with ¢; ; ~ iid N ,2. We want to test
Hy: “p; = po for al 7 against Hy: “ 11; unconstrained”
We change model by letting X; ; = X; ; — 110 and we are back to the ANOVA framework.

7.4.4 TESTING FORA COMMON VARIANCE

We often need to verify that the common variance assumption holds. This can be done as follows.

I > 2 DATA SETS

We are given adataset z; ;, ¢ = 1,...,1, j = 1,...,n,. We assume that it is a realization of the
model

We assume that the normal assumption holds and we want to test

Hy o0;=0 > 0foradli
H, 0, >0

We make alikelihood ratio test. We compute the likelihood ratio statistic. We need first to compute
the maximum likelihood under H;. Thelog-likelihood of the model is

l.(fI, &) = _% [m(zm +) (27%- In(o;) + Z (““U;Q“)?)] (7.19)

i=1 j=1 t
To find the maximum under H1, observe that the terms in the summation do not have cross depen-

dencies, thus we can maximize each of the I terms separately. The maximum of the ith term is
for

I
1
o i nEl’j (7.20)

j=1

I
1
-2: 2:—5 z"—Ai2 721
Jz Sz n; — (I’ 5J M) ( )
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and thus

I,(H,) = —% In(27) + Zn (2In(s;) + 1)

I
= —% [ln(?ﬂ) +n+2 Z n; In(s;) (7.22)

i=1

wheren = S0 n,.
Under H, the likelihood is asin Equation (7.19) but with o; replaced by the common value o. To

find the maximum,we use the ANOVA theorem. The maximum isfor p; = ji; asin Equation (7.20)

and
I

zl]l =1

~

and thus

d 2
l.(Hy) = —% In(27) 4+ Z n,z—; +2nln(s)| = —% [In(27) + n + 2nIn(s)] (7.24)
i=1

The test statistic isthe likelihood ratio statistic irs = 1,,(Hy) — 1,(Hp):

Irs =nln(s Z n; In(s (7.25)

Thetest hasthe form: reject Hy when irs > K for some constant K.

The p-value can be obtained using either Monte-Carlo simulation or large sample asymptotics.
The former method proceeds as follows. The problem is now to compute P(7" > ) where T" isa
random variable distributed like

nlin(s Z n; In(s;) (7.26)

and assuming H, holds. We generate R repllcated samples of T". To generate these samples, ob-
serve that all we need isto generate the random variables s;. They areindependent, and distributed
like o®x2 _,. Notethat T"is independent of the specific value of the unknown but fixed parameter
o, thuswe canlet o = 1 in the Monte Carlo ssimulation.

Alternatively, one can use the large sample asymptotic. Thedistribution of 2 x Irs is approximately
X3_,; this gives the approximate p-value:

p 1 —x3 (2nln(s) —22:71111&.3Z

I =2 DATA SETS:. F-TEST

For two samples, the rejection region of the test of common variance can be computed explicitly,
by showing that, in this case, the test isan F'-test.

We can rewrite the likelihood ratio statistic as

Irs = % [nIn(ny f +ng) —nyIn(f)] + C (7.27)
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where C' isaconstant term (assuming n; and n,, are fixed) and
f== (7.28)

The derivative of rs with respect to f is

Olrs — nny(f —1)
of — 2f(nif +no)

(7.29)

thus Irs decreases with f for f < 1 andincreasesfor f > 1. Thusthe reection region, defined as
{lrs > K}, isdsoof theform { K < f < K>}.

Now define
62
F=_ (7.30)
03
with
1 I
6'12 = n, — 1 . (xi,j — /ll)2 (731)

7j=1

We take 67 instead of s? in order to obtain an F-test, as we see next. Note that
F=fC (7.32)

where C’ isaconstant, sotheset { K} < f < Ky} isequal totheset {C'K; < F < C'K,} with
n=CKyand¢ = C'K,.

Under H,, the distribution of F' is Fisher with parameters (m — 1,n — 1), so we have a Fisher test.
The boundsn and F' > ¢ are classically computed by the conditions

{ Fm—l,n—l(m = 04/2
Foin-1(§) =1—a/2

EXAMPLE: FRUITFLIES AGAIN. We want to teste whether the data for groups 1 and 3
in Example 7.5 on page 160 have the same variance. We have Fyj24(§) =1 — a/2.
Thus n = 0.44 and £ = 2.27. The F statistic is 1.2804 so we accept Hy.

7.5 ASYMPTOTIC RESULTS

In many cases it is hard to find the exact distribution of a test statistic. An interesting feature of
likelihood ratio tests is that we have a simple asymptotic result.
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7.5.1 LIKELIHOOD RATIO STATISTIC

The following theorem derives immediately from Theorem 2.8.2.

THEOREM 7.5.1. Consider alikelihood ratio test (Section 7.3) with® = M x N, where M, N are
open subsets of R”, R? and denote 0 = (u, v). Also let

e Oy={pu=0}={0=(0,v),re N}
e O={0=(p,v),peMve N,v#0}

We test the hypothesis Hy := {u = 0} = {6 € O} against H; := {u # 0} = {6 € O\ Oy}.
Assume that the conditions in Definition 2.8.1 hold. Then, approximately

2 (1) = 1(80)) ~ 2

(p is the number of degrees of freedom that H, adds to H,). It follows that the p-value of the
likelihood ratio test can be approximated for large sample sizes by

Pl -y (2(@(9“) - zx(éo))) (7.33)

EXAMPLE: APPLICATION TO EXAMPLE 7.1 ON PAGE 151. Using Theorem 7.4.1 and
Theorem 7.5.1 we find that

552 9
2lrs ;== N ln <1+551> ~ X]

The corresponding p-values are:

Parameter Set 1 pchi2 0.0002854
Parameter Set 1 pchi2 = 0.02731
Parameter Set 1 pchi2 0.6669

They are all very close to the exact values (given by ANOVA).

7.5.2 APPLICATION TO NON PAIRED DATA, DIFFERENT VARIANCES

We show in this section how the asymptotic result may be useful when the hypothesis of same
variance does not hold. Assume we are given two unpaired series of data, and we want to test
whether they have the same mean.

The modd is
Xi=p1+e,; Yy= s+ e (7.34)

withe; ; ~ iid Ny 2. We apply Section 7.3 and compute first the MLEs. For the unrestricted MLE
0 = (11, iz, 01, 62) wefind
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L4 ,&1 = i.1 ,ELQ = ?j,
L4 a'% :A%Sxxa 6% = %Syyy
o I, (0) =cst —FInS,, —5InS,,

(with S, = 3, (z; — Z)?). The restricted MLE 6, = (i1, /1, &}, &) cannot be obtained explicitly.
We have

m Spw +m(z —p)?> n Sy +n(y — p)?
Ly (p, p, 01, 0h) = cst — B Ino?? — 20(,12 W B Inoy — % 2;52 2 (7.35)
By differentiating with respect to ;. we find that
. 51T+ Sy
=—>" 7.36
=55, (7.36)

with S; = m/o? and S, = n/0%. By substituting Equation (7.36) in Equation (7.35), we obtain
the log-likelihood as a function of two variables o/, o,. We maximize it numerically to obtain
a1, 0.

The likelihood ratio statistic is .

T (zx,y(e) - zx,y(eo)) (7.37)
it can be computed once we know all values of MLEs. We know that, under the assumption that
the means are equal, and asymptotically, 7" ~ Xf,- Now p = 1 since there are 4 free parameters for

0 and 3 for 0y. Thus, the test for equality of means has rejection region of theform C = {T" > n}
where x%(n) = 1—a,i.e. n = £ where ¢ isthe 1—a/2 quantile of the standard normal distribution.

QUESTION 7.5.1. What isthe p-value of the test ? 8

EXAMPLE 7.6: FRUITFLIES AGAIN. ([Weber-C11] Example 12.2.) Consider some
other data series about the longevity of fruitflies:

Group | Mean life (days) | standard deviation
1 63.56 16.4522
4 56.76 14.9284

We would like to test equality of mean for groups 1 and 4. We first test for same
variance and find F' = 1.21. The rejection regionis n < F < £ with F};,_1,-1(n) = §,
Fr1n-1(§) = 1— 5. Atsize a = 0.05, we get n = 0.44,{ = 2.27 so we accept the
hypothesis of equal variance. Testing for equality of mean is thus done with ANOVA,
we find f = 2.3423 and p-value p = Fy,_1,—1(f) = 0.132. Alternatively, we use a
t-test and get t = 1.53 < ;4 (0.975) = 2.01 and we accept equality of means at size
a = 0.05.

p*=1-xi(T)=2(1-N(VT))

where N isthe standard normal distribution function. We reject equality of means when p* is smaller than «.
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Assume now that we have the same data, except for the number of samples which
is now equal to 500. Let us repeat the analysis. The test for same variance gives
F = 1.21 but now n = 1.158 (for a = 0.10, or n = 1.192 for o = 0.05). So at size 0.05
already we reject the hypothesis of same variance. We cannot apply ANOVA.

Zum Gluck, n is large, so we apply the MLE asymptotics instead. We find

e Unrestricted model: fi; = 63.56, i, = 56.76, 61 = 16.43574, 69 = 14.91346

e Restricted model: i = 59.8145, ¢ = 16.8571, ¢4 = 15.2230

e T = 45.9 > 3.84 thus we reject the hypothesis of equalities of means (at a size
a = 0.05).

7.5.3 PEARSON CHI-SQUARED STATISTIC AND GOODNESS OF FIT

We can apply the large sample asymptotic to goodness of fit tests as defined in Section 7.3.3.
This gives a ssimpler way to compute the p-value, and allows to extend the test to the composite
goodness of fit test, defined as follows.

CoMPOSITE GOODNESS OF FIT Similar to Section 7.3.3, assume we are given n data points
x1, ..., T,, generated from an iid sequence, and we want to verify whether their common distri-
bution comes from a given family of distributions F'(|0) where the parameter ¢ is in some set
Oy. We say that the test is composite because the null hypothesis has several possible values of
0. We compare the empirical histograms. we partition the set of values of X into bins B;. Let
N; =30 (s (X4) (number of observation that fall in bin B;) and ¢; = Po{X; € B;}. If the
data comesfrom adistribution £'(]0) the distribution of IV; is multinomial M, 5. The likelihood
ratio statistic test is

Hy: N; comes from amultinomial distribution M,, 44, With 6 € ©,
against
H,: N; comes from amultinomial distribution A, ; for some arbitrary p.

We now compute the likelihood ratio statistic. It is similar to the derivation in Section 7.3.3. Let 0
be the MLE of # under H,. 6, = ¢. We find that the likelihood ratio stetistic is

Irs = U, () — Ly () = > miln —2 (7.39)

The p-valueis

> n; In (7.39)
)

where N has the multinomial distribution na(®)” It can be computed by Monte Carlo simulation
asin the case of asimple test, but this may be difficult because of the supremum.

An aternative for large n is to use the asymptotic result in Theorem 7.5.1. It says that, for large
n, under H,, the distribution of 2irs is approximately chi?,, with m = the number of degrees of

0cOq ng;

sup P (ZN In
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freedom that A, addsto H,. Here H, has k, degrees of freedom (where k is the dimension of ©,)
and H; has I — 1 degrees of freedom (where I isthe number of bins). Thus the p-value of the test
is approximately

1-— X%_ko_l(ers) (7.40)
where x7_,, _, isthe cdf of the chi-squared distribution with 7 — k, — 1 degrees of freedom.

EXAMPLE: IMPACT OF ESTIMATION OF (i, o). We want to test whether the data set on
the right of Figure 7.3 has a normal distribution. We use a histogram with 10 bins. We
need first to estimate 6 = (4, 5).

1. Assume we do this by fitting a line to the ggplot. We obtain 4 = —0.2652, 6 = 0.87009.

The values of ng;(f) and n; are:

7.9297 7.0000
11.4034 9.0000
18.0564 17.0000
21.4172 21.0000
19.0305 14.0000
12.6672 17.0000

6.3156 6.0000
2.3583 4.0000
0.6594 3.0000
0.1624 2.0000

The likelihood ratio statistic as in Equation (7.38) is Irs = 7.6352. The p-value is
obtained using a xZ distribution (m = 10 — 2 — 1): pl = 0.0327, thus we would reject
normality at size 0.05.

2. Itis not correct to simply fit (i, o) on the ggplot. The theory says that we should find
(1, o) that maximizes the log likelihood of the model. This is equivalent to minimizing
the likelihood ratio statistic Iy, () — I, +(x) (note that the value of Ig, (z) is easy to
compute). We do this with a numerical optimization procedure and find now i =

~

—0.0725,6 = 1.0269. The corresponding values of ng;(#) and n; are now:

8.3309 7.0000
9.5028 9.0000
14.4317 17.0000
17.7801 21.0000
17.7709 14.0000

14.40093 17.0000
9.4783 6.0000
5.0577 4.0000
2.1892 3.0000
1.0491 2.0000

Note how the true value of i, & provides a better fit to the tail of the histogram. The
The likelihood ratio statistic is now Irs = 2.5973, which also shows a much better fit.
The p-value, obtained using a x2 distribution is now p1 = 0.6362, thus we accept that
the data is normal.

3. Assume we would ignore that (u, o) is estimated from the data, but would do as if
the test were a simple goodness of fit test, with H, : “The distribution is N_¢ ¢725,1.0269"
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instead of Hy : “The distribution is normal”. We would compute the p value using a x3
distribution (m = 10 — 1) and would obtain: p2 = 0.8170, a value larger than the true
p-value. This is quite general: if we estimate some parameter and pretend it is a priori
known, then we overestimate the p-value.

PEARSON CHI-SQUARED STATISTIC. Inthe case where n is large, 2x the likelihood ratio
statistic can be replaced by the Pearson chi-squared statistic, which has the same asymptotic
distribution. It is defined by

1

pes = Zl % (7.41)

Indeed, when n islarge we expect, under H, that n; — ng;(0) isrelatively smal, i.e.

n;
€ = =
ng;(0)

issmall. An approximation of 2/rs isfound from the second order development around ¢ = 0:

1 (7.42)

In(l+¢)=¢€¢— %3 + o(€?) (7.43)

and thus

Irs — Zm%@u +€)¢(0) In(1 + ¢)

i ng;
— nZ (Ei — %ef +o(e2)(1 + Ei)Qi(é)>
= nY a0 <1 - %Ei +o(e) (1 + Ez‘))

i

= ”Z%(é)ﬁi (1 + %Ei + O(Ei))
= n Y a@+nY a3 +n Y o)

Notethat 3. ¢;(A)e; = 0 thus
1
Irs ~ Spes (7.44)

The Pearson Chi-sguared statistic was historically developed before the theory of likelihood ratio
tests, which explains why it is commonly used.

In summary, for large n, the composite goodness of fit test is solved by computing either 2irs or
pes. Thep-valueis1 —x2_,  (2lrs)or 1 —x7_, _(pcs). If either issmall, wereject Hy, i.e. we
reject that the distribution of X; comes from the family of distributions £'(|9).
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SIMPLE GOODNESS OF FIT TEST. Thisis a specia case of the composite test. In this case
m = n — 1 and thus the p-value of the test (given in Equation (7.13) can be approximated for large
nby1—x2_(2lrs)or x2_,(pcs). Also, thelikelihood ratio statistic S>% | n; In »e- can be replaced
by the Pearson-Chi-Squared statistic, equal to '

I
Z —n4i)” (7.45)

=1

EXAMPLE: MENDEL'S PEAS, CONTINUATION OF EXAMPLE 7.4 ON PAGE 159. The like-
lihood ratio statistic is Irs = 0.3092 and we found by Monte Carlo a p-value p* =
0.9191-£0.0458. By the asymptotic result, we can approximate the p-value by x3(2irs) =
0.8922.

The Pearson Chi-squared statistic is pcs = 0.6043, very close to 2irs = 0.618. The
corresponding p value is 0.8954.

7.5.4 TEST OF INDEPENDENCE

The same ideas as in Section 7.5.3 can be applied to a test of independence. We are given
a seguence (zg, yx), Which we interprete as a sample of the sequence (X, Y:), £ = 1,...,n.
The sequence is iid (( Xk, Yx) is independent of (X}, Y, ) and has the same distribution). We
are interested in knowing whether X, isindependent of Y.

To this end, we compute an empirical histogram of (X,Y"), as follows. We partition the set of
values of X [resp. Y] into I [resp. J] bins B; [resp. Cj]. Let N;; = >0 1y (Xe) 1o,y (Ye)
(number of observation that fall in bin (B;,C;)) and p;; = P{X; € B;andY; € C;}. The
distribution of NV is multinomial. Thetest of independenceis

Ho:"p;; = g;rj forsomegandr suchthat >, ¢; = >, r; =17
against
Hy:"p,; ; isarbitrary”

The MLE under H, isﬁ?’j = %”—nﬂ wheren; ; = >7_, Ly (@r) Lo,y (ye) and

n; = Zj N 5
’ 7.46
{ nj = ;Nij (7.40)
The MLE under H, isﬁz{j = 2. Thelikelihood ratio statistic is thus
lrs = iil b 1.47
rs an L (7.47)

To compute the p-value, we use, for large n, a x2, distribution. The numbers of degrees of freedom
under H,isIJ — 1,under Hyitis(I — 1)+ (J —1),thusm=(IJ—-1)— (I —-1)—(J—-1) =
(I —1)(J —1). Thep-valueisthus

pr=(1- X%I—l)(J—l)) (2rs) (7.48)
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Asin Section 7.5.3, 2Irs can be replaced, for large n, by the Pearson Chi-squared statistic:

pes = W% (7.49)
Z MM

EXAMPLE 7.7: BRASSICA OLERACEA GEMMIFERA. A survey was conducted at the
campus cafeteria, where customers were asked whether they like Brussels sprouts.
The answers are:

i\Jj Male Female || Total
Likes 454 251 705
Dislikes 295 123 418
No Answer / Neutral | 267 148 415
y Total 1016 522 [ 1538 |

We would like to test whether affinity to Brussels sprouts is independent of customer’s
gender.

Here we have I = 3 and J = 2, so we use a x? distribution with m = 2 degrees of
freedom. The likelihood ratio statistic and the p-value are

Irs = 2.6489, p = 0.0707 (7.50)

SO we accept Hy, i.e. affinity to Brussels sprouts is independent of gender.

Note that the Pearson Chi-squared statistic is
pes = 5.2178 (7.51)

which is very close to 2irs.

7.6 OTHER TESTS

7.6.1 GOODNESSOF FIT TESTSBASED ON AD-HOC PIvoTs

In addition to the Pearson ? test, the following two tests are often used. They apply to acontinuous
distribution, thus do not require quantizing the observations. Assume X;, i = 1,..,n areiid
samples. We want to test Hy: the distribution of X; is F' against non H,.

Define the empirical distribution £ by

. 1 «
i=1
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Kolmogorv-Smirnov  The pivot is

T = Sgp\ﬁ(w) — F(2)]

That the distribution of this random variable is independent of F' is not entirely obvious, but can
be derived easily in the case where £’ is continuous and strictly increasing, asfollows. Theideais
to change the scale on the z-axis by u = F'(x). Formally, define

U = F(X;)

sothat U; ~ U(0,1). Also
. 1 1 A
Fla)=—3 lpven =~ lurwy = G(F(@))

where G is the empirical distribution of the sample U;, i = 1,...,n. By the change of variable
u = F(x), it comes
T = sup |G(u) — ul
u€(0,1]
which showsthat the distribution of 7" isindependent of F'. Itsdistribution istabulated in statistical
software packages. For alarge n, itstail can be approximated by 7 ~ /—(In«) /2 where P(T" >
T)= .

Anderson-Darling Herethe pivot is

Thetest is similar to K-S but is less sensitive to outliers.

QUESTION 7.6.1. Show that A isindeed a pivot. °

EXAMPLE 7.8: FILE TRANSFER DATA. We would like to test whether the data in
Figure 7.3 and its log are normal. We cannot directly apply Kolmogorov Smirnov
since we do not know exactly in advance the parameters of the normal distribution to
be tested against. An approximate method is to estimate the slope and intercept of
the straight line in the ggplot. We obtain

Original Data
slope
intercept

0.8155
1.0421

Transformed Data
slope = 0.8709
intercept = -0.2652

SUsethe fact that £'(z:) = G(F(z)) and do the change of variable u = F(z) intheintegral.
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Figure 7.3: Normal ggplots of file transfer data and its logarithm.

For example, this means that for the original data we take for Hy: “the distribution is
N(p = 1.0421,02 = 0.8155%)”. We can now use the Kolmogorov-Smirnov test and
obtain

Original Data

h = 1 p = 0.0000
Transformed Data
h = 0 p = 0.2964

Thus the test rejects the normality assumption for the original data and accepts it for
the transformed data.

This way of doing is approximate in that we used estimated parameters for Hy. This
introduces some bias, similar to using the normal statistic instead of student when we
have a normal sample. The bias should be small when the data sample is large, which
is the case here.

A fix to this problem is to use a variant of KS, for example the Lilliefors, or to use differ-
ent normality tests such as Jarque Bera (see Example 8.1 on page 185) or Shapiro-
Wilk. The Lilliefors test is a heuristic that corrects the p-value of the KS to account for
the uncertainty due to estimation. In this specific example, with the Lilliefors test we
obtain the same results as previously.

7.6.2 ROBUST TESTS

We give two examples of test that make no assumption on the distribution of the sample (but
assume it isiid). They are non parametric in the sense that they do not assume a parameterized
family of densities.

MEDIAN TEST The model is X; ~ iid with some distribution F'() with a density. We want to
test

Hy: “themedian of F'is(0” against H;: “unspecified”
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A simple test is based on confidence interval, as mentioned in Section 7.3.2. Let I(x) be a confi-
denceinterval for the median (Theorem 2.2.1). Wereject H, if

0 ¢I(x) (7.53)

Thistest isrobust in the sense that it makes no assumption other than independence.

WILCOXON SIGNED RANK TEST. Itisused to test a0 median, for example when comparing
paired experiments. Assume the data comes from an iid model X1, ... X,,, with some unspecified,
but symmetric, distribution. The null hypothesis is that the median is 0. The Wilcoxon Signed
Rank Statistic is .
W= rank(|X;[)sign(X;)

j=1
where rank(|.X;|) is the rank in increasing order (the smallest value has rank 1) and sign(.X;) is
—1 for negative data, +1 for positive, and 0 for null data. If the median is positive, then many
values with high rank will be positive and 17 will tend to be positive and large. We reject the null
hypothesis when || islarge.

It can be shown that the distribution of 1/ under H, is always the same. It is tabulated and con-
tained in software packages. For non small datasamples, it can easily be approximated by anormal
distribution. We now compute its mean and variance.

Under Hy is
Ep,(W) = By, (rank(|X;])En, (Sgn(X;))
j=1
since under H, rank(|.X;|) isindependent of sign(X;). Thus Ey, (W) = 0. The varianceis

Ep,(W?) = En,(rank(1X;))*sign(X;)%) = D B, (rank(|X;])%)
j=1 j=1
sincesign(X;)? = 1. Now >~ rank(|X;[)* = >, j* isnon random thus

n

vary, (W) = ZEHO(rank(]Xj\)2) = EHO(Z rank(’XjD2) _ ij _ nn+1)(2n+1)

6

J=1 J=1

ExAamMPLE: PAIRED DATA.This is a variant of Example 7.2 on page 152. Consider
again the reduction in run time due to a new compiler option, as given in Figure 2.3 on
Page 17. We want to test whether the reduction is significant. We assume the data is
iid, but not necessarily normal. The median test gives a confidence interval

I(z) = [2.9127; 33.7597]

which does not contain 0 so we reject Hy.
Alternatively, let us use the Wilcoxon Signed Rank test. We obtain the p-value

p = 2.3103¢ — 005

and thus this test also rejects Hy.
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WILCOXON RANK SUM TEST AND KRUSKAL-WALLIS. Itisusedin unpaired experiments
to test (Hy): the two samples come from the same distribution against () the distributions of the
two samples differ by alocation shift. It is assumed that the distributions have a density.

Let X}, i = 1..n; and X?, i = 1...n, be the two iid sequences that the data is assumed to be a
sample of. The Wilcoxon Rank Sum Statistic R isthe sum of the ranks of the first samplein the
concatenated sample.

As for the Wilcoxon rank sum test, its distribution under the null hypothesis depends only on the
sample sizes and can be tabulated or, for alarge sample size, approximated by a normal distribu-

tion. ltsmeanis
nl(nl =+ N9 =+ 1)

EHO(Rl) = 9

(7.54)

and itsvarianceis
nmz(nl + no + 1)

2
We reject Hy when the rank sum statistic deviates largely from its expectation under H,.

(7.55)

VarHO (R1) ==

EXAMPLE 7.9: NON PAIRED DATA.  The Wilcoxon rank sum test applied to Exam-
ple 7.1 on page 151 gives the following p-values:

Parameter Set 1 p = 0.0002854
Parameter Set 2 p 0.02731
Parameter Set 3 p 0.6669

The results are the same as with ANOVA. H, (same distribution) is accepted for the
3rd data set only, at size= 0.05.

The Kruskal-Wallis test is ageneralization of Wilcoxon Rank Sum to more than 2 non paired data
series. It tests (Hy): the samples come from the same distribution against (H;): the distributions
may differ by alocation shift.

7.7 REVIEW

7.7.1 SUMMARY

TBD

7.7.2 TESTSARE JUST TESTS

1. Thefirst test to do on any datais avisual exploration. In most cases, thisis sufficient.

2. Testing for a0 mean or 0 median isthe same as computing a confidence interval for the mean
or the median.

3. Testswork only if the underlying assumptions are verified (for example, iid normal samples).
Eventhen, atestisjust atest. Therefore, there are many different tests. Tests can be produced
from any pivot: see for example the K-S test for goodness of fit.
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4. Sometestswork under alarger spectrum of assumptions (for example: evenif the datais not
normal). They are called robust tests. They should be preferred whenever possible.

5. Test whether the same variance assumption holds, otherwise, use robust tests or asymptotic
results.

6. If you perform a large number of different tests on the same data, then the probability of
rejecting H, islarger than for any single test. So, contrary to non-statistical tests, increasing
the number of tests does not always improve the decision.

7.7.3 REVIEW QUESTIONS

QUESTION 7.7.1. What isthe critical region of atest ? 1°
QUESTION 7.7.2. What isatype 1 error ? Atype2 error ? Thesizeof atest ? 1t

QUESTION 7.7.3. If atest says*“ do not accept H," , can we conclude that /, istrue ? 12

7.8 EXERCISES

USEFUL S-PLUSCOMMANDS aov, tables.model, summary, wilcox.test

USEFUL MATLAB COMMANDS anoval, anova2, anovan:. (anaysisof variance, differ
only in the format of the data model); ttest: student test; ranksum, signrank: Wilcoxon
non-parametric tests.

EXERCISE 7.1 (ANOVA). For which values of the ratio of variation explained by the model do we
reject Hy (i.e. accept H) ? Takethe size « = 0.05. What happens for large valuesof N — k ?
Numerical application: Valuesin [Weber-C11] Example 11.3.

EXERCISE 7.2. Consider Example [Weber-C11] Section 11.4 ()3-test). What isthe p-value of the
test ?

EXERCISE 7.3. Wetest H, against H;, using a test of size «, where the rejection region has the
form{T'(X) > k,}. How do the results of the tests compare for « = 0.05 and o = 0.10 ? Seefor
example [Weber-C11] Example 11.3.

10Call 2 the data used for the test. The critical region C isaset C of possible values of the observation, such that
when theevent “z € C” istrue wereject H.

1A type 1 error occurs when the test says “do not accept H,” whereas the truth is H,,. A type 2 error occurs when
the test says “accept H," whereas the truth is H,. The size of atestissupy ., tnat 71, istrue Py(C) ( = the worst
case probability of atype 1 error).

12No, consider Example 7.2 on page 152. Thefirst test says*“do not accept ;. = 0", from which we cannot conclude
that A, = {“p = 407} istrue, since the second test says “do not accept 1 = 40”. A test can only gives an indication
that some hypothesisiswrong.
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EXERCISE 7.4 (Tests). We want to evaluate in detail whether Joe's idea, namely to see whether
installing more base stations did bring some improvements (Questions 1.4.2 and 1.4.3), using
simple tests.

1

Import the values of achieved throughput that were used to build Figure 1.1a, Figure 1.1b
and Figure 1.1c by copying the file indicated in a complementary document. Note that these
are non-paired data.

Using ANOVA, test whether Figure 1.1b is better than Figure 1.1a. Same question when
comparing Figure 1.1a and Figure 1.1c on one hand, Figure 1.1b and Figure 1.1c on the
other hand. What are the assumptions of ANOVA?

Same question using W Icoxon rank-sum tests. What are the assumptions of the Wilcoxon
rank-sum test?

Again using ANOVA, test whether Figure 1.1a, Figure 1.1b and Figure 1.1c have the same
mean.

Same question using Kruskal-Wallis tests. What are the assumptions of the Kruskal-Wallis
test?
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CHAPTER 8

LOAD GENERATION WITH SURGE

From PE4 we saw that a proper definition of load is key. We study here an example where the goal
is to study the performance of a network and a web server. We study the load generator SURGE
developed at Boston University, which, to my knowledge, isthe most sophisticated one at the time

of writing.

The principle of aload generator are:

e characterize important aspects of the load; produce a stochastic model which reproduces

them

e implement an emulator that produces instances of the process, using a random number gen-

erator, like asimulator does. It generates rea traffic, unlike a simulator.

An important aspect is the choice of distributions of single random variables used to model the

load. We also discuss an important feature called Heavy Talil.
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8.1 DISTRIBUTIONS

We review a number of attributes of distributions, which is useful in making the right choice.

[McLaughlin97] gives a compendium of distributions. See also [NIST] Section 1.3.6 for anillus-
tration of distributions.

8.1.1 ScALE, LOCATION AND SHAPE PARAMETERS

A distribution can always be scaled and trandated, by a transformation of the form y = *.
Physically, this corresponds to a change of origin and units. This gives two degrees of freedom
called location and scale. In contrast to scale and location, distributions have a shape, which make
them unique. The modeler’stalent isto pick adistribution that has a shape consistent with the data.

A normal distribution N (u, o%) haslocation= 1, scale= ¢ and always has the same nice, symmet-
ric bell shape. Other distributions such as Gamma, Beta or Weibull have a shape which depends
on the parameter (Figure 8.1). The Weibull distribution has density

clx —a)™! _(eaye
f(gj) = %6 ( b ) 1{:1:>a} (81)
a isalocation, and b a scale, parameter.

Consider as another example the effect of a Box-Cox transformation. Let X be a random vari-
able such that Y := b,(X) ~ N(u,oc?) (the distribution of X is Box-Cox-normal, with shape
parameter s). For s = 0 we have the log-normal distribution, whose density is (Figure 8.2)

flx) = L exp — (logz — ) (8.2

Here 1 and o both influence shape, mean and variance.

C:chl

— exp —(2/b) 120y

QUESTION 8.1.1. If X ~log-normal, say which oneiscorrect: (1) X isthe exponential of a normal
random variable; (2) X isthelogarithm of a normal random variable. *

Y.
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QUESTION 8.1.2. Givethedensity of a scaled and translated |og-normal distribution. If werequire
the random variable to have support in (0, +oco), which scalings and translations are possible ? 2

QUESTION 8.1.3. What isthe density of a box-cox-normal random variable ? 3
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0

Figure 8.1: Shape of the Weibull distribution for = 0, b = 1 and various values of c.

8.1.2 SKEWNESSAND KURTOSIS

Skewness and Kurtosis qualify the shape of a distribution that has finite moments up to order
4. They are based on cumulants, defined as follows. The cumulant generating function of the

2Let Y = sX + m where X islog-normal. The density of Y is

1 oy (ogly —m) — p+logs)”

C€Xp
(y — m)V2ro? 20

thus the scaling by s is equivalent to changing 1 and is not needed. Only location is required. However if we require
that Y takesvaluesin (0, +00), location is excluded; i and o are the only two parameters of alog-normal RV.
3For s = 0, it isthe log-normal density; else
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s=0 Pareto,a= 1 p=0.5,1,2,3

0
0.010 0.100 1.000
L L s

0.001
L

0.0

(a) Log-normal (b) Pareto

Figure 8.2: Shape of the Log-Normal distribution for . = 0, ¢ = 1 and of the Pareto distribution for a = 1
and p = 0.5,1,2 and 3.

distribution of areal random variable X is defined by
cgf(s) :=log f(—s) = logE (e**)
(f isthe Laplace transform). Assume that E(e®Xl) < oo for some s, so that the above is well
defined around s = 0. Thisalso implies that all moments are finite. Then, by a Taylor expansion:
2 53 k

S
Cgf( )—l{18+/€23+l€33‘ + .. +/ikk‘

The coefficient «y, is, by definition, the cumulant of order k. We have x;, = %cgf(()). The first
four cumulants are :

K1 = E(X)
ko = E(X —E(X))* = var(X)
Ky =E(X ~E(X))’ 83
ki =E (X —E(X))" — 3var(X)?
)

SKEWNESS INDEX k3 iscalled skewness. The skewness index is

v o= ﬁg/mg/Q = K3/0®

The skewness index is insensitive to changes in scale (by a positive factor) or location. For a
density whichissymmetric around itsmean, 9,1 = 0; 71 can betaken asameasure of asymmetry
of the distribution. When ;, > 0 the distribution is right-skewed, and vice-versa. If ¢ is convex,
then ¢(X) has greater skewnessindex than X.

KURTOSISINDEX k4 iscalled Kurtosis. The Kurtosis index is
2 4
Vo 1= Ry/R3 = K40

The Kurtosis index is insensitive to changes in scale or location. It is used to measure departure
from the normal distribution. When ~, > 0, the distribution has a sharper peak around the mean
and heavier tail; when v, < 0, it has aflatter top and decays more abruptly.
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E(X-E(X)' _ 34

o4

QUESTION 8.1.4. Show that the Kurtosisindex is also given by ~, =

QUESTION 8.1.5. Guess the index of skewness and the sign of the Kurtosis index for a uniform
distribution. Check in [McLaughlin97] ®

QUESTION 8.1.6. Show that var((X —E(X))?) = k4 + 20* = 04(2 + 7). Showthat v, > —2.°

QUESTION 8.1.7. Show that the £th cumulant of the convolution of two distributions is the sum of
the kth cumulants ’

QUESTION 8.1.8. Let Y = s(X — m). Relatethe cumulantsof X and Y. &

JARQUE-BERA. TheJarque-Bera statistic is used to test whether an iid sample comes from a
normal distribution. It is equal to & (ﬁ + %) the distribution of which is asymptotically x2 for
large sample size n. In the formula, 4; and 4, are the sample indices of skewness and kurtosis,
obtained by replacing expectations by sample averages in Equation (8.3).

EXAMPLE 8.1: APPLICATION TO EXAMPLE 7.8 ON PAGE 175. We would like to test

whether the data in Example 7.8 on page 175 and its transform are normal.

0
0.2964

Original Data h
Transformed Data h

1 b
0 p

The conclusions are the same as in Example 7.8 on page 175, but for the original data
the normality assumption is clearly rejected, whereas it was borderline in Example 7.8
on page 175.

8.1.3 POWER LAWS, ZIPF'SLAW AND PARETO DISTRIBUTIONS
The three terms in the title are often read in Internet related performance studies. They are quite

related, as we see now.

Power Laws. Thisisthe name for relations of the form

y = ax®

i.e., affinerelationsin xy-log scales. logy = blog x + a.

4Simple calculus.

Syi=0and v, = —1.2.

61. Simple calculus. 2.The previous is aways > 0.

"The Laplace transform is the sum of the Laplace transforms.

8k1(Y) = k1(X) +mand for k > 2: k;,(Y) = sk (X). Cumulants other than the mean «, are invariant by
tranglation, so we can study them for centered distributions only.
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PARETO DISTRIBUTION. The Pareto distribution has density (Figure 8.2)
f(ZE) = papx_(p+1)1{x>a} (84)

Its complementary distribution P(X > z) = (g)p is apower law. Its mean is;%p1 forp > 1 and

(L2
% fOI’p > 2.

itsvarianceis
(»—2)

QUESTION 8.1.9. Give a method to generates a random sample of £ values from the Pareto distri-
bution with ¢ = 1 and index p. °

ZIPF'sLAaw. Zipf’'s law, in our context, means that the popularity of an object (for example: a
file requested on a server; a server) is approximately inversely proportional to itsrank. It has been
observed in some cases, and has received much attention.

Formally, call 6; the probability that object ;j is selected, and let ;) > 65 > ... bethe collection
of fsin decreasing order. Zipf’'slaw means

0 ~

SN

where k is some constant.

Now we show therelation to a Pareto distribution. Assume that we draw the fs at random (aswe do
in aload generator) by obtaining some random value X; for object 4, and letting 6, = X; /(D . X;).
Assumethat the number of objectsislarge and X;’smarginal distribution is some fixed distribution
on R*, with complementary distribution function G/(z). Let X,y be the reverse order statistic, i.e.
Xy = Xy > .... Wewould like to follow Zip’'s law, i.e., for some constant c:

Xn) (8.5)

So

Now let uslook at the empirical complementary distribution G; it is obtained by putting a point at
each X;, with probability 1/N, where N isthe number of objects. More precisely, let us define it

by

1 N
Glz) = > lixen
=1

Thus C?(X(n)) = n/N. Combine with Equation (8.5): Zipf's law mandates that, at every point
r = X(,) where we have some data:

with k£ = ¢/N. This means that the empirical distribution of X is Pareto with tail index p = 1.

In other words, Zipf’'s law can be interpreted as follows. The probability of choosing object i is
itself arandom variable, obtained by drawing from a Pareto distribution with tail index b = 1, then
re-scaling to make the probabilities sum to 1.

SLet G be the complementary distribution of Pareto and U uniform on [0, 1]; then G=1(U) ~ Pareto: thus X :=

i Where U is uniform on [0, 1.
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8.1.4 SURVIVAL FUNCTION

A further element to determine which distribution to useisthe survival function h(x) := Pg{g;‘” ,

where § isfixed. Interpret X as the duration of a session; then h(x) isthe conditional probability
that a session, known to have lasted at least =, will live for at least § more time units.

We compute an asymptotic of h(x), for large x, for Pareto and Weibull. We find, for Pareto
S —b
=14 - — 1
h(z) ( + :c)

{ h(z) — 0 forec>1

and for Weibull

h(z) — e~ for c =1

h(z) — 1fore <1
Thus for power laws and sub-exponential decay (¢ < 1) the survival function gets close to 1.
In contrast, for hyper-exponential decay (¢ > 1) the survival function gets close to 0. And for
exponential decay, it converges to a constant < 1 (memoriless property). Think about what it
meansif X isthelevel of aflood...

8.1.5 FINDING A DISTRIBUTION THAT FITSSOME CONSTRAINTS

Maximum entropy.

8.1.6 FITTING A DISTRIBUTION

An empirical tool is the ggplot, discussed in Section 2.4.1. It works under the assumption that
the sample comes from a common distribution, and is large enough for the empirical distribution
to converge to the theoretical one. It does not require the sample to be independent, as long as
convergence to the common distribution does occur.

A qgplot is normally done with respect to a standardized distribution (scale =1 and location =0);
the actual scale and location are read from the slope and intercept of a regression line, assuming
the qg-plot is close to astraight line.

If the sampleisknown to beiid, formal tests asin Section 7.6.1 can be used.

FITTING LARGE DATA SETS. For very large data sets, it is often reported that tests of fit fail,
whereas empirical histograms show a good fit. There are several interpretations to this.

1. areal data set never exactly fits a given, simple distribution. For large data sets, the test
becomes accurate and thus rejects the hypothesis of afit.

2. lack of fit may be related to absence of stationarity: the distribution is no longer the same at
the beginning and the end of the measurement period

3. the data does not come from an independent sample. Thisis amost invariably true in prac-
tice, and is sufficient to explain failures of tests. Jan Beran [Bera94-book] reports that long
lasting correlation in the data set explains that the level of significance of the classical tests
may get closeto 1 (instead of «), which makes the test meaningless. We will see an example
in Chapter 9 of how to handle thisin some cases.
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For very large data sets, the problem can be avoided by sub-sampling the data according to a
Poisson or Bernoulli process. This will remove the problem if it is due to correlations and the
sampling resultsin few, far apart data points.

8.2 HEAvVY TAILS

8.2.1 DEFINITION

Distributions such as N (u, o) have adensity that decays very fast; thus, large values are very rare.
In fact, the normal distribution is often taken to model data with bounded support. In contrast, the
log-normal distribution does not decay as fast. We say that log-normal has a fat tail. The Pareto
distribution is even more pronounced and is said to have Heavy Tail, see Figure 8.2.1.

10"-8 10"-6 104 10n-2 10”0
1 1 1 1 1 1 1 1 1 1

T T T T T T T
1 5 10 50 100 500 1000

1012 10710
1

Figure 8.3: P(x > ) versus x on log-log scales, when X is normal (dots), log-normal (solid) or Pareto
(dashs). The three distributions have same mean and 99%-quantile.

HEAVY TAIL. We use the following definition (there are more general ones). We say that the
distribution F' is heavy tailed with index 0 < p < 2 if there is some constant k& such that, for large
x
1-F b 8.6
- F(x) ~ s (8.6)

Here f(z) ~ g(z) meansthat f(z) = g(x)(1 + €(z)), with lim, . €(z) = 0.
A heavy tailed distribution has an infinite variance, and for p < 1 an infinite mean.

e The Pareto distribution with exponent p is heavy tailed with index p if 0 < p < 2.
e Thelog-normal distribution is not heavy tailed (its variance is always finite).

e The Cauchy distribution (density - a HQ —— ) isheavy tailed with index 1.
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The central limit theorem does not apply to distributions with infinite variance. Instead, if X; are
iid, heavy tailed with index p, then there exist constants ¢,, and d,, such that

L& distrib
C2 Nitdn =5,
=1

n — oo

where S, has a “p-stable” distribution. p-stable distributions, for p < 2, constitute a family of
distributions with the following property: if X; areiid and p-stable then *-(X; + ... + X,,) has

the same distribution as the X;s, shifted by some number d,,. The 2-stak§LIE distributions are the
normal ones. For p < 2, p-stable distributions exist and are defined by 3 parameters (in addition
to p), called location, scale and skewness. For p < 2, stable distributions are either constant or
heavy tailed, and p is precisely the heavy tail index. Stable distributions that are not constant have
a continuous density, which it is not known explicitly, in general. In contrast, their characteris-
tic functions are known explicitly, see [Crovella99-Method] and [ Samorodnistky94-Book]. The
Cauchy distribution is 1-stable; Pareto is not stable. Figure 8.5 illustrates the convergence of asum
of iid Pareto random variables.

More precisely, the p-stable distribution with location=p:, skewness=3 and scale=c is defined by its characteristic
function ¢(w) := E(e*) [Samorodnistky94-Book]. For p # 1:

d(w) = exp [—op|w|p (1 — i0(sgn(w) tan p%r) + zpw}
and forp = 1:

™

¢(w) = exp {—U|w (1 + Qiﬂb‘gn(w)ln |W|> + W”}

wheresgn(w) = 1if w > 0, sgn(0) =0, and sgn(w) = —1ifw <0

EXAMPLE 8.2: PARETO DISTRIBUTION.  We use the Pareto distribution on [1, +00)
defined by its cdf equal to F(c) := P(X > ¢) = L with p = 1.25 (its meanis = 5
and it is heavy tailed). Assume we would not know that it comes from a heavy tailed
distribution and would like to use the asymptotic result in Theorem 2.3.2 to compute
a confidence interval for the mean. We verify convergence to the normal distribution
and find on Figure 8.4 that the asymptotic regime does not hold. In contrast, the
confidence interval for the median is perfectly correct.

QUESTION 8.2.1. For which parametersisWeibull heavy tailed ? 1©

8.2.2 DISCUSSION

THE IMPORTANCE OF THE SECOND MOMENT.  Heavy tail means that very large values are
not too rare. Thisis called by Mandelbrot the Noah effect (where alarge value is a flood). We
further illustrate the concept in our context. Consider a server that receives requests for download-
ing files. Assume the requests arrival times form a Poisson process, and the requested file sizes are
iid ~ F'where F' issome distribution. Thisisasimplified model, but it will make the point.

None
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Figure 8.4: (a) Left: Artificially generated sample of 100 values from the Pareto distribution with exponent
p = 1.25. Center: confidence intervals for the mean computed from Theorem 2.3.2 (left) and the bootstrap
percentile estimate (center), and confidence interval for the median (right). Right: qqgplot of 999 bootstrap
replicates of the mean. The qgplot shows deviation from normality, thus the confidence interval given by
Theorem 2.3.2 is not correct. Note that in this case the bootstrap percentile interval is not very good either,
since it fails to capture the true value of the mean (= 5). In contrast, the confidence interval for the median
does capture the true value (= 1.74). (b) Same with 10000 samples. The true mean is now within the
confidence interval, but there is still no convergence to normality.
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Figure 8.5: Aggregation a sum of iid Pareto random variables (¢ = 1, p € {1,1.5,2,2.5,3}) (simulation
in S). On every row: The first three diagrams show the empirical distribution (normal qqg-plot, histogram,
complementary distribution) of one sample of n; = 10* iid Pareto random variables. The last three show
similar diagrams for a sample (Y;)1<;<, of n = 10% aggregated random variables: Y; = nil >ty X%, where
X;i ~ iid Pareto. The figure illustrates that for p < 2 there is no convergence to a normal distribution, and for
p > 2 there is. It also shows that for p > 2 the power law behaviour disappears by aggregation, unlike for
p < 2. Note that for p = 2 X; is heavy tailed but there is convergence to a normal law.
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We assume that the server has a unit capacity, and that the time to serve arequest is equal to the
requested file size. This again is a simplifying assumption, which is valid if the bottleneck is a
single, FIFO 1/0. From Chapter 6, the mean response time of arequest is given by the Pollaczek-
Khintchine formula ,
PP(1+ %)

2(1—-p)

where: 1 isthe mean and o2 the variance, of £ (assuming both arefinite); p isthe utilization factor
(= request arrival rate x ). Thus the response time depends not only on the utilization and the
mean size of requests, but also on the coefficient of variation C' := o /u. AsC grows, the response
times goes to infinity. Thus it is vital to capture the second moment. If the real data supports
the hypothesis that I is heavy tailed, then the average response time is likely to be high and the
estimators of it are unstable.

R=p+

HEAVY TAIL IN PRACTICE Heavy tall isan asymptotic definition. Since, in practice, all data
sets are finite, it is impossible to have a firm answer from statistical inference. In particular, it is
often difficult to make apractical difference between log-normal and Pareto. Now since heavy tails
introduce much theoretical and practical difficulties, one will often try to avoid heavy tail models.

However, we should be guided by Occam and Dijksta’s principle, aso called principle of Parsi-
mony in this context. If datais explained by one simple heavy tailed model with few parameters,
as well as by a non-heavy tail model with many parameters, then the heavy tail model should be
preferred. Thisis the case of some aspects of SURGE.

To make a simplistic comparison, the use of heavy tall distributionsis similar to saying, in optics,
that the distance to a remote object isinfinite. Thisis obviously wrong, but if it leads to simpler
computations, then it should be used.

QUESTION 8.2.2. If thetail of the distribution of X follows a power law, can you conclude that X
isheavy tailed ? 1

8.2.3 TESTING HEAvVY TAIL

Thereisno simple, rigorous test, but there are the following heuristics.

e Plot the empirical distribution in log-log scale and look for alinear relationship, the slope of
which will give the exponent p in Equation (8.6). See Figure 1 in [Crovella99-Method)].

e TheHill Plot and Hill estimators are based on the hypothesisthat the distribution is Pareto. It
has many difficultiesin practice. See[Cappe02-SPM] for detailsand Figure 13 in [Crovel|a99-
Method].

e A tool by Crovellaand Tagqu (aest) uses the scaling properties and the central limit con-
vergence to stable distributions. Consider X; iid and heavy tailed, with index p. Call X™
the aggregate sequence, where observations are grouped in bulks of m:

m

XM= 3 X

“No, only if the exponent of thetail is < 2.
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For large mq, mo, by the weak limit mentioned earlier, we should have approximately the
distribution equalities

1 m 1 m
XM~ S x ) (8.7)
my my
Theideaisnow to plot the empirical complementary distributions of Xi(m) for various values
of m (Figure 2 in [Crovella99-Method)]). Further, the deviation between two curves of the
plot is analyzed by means of horizontal and vertical deviations § and 7 as explained in
Figure 8.6. We have § = log x5 — log z;. By Equation (8.7), we have 2, = (my/m1)"/Px,
thus
0= 1lo m2
p ma
Also, if X; is heavy tailed, and m is large, then Xi(m) is approximately stable. Thus, if
mso/m; isan integer, the distribution of Xj(””) (which isasum of XZ.("“)) is the same as that

of (ma/m1)V/PX ™). We should thus have
7 =logP(X[™ > z1) —log P(X™) > z,) ~ log —

The method in aest consistsin use only the points z; where the above holds, then, at such
points, estimate p by

5= Llog T2

p= 5 og my
Then the average of these estimates is used. See Figures 5, 7, 8 and 13 in [Crovella99-
Method] for an illustration to some data set.

e Downey proposed in [Downey01-IMW] a test for distinguishing between Pareto tails (hy-
pothesis H,) and non Pareto tails. It is based on an estimation of the curvature of the com-
plementary distribution (an estimate of the second derivative). If the curvature is large, the
Pareto assumption isrejected. See also Exercise 8.5.

A

—~ ™~

X

A T

¢ 5

a

(@)

o

X (m1)
X (m2)
log x, logx, 109X

Figure 8.6: Deviations used in the aest tool.
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8.3 THE WORKLOAD GENERATOR SURGE

This section explains the paper [Barford98-Sigmetrics)].

8.3.1 IMPORTANT ASPECTSOF THE LOAD

The following aspects are believed to capture the important characteristics of web traffic.

e Thevolume on the number of users. In SURGE, this correspondsto the load being generated
by atomic entities called User Equivalents (UEs). The generated |oad is an integer number
of UEs, each implemented as an independent thread of execution, on one or several machines

o Traffic generated by one UE satisfies a set of constraints on the arrival process, the dis-
tribution of request sizes and the correlation of successive requests to the same object, as
described below.

The values of the distributions were found by Barford and Crovella [Barford98-Sigmetrics] by
fitting measured values.

1. One UE alternates between ON-object periods and “Inactive OFF periods’. Inactive OFF
periods are iid with a Pareto distribution (Table 8.1).

2. During an ON-object period, a UE sends a request with embedded references. Once the

first reference (URL1) isreceived, thereis an “Active OFF period”, then the request for the

second reference is sent, and so on, until all embedded references are received. There is

only one TCP connection at atime per UE, and one TCP connection for each reference (an

assumption that made sense with early versions of HTTP).

The active OFF times are modelled as iid random variables with Weibull distributions.

The number of embedded references is modelled as a set of iid random variables, with a

Pareto distribution.

> w

Thereferences are viewed as requests for downloading files. The model isthat thereisaset of files
labeled i = 1, ..., I, stored on the server. File i has two attributes: size x; and request probability
0;. Thedistribution of attributes has to satisfy the following conditions.

5. Thedistribution H(x) of file sizesis acombination of Lognormal and Pareto (Table 8.1).
6. 0; satisfy Zipf'slaw
7. Thedistribution F'(x) of requested file sizes satisfy a Pareto distribution (Table 8.1).

There is arelation between those three constraints, which we derive now. Let 7(¢) be the random
variable that gives the index i of the tth file requested. Thus F'(z) = P(z;() = x). We can assume
that the allocation of file sizes and popularitiesis done in a preliminary phase, and is independent
of I(t). Thus

)= 3 PO = )l < = D 01,0 (88)

J
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Letz() = (o) = ... bethefile sizes sorted in increasing order, and let z(n) be theindex of the nth
filein that order. = is a permutation of the set of indices, such that x(,,) = z.(,). By specializing
Equation (8.8) to the actual values z(,,,) we find, after a change of variable j = z(n)

F(zm) = Y 0ila <oy = D Oxtn Lo <o)
i n

thus

n=1

which gives a constraint between the ;s and z;s.

The file request referencesr(t), t = 1,2, ... are constrained by their marginal distribution (defined
by 6;). Here, we cannot assumethat r(¢) isan iid sequence, asthere is some evidence of correlation
in the series (see Chapter 9). The condition taken hereisis:

8. For any file index 4, define T (i) < T»(i) < ... the successive values of ¢ € {1,2,...}
such that i = r(t). Assume that T}, (:z) — T} (i) come from a common distribution, called
“temporal locality”. Theauthorsfind it lognormal, with parametersasindicated in Table 8.1.

QUESTION 8.3.1. Which of the distributions used in Surge are heavy tailed ? 2

8.3.2 BUILDING A PROCESS THAT SATISFIESALL CONSTRAINTS

It remains to build a generator that produces a random output conformant to all constraints. Con-
straints 1 to 4 are straightforward to implement, with a proper random number generator. The
inactive OFF periods, active OFF periods and number of embedded references are implemented as
mutually independent iid sequences.

Constraints 5 to 7 require more care. First, the z; are drawn from H. Second, the #;s are drawn (as
explained in Section 8.1.3) but not yet bound to the file indexes. Instead, the values are put in a set
©. Inview of Equation (8.9), define

~

m—1
n=1

so that we should have éz(m) = 0.y for dl m. If this would be true, it is easy to see that all
constraints are satisfied. However, this can be done in [Barford98-Sigmetrics| only approximately.
Hereisoneway todoit. Assumethat z(m) =, namely, we have sorted thefileindices by increasing
file size. For m = 1 we set §, to the valuein © which is closest to §, = F(z1). Then remove that
value from ©, set 0, to the valuein © closest to 6, = F () — 6;, €tc.

Lastly, it remains to generate a time series of file requests /(¢) such that the marginal distribution
is given by the 6;s and the temporal locality in condition 8 is satisfied. The method in SURGE
can be sketched as follows. First, for a given trace size, the number of occurences of file i is
drawn at random. This produces a sequence of values NN; (with E(N;) = 6;). A sequence T of
values of temporal localitiesisdrawn, using an iid sequence of integers with lognormal distribution

121 nactive OFF time, File size, File request size. The number of embedded references is Pareto but not heavy tailed.
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model density f(x) value of parameters
Inactive OFF time Pareto Equation (8.4) k=1,p=1.5
No of embedded references Pareto Equation (8.4) a=1,p=243
Active OFF time Weibull Equation (8.1) b=1.46,c = 0.382
File Size Lognorma  Equation (8.2) x1(,<, = 9.357,0 = 1.318
comb. Pareto Equation (8.4) a=133K,p=1.1
File Request Size Pareto Equation (8.4) a = 1000, p=1.0
Temporal Locality Lognormal Equation (8.2) pw=1.5,0=0.80

Table 8.1: Distributions and parameters used in SURGE.

(approximately). Then astack .S is created, whichinitially containstheset {1,2,...,4,..., I} (every
file name appears exactly once). Let: = S[T'[1]]. If N; > 0, N; is decremented, the value of r(1)
ismoved from its position to the top of S. Else, ¢ is deleted from the stack. Then the operation is
repeated (asecond value i = S[T'[2]] is selected and so on) until the stack is empty. This emulates
the behaviour of a stack of least recently used references and provides a process with the required
distribution. [Barford98-Sigmetrics] describes arefinement of the method, which produces amore
uniform appearance of file request names throughout the sequence.

8.4 FURTHER READING

8.4.1 OTHER SOURCE MODELLING ASPECTS

We have focused in this chapter on distribution of single random variable. Inthefollowing chapters
we will consider time correlation aspects in more detail. In particular, we will see that thereisa
relation between heavy tail (a property of a marginal distribution) and long range dependence (a
property of the time correlation of a process).

A difficult issue is stationarity. The analyses shown in this chapter assume that the data comes
from a stationary random process. If thisis not true, then statistical tests are not valid. There are
indications that the stationary models as seen in this chapter are valid for relatively short periods of
time [Zhang02]. Over longer periods, other models that account for time dependence are needed
(see Chapter 9).

A simple, traditional model of request arrivalsis the Poisson process. However, for HTTP requests
or TCP connection openings (SYN packets), this is not a valid model in genera, but it is so for
user level session generation [Paxson95-ToN], or also for traffic flowsinside an operator backbone
(where avery large number of sources is aggregated).

Power laws is a very popular topic in research literature. They were found to hold for topology
aspects of the internet [Faloutsos02-].

8.4.2 OTHER LOAD GENERATION TOOLS
There are many other load generation tools. A load generation tool is called a benchmarking

tool when it comes with an exact specification of the load to be generated and the experimental
procedure. It is used to compare new products such as web server or back-end software. See the
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document resource page for more information.

Packet generators are low level load generators that create data packets suitable for testing net-
works. Primitives include a choice of distribution of inter-packet generation times.

See also [NahumO2-ToN] for a description of performance aspects of web servers.

8.5 EXERCISES

EXERCISE 8.1. Write an S-programthat displays the aggregation of stable randomvariables, sim-
ilar to Figure 8.5, for p = 0.5, 1.0, 1.5, 2, for skewness = 1.0 (totally skewed stable distribution).
For p < 2, thisdistribution is on the set of positive numbers.

EXERCISE 8.2. Read [Braford98-Sgmetrics] and answer the following questions.

AN

o

No

What isthe difference between request size and file size ? Why isit important to model both ?
Why istemporal locality important to model ?

What are the drawbacks of a trace based approach ?

How is the load generator validated ? The generator is validated against its specification
by measuring the empirical distributions. Thereis no verification against real data.

Why does the Anderson-Darling test reject the proposed distribution whereas the empirical
plot seemsto coincide ?

What are the differences between Surge and Spec\WWeb96 ?

Why is there a problem with temporal locality when several Surge clientsrun in parallel ?

EXERCISE 8.3. Read [ DowneyO1-IMW)] and answer the following questions.

1

AW

What model does Downey propose for HTTP transfer time ? What did Barford and Crovella
propose ? How is the difference in conclusions explained ?

What isthe goal of the curvaturetest ? How does it work ? How is the p-value computed ?
Which model do you prefer for HTTP transfer times ?

What is the experimental setup to run Surge ?One server machine (UNIX, C code) and a
number of client machines (any OS, Java code). Clients send file requests to the server over
a network.

Can Surge be used to test a server or a network ?

EXERCISE 8.4. Homework to be designed in detail

1
2.
3.

run surge clients
verify distribution aspects - use aest to compute heavy tail index of inactive OFF times
solve a PE question on the performance of wireless LAN
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CHAPTER 9

FORECASTING

In this provisional version, this chapter uses the reference [Weber-TS], an introductory
text on time series by Prof. Weber, Cambridge University, that is publicly available (see
web site for more information).

Fromhttp://www.perfdynamics.com:

Traffic planning is an absolute must, and it’s hard to do when you start, because
you don’'t have enough data to predict off of. After building some data, you can use
a spreadsheet to create a simple traffic prediction model based on the historical data.
Get more sophisticated later as the need demands and time permits. Also, itisgood to
choose some performance metrics that you will measure over time. One useful metric
isthe number of Web pages [served] per minute, per CPU. This can be used to predict
hardware requirements against the traffic model or to monitor system performance
changes over time.

We consider performance evaluation activities which involve forecasting.

e Web site Capacity Planning: define how many hosts are needed next quarter to run aweb
site

e Software Rejuvenation: decide when to restart a server program, in order to avoid draw-
backs of software aging.

e Dynamic Host Load Management: allocate jobs to hosts, in alarge scale distributed sys-
tem, by predicting the available capacity. This exampleis discussed in Section 9.8.3.

In all cases, forecasting follows the pattern:

1. define a performance metric
2. define measurement methods
3. gather atime series of data
4. forecast from the time series.

In alab exercise you will experiment with measurement methods. In this chapter we review meth-
ods for forecasting from atime series.

199
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9.1 FORECASTING FROM A TIME SERIES

9.1.1 PREDICTION MODELS
Assumetime is discrete. Theideaisto explain the data by a Prediction Model of the form
}/;t :f<t7}/17“'7}/t—1)+6t (91)

where f () issome non-random function and ¢, isanoise sequence, such that E(e;|Y1, ..., Y;—1) = 0.
Then, giventhat weobserved Y;, Y;_1, ... theone-step ahead prediction at timet is (Y, 1|Y1,...Y;) =
f(t+1,Y1,....Y;). A frequent case iswhen ¢, isan iid sequence with 0 expectation.

ExXAMPLE 9.1: AvVAILABLE CPU. Figure 9.1 shows the available CPU on a host.
A prediction model is YV; = m(t) + X; with m(t) = .23697742 4 .00045397267t —
.00000090822283¢> and

X(t) =
8226X (t — 1) — .01234X (t — 2) — .002060X (t — 3) — .08239X (¢ — 4) + .6494X (¢ — 5)
—.5738X(t — 6) + ¢

Here we have

f(t7 }/t—la 7Yi) -
m(t) + 8226 X (t — 1) — .01234X (¢ — 2) — .002060X (¢ — 3)
—08239X(t — 4) + .6494X (t — 5) — .5T38X(t — 6)

with X;_; = Y;_; —m(t—j). Thisis an example of autoregressive process model (see
Section 9.7 for more details).

REMARKS.

e For model 1 (regression model), f() is afunction of ¢ only. The h-step ahead prediction
predictionissimply (Y, 4|Y1,...Y;) = f(t + h).

e For model 2, function f does depend on the past observed values. Here h-step ahead pre-
diction is done by applying one-step ahead recursively, replacing the future observed values
Y., Yii1, ..., Yo by their predicted values.

e The more correlation there is in the data, the smaller the variance of ¢, in proportion to the
total variance of Y;. If the dataisiid, the only prediction we can do is to estimate the mean
and give it as predicted value.

o A maor difficulty isto find atractable model for the data. Thetask isfacilitated by a number
of classical transformations, described below.

e We do not predict the noise when it isiid, but we can give a confidence interval.

¢ |f the data can be modeled by a second order stationary process, then the prediction model
is derived from the autocovariance function — see Section 9.7.5.
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S

Figure 9.1: Available CPU on a host (courtesy of Peter Dinda). One point every 10 seconds. First graph:
raw data and smoothed estimate m(t). Following graphs: 10-step ahead predictions at times 175 and 240,

wiith AcAanfidoancoe intarv/al hacad An madal Aoacecrribhoad in toavt
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9.1.2 FORECASTING METHODS

Thereis alarge number of forecasting methods. We consider the following ingredients, which are
often used in combination.

1. Fit aregression model to the data. If the residuals can be assumed to be iid, then thisis
sufficient.

2. Transform the data before applying another method, using reversiblefilters. Thetransformed
data can then be fit to regression model, or to a stationary time series model (see below).
This is useful to remove trend and seasonal components and to separate time scales (using
multiresolution analysis).

3. Elsg, fit a stationary process to the residuals, in order to transform them into iid noise. This
isthe object of Section 9.7.

4. A heuristic, simple method, is the Holt-Winters method. It isin fact a special case of Sec-
tion 9.7, but is much simpler to use than the general method.

In al cases, scale transformations such as Box-Cox (Equation (2.16)) should be used to make the
model look additive.

9.1.3 THE MEANING OF PREDICTION.

Here, prediction is based on amodel, fitted from past observation. We can thus extract quantitative
information about trends and risks, growth and decline, and use it for resource allocation.

However, remember that the goal is limited to forecast what can be forecast. Indeed, forecasting
is much like driving a car by looking into the mirror. No automatic software can forecast the
unexpected.

Here, confidence intervals are valid only as long as the model, fitted from the past, continues to
hold in the future. For example, the confidence intervals on Figure 9.1 may be violated if the
process changes suddenly.

9.2 USE OF LINEAR REGRESSION

9.2.1 LINEAR REGRESSION MODELS
Fit the datato a model of the form

Y, = th(i)ﬁ(i) +e

where ¢, isthe noise. Here 3(:) is the regression parameter, estimated by fitting the data on some
window [t —w + 1,t]. If ¢ isiid, the predictionis

(YenlY1,..Yy) = Z Ten (1) B(7)

and a confidence interval follows from the general theory of Section 9.7.
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If the data shows no periodic behaviour, asimple fit to afunction of ¢ with few parameters can be
used. The model for Swiss population data in Figure 9.11 is obtained with this method, by fitting
apolynomial of degree 2. If we are happy with this forecast, we can use confidence intervals from
Section ?? and the method stops here. See Section 9.8.1 and Section 9.8.2 for some examples.

In contrast, if the noise shows some non iid structure, we use Section 9.7.

9.2.2 APPLICATION TO SEASONAL MODELS

Harmonic + Trend model

h
Y= f(t) +ao+ Z (a; cos(w;t) + bjcos(w;t)) + &

j=1

where f() isafunction (for example: polynomial) with k& parameters; h isthe number of harmonics
used — the higher h is, the more accurate, but the less parsimonious the model is. The model has
k+2h+1 parametersintotal, and can be estimated using the linear regression method in Section ??.

EXAMPLE 9.2: SPRINT TRAFFIC. (Figure 9.2). It has periodicity 16 (= 24 hours). We
fit the harmonic plus trend model, using the method in Chapter ?? and obtain

Y; = .21818262F + 09t° + .37733531E + 06t" — .13294939F + 04¢>
—.87232216F + 08 cos(2 * 7 x t/16) — .38962764F + 07sin(2 * 7 x t/16)
—.21264199F + 08 cos(2 * 7 x t/8) — .22685501F + 08sin(2 * 7 x t/8) + €

Confidence intervals are computed, assuming the normal iid model fits. We derive a
prediction with confidence intervals by letting ¢ be outside the measurement interval

Season + Trend model Thisisan alternative, defined by:
Y;S = Ot mod s T f(t> + €

where f has k parameters (for example a polynomial of degree < k£ — 1). The model has s + k
parameters in total, and can be estimated using linear regression method.

9.3 FINDING PERIODICITIES

A first step isavisual inspection of data, which reveals trends and seasonal components.

A method for mechanically finding a period is the periodogram ([Weber-TS] Chapter 4). The
presence and value of a period can be determined with the periodogram.
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Figure 9.2: (a) traffic volume on an american coast-to coast link (courtesy of Sprintlabs) — one point every
90 mn with fitted harmonic + trend model with 5 parameters; (b) model with confidence interval versus
actual data. From 225 to 250, the actual data (not known when the model was fitted) is shown with circles.
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Figure 9.3: Periodograms for Example 9.2 on page 203 (a) and Example 9.1 on page 200 (b).

APPLICATION TO EXAMPLE 9.2 ON PAGE 203 Figure 9.3 (a) showsaperiodic behaviour with
period s = 16. The periodogram has a high peak at w = 0.40343 (radians), which corresponds to

the period s = ;>n ~ 16, where n = 250 is the sample size. Sometimes the periodogram is not as
clear: see Figure 9.3.

QUESTION 9.3.1. Inwhat sense isthe periodogram a poor estimator ? *

QUESTION 9.3.2. How isthe periodogram computed in practice ? 2

Another method is the autocorrelation, defined in Section 9.7 — see Figure 9.4.

Sample ACF

} { ******** i 4“ ”|||..|||
O = ST LA

Figure 9.4: Auto-correlation function for Example 9.2 on page 203 (a) (period = 16) and Example 9.1 on
page 200 (b).

1As the length of the time series increases, the variance of (w) does not decrease. In practice, the noise is high.
Thisiswhy it is reguired to look at smoothed versions of the periodogram.
2Using a Fast Fourier transform.
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9.4 TRANSFORMING THE DATA

94.1 THE “CLASSICAL METHOD”

Most time series show both trend and seasonal components. In some cases, we are interested in
capturing both. In other cases, we my be interested only in the trend. In this section we review
several methods for isolating trends and seasonal components that use filters. The difference with
regression models is that filters are fixed and do not depend on the data, therefore, they do not
interfere with the computation of confidence intervals. We require that the data tranformation we
apply isreversible.

LINEAR FILTERS

Formally, we view afilter £ as atime invariant linear mapping from the set of deterministic se-
quences (Y1, ..., Yn, -..) Onto itself. Such amapping has the form

o0

(ﬁy)t - Z asYt—s
where by conventionwelet Y; = 0 for ¢t < 0. Intherest of thislecture we assume that the mapping
isregular, i.e. Y270 |as| < +o0o. The mapping is causd if a, = 0 for s < 0.

If you need more background on filters, read [Thiran02-LN] Chapter 4 or [Weber-TS] Chapter 3
and Section 5.1.

MOVING AVERAGES By definition, amoving average filterisonesuchthat )~ a, = 1.

Moving average filters exist in various flavours, depending on how much weight they put on the
past. The window of afilter isthe set of s such that a, # 0. Classical filters are moving averages
(finite windows). Let us mention the deseasonalizing filter; it ams at separating a seasonal
component. For d odd, the simple de-seasonalizing filter is the simple symmetric moving average
seen above with d = 2¢ + 1. For d even, the simple de-seasonalizing filter is given by a, = 0 for
|s| > d/2,a_s = asand agp = 0.5/d, a5 = 1/d, for |s| < d/2. Variants are the centered moving
averages described in [Weber-TS] Section 6.2. £ — Id isaprojector (generaly not orthogonal) onto
the set of periodic sequences.

A moving average filter islow-pass, i.e., its power transfer function is high for small pulsations w.
For other moving average filters see [Weber-TS] Chapter 6.

APPLICATION TO EXAMPLE 9.2 ON PAGE 203 Thedatain Figure 9.5 has period 16; we apply
the moving average filter defined by a, = 0 except for

{aszﬁfors:—T..?

Theresult is an estimate of the deseasonalized data.

QUESTION 9.4.1. How are the parameters of a moving average determined ? 3

3The window size of aMA filter can be estimated by plotting the variance of the differenced time series A,.Y;. The
period of a deseasonalizing filter can be found with the periodogram. See [Weber-TS] Chapter 4.
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Figure 9.5: Symmetric moving average filter (deseasonalizing filter) applied to Example 9.2 on page 203.

QUESTION 9.4.2. What isthe Slutzky-Yule effect ? 4

QUESTION 9.4.3. Give one line of S code for filtering a time series z into y, with the moving
average filter given in [Weber-TS| section 6.1. °

THE “CLASSICAL” FITTING METHOD FOR MODELING BOTH TREND AND SEASONAL

COMPONENTS

Assume the periodic component has period s.

1. Estimate the trend m,; by applying for example a de-seazonalizing filter, or any other filter
deemed appropriate to the problem.

2. Estimate the season component by using some projector of Y; — m, onto the set of periodic
sequences with 0 mean. For example, the orthogonal projector gives 34, ..., u, defined by

uj:wj—w

with w; := >, (Yearj — Mkars) andw = . w;. Thend, isextended to al ¢ by periodicity.
3. Fit alinear regression model with & parametersto Y; — ;.

This gives aregression model with k& parametersinstead of £ + s.
There are other filters that act on the frequency domain.

4With somefilters such as % [—1,2,4,2,—1], arepeated filtering operation makes thefiltered time series periodical.
This does not happen with the simple moving average filters that we used above — repeated operation simply removes
high frequencies.

5 <- filter (x, c(-2,3,6,7,6,3,-2)/21, sides=2)



208 CHAPTER 9. FORECASTING

USE FOR PREDICTION Prediction is performed on the transformed data, using for example a
regression model. The final prediction is obtained by inverting the transformation.

APPLICATION TO EXAMPLE 9.2 ON PAGE 203 Figure 9.6 shows the application to Exam-
ple 9.2 on page 203. The confidence intervals are obtained assuming the iid noise model fits. The
residuals however show that this assumption does not seem to hold. For such cases, we may need
more sophisticated models, asin Section 9.7.

(a) Fitted model (b) Residuals
— /O\
o
© o
| |
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o/ O\ \
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210:224

(c) Fit and Predictions

Figure 9.6: Classical method for trend and season analysis applied to Example 9.2 on page 203. o0 =
actual value of the future (not used for fitting the model) — compare to the forecasts.
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9.4.2 DIFFERENCING
An alternative to regression modelsisto used the differencing filter is defined by
(AY), =Y, - Yy

It is able to remove polynomial trends of any order (by repeated application). For example, if
Y, = Z, 4+ at + b and Z, is stationary, then (AY'), = (AZ); + a does not have atrend anymore. A
isthe discrete time equivalent of a derivative.

A seasonal component with period s can be removed with the lag s differencing filter defined by
(Asy)t - Yt - Yt—s

Differencing filters are high-pass filters and thus give an estimate of the noise ¢;. They can be used
as alternative to moving average filtersfor isolating trend and seasonal components. See Figure 9.8
for an example.

Differencing does not have the problems of Slutzky-Yule effect mentioned above. Also, it can be
inverted and the combination of several differencing filters does not have coefficients that depend
on the data.

APPLICATION TO PREDICTION With asimple differencing filter, the reversefilter is given by

+oo
Y, =) Ziy
s=0

A one step predictor of Y; isY; 1 + m,, where m, isthe one step predictor of Z,. Thisis applied
on Figure 9.8.

The h-step ahead predictor is

h
YerlV1, oY) = Vet Y Z,
s=t+1
where Z, isapredictor of Z,. If Z, can be assumed iid white noise, then Z,=0.

The confidence interval for (Y;;,|Y3,...Y;) is obtained computing the distribution of the sum of &
variables. Thusit growswith /. Compare to pure regression methods where this does not happen.

APPLICATION TO EXAMPLE 9.2 ON PAGE 203 We difference at lags 1 and 16 to remove
trends and seasonal components, and fit the residuals to iid noise. Note the differences with Fig-
ure 9.2 and Figure 9.6:

¢ the confidence interval increases with the prediction horizon
¢ the prediction is more adaptive in that it starts from the exact value

QUESTION 9.4.4. Doesthe order in which differencing at lags 1 and 16 is performed matter ? ©

5No.
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(c) Differencing at Lags 1 and 16

2*10"8 3*10"8 4*10"8 5*10"8

10”8
1

T T T
200 210 220 230 240 250

(d) Prediction at time 224

Figure 9.7: Differencing filters A; and A, applied to Example 9.2 on page 203. The forecasts are made
assuming the differenced data is iid gaussian. o = actual value of the future (not used for fitting the model).
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QUESTION 9.4.5. Is there a difference between A, the lag s differencing filter and A®, the re-
peated operation of the differencing filter ?

QUESTION 9.4.6. Give one line of Scode for a differencing filter. &

9.4.3 AD-HOC FILTERS

For data traffic, a common way to remove daily variations is to compute the daily peak (largest
value of Y; in a calendar day). One should be careful about aggregation of data; for very small
aggregation intervals and long range dependent data (see Chapter 10) the largest value increases
sharply as the aggregation interval decreases. The aggregation interval should be significant to the
performance metric we chose. For example, for Internet network engineering, it is of the order of
10 mn.

9.4.4 MULTI-RESOLUTION ANALYSIS

Very long time series may exhibit a mixture of trends and seasonal components at several time
scales. It then becomes difficult to define good filters, with the methods seen previously.

A tool of choice for such cases is multi-resolution analysis, based on perfect reconstruction filter
banks. First, the data is separated between a smooth part (using alow pass filter such as a moving
window average) and aresidual. Then the sameis applied to the smooth part, but at a double time
scale, and the process is continued for anumber of steps. The original time series can be perfectly
reconstructed from the successive residual s and the last smooth part, using another family of filters.
Perfect reconstruction filter banks are built using the theory of wavelets. In many cases, and with
properly chosen wavelets, the method identifies the time scales at which a detailed modelling is
required, and can be done with independent models. At other time scales, the residuals can be
modelled as iid noise. For an example, see [PappagiannakiO3-Infocom] and Exercise 9.9. For
more details on multi-resolution analysis, see Chapter 13.

9.5 THE HOLT-WINTERSMETHOD

Low pass causal filters can directly be used as heuristic for prediction, without explicit regres-
sion model transformation. We present here the Exponentially weighted moving average
(EWMA)(infinite windows), also called exponential smoothing. It is aso known as the Holt-
Winters method.

9.5.1 SIMPLE EXPONENTIAL SMOOTHING

EWMA is alinear filter with infinite window in the past. It is used for smoothing the data, when
infinite window is adequate, and for simple one-step ahead forecast.

+o0o
my = &Z(l — )%
s=0

"Yes, for examplefor s = 2: AyY;, =Y, — Y,_, whereas A%Y; =Y, — 2Y;_; + Y,_».
8y <- filter (x, c(1,-1), sides=1l) ory <- diff (x, lag=1l, differences =1).
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where by convention welet Y; = Y; for ¢ < 1. Theimplicit prediction model is

Y, =m + ¢ 9.2)
and the one-step ahead predictionis (Y, 1]Y3, ...Y;) = 1.
QUESTION 9.5.1. What isthe h-step ahead predictor ? °

The main feature is the recursive computation of m;:

my = aYy + (1 —a)myy (9.3

with initial condition m; = Y.

EWMA works well when the data has no trend or periodicity, see Figure 9.8.

Simple EWMA has one parameter o € [0, 1]; its value can be determined so as to minimize the
one-step forecasting error on some training data.

QUESTION 9.5.2. WhatisEWMAfora =0?2a =121
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c(tt, seq(tt[1] + n, tf1] +n + k- 1, 1))

Figure 9.8: First graph: simple EWMA applied to swiss population data Y; with o = 0.9. EWMA is
lagging behind the trend. Second graph: simple EWMA applied to the differenced series AY;. Third graph:
prediction reconstructed from the previous graph.

QUESTION 9.5.3. Givethe formula for the prediction illustrated in Figure 9.8, third graph.

9(Yiin|Y1,...Y;) = 1y, by recursive application.

10q = 0: aconstant, equal to the initial value; a = 1: no smoothing, 1 = Y;.

U et Z, = (AY);. The h-step ahead predictor for Z; . ;, is7,, obtained recursively by Equation (9.3). The h-step
ahread predictor for Y;.p, isthusY; + hriy.
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9.5.2 DOUBLE EXPONENTIAL SMOOTHING

It is used when the data has a slow varying trend, and when it is deemed important to keep a mem-
ory of the entire sequence. The ideais to apply EWMA to the trend itself. Double EWMA («, ()
is defined asfollows. The model is

Yi=a;+b +¢
where a, represents the trend level and b, the trend slope. The filter is defined by

{ EALt == 043/15 + (1 - Oé)(CALt,1 + Cztfl)
by = B(ar — ar—1) + (1 — B)by—y

and the h-step predictor is
(}/t-i-hn/h [E3) }/t) - &t + hbt

See Figure 9.9 for an example. Asfor simple EWMA, the parameters arein [0, 1] and need to be
fitted on some training data.

QUESTION 9.5.4. How isdouble exponential smoothing defined ? When isit used ? 12

QUESTION 9.5.5. How are the parameters of an EWMA filter determined ? 3

o(tt, t[1] + seq(n, n + k- 1, 1))

Figure 9.9: Double EWMA with o = 0.8, 3 = 0.8. It gives a good predictor; it underestimates the trend in
convex parts, overestimates it in concave parts.

QUESTION 9.5.6. What would the forecast be if we do double EWMA on the differenced seriesin
Figure9.8 ? 14

QUESTION 9.5.7. Show that simple EWMA(«;) applied to the differenced series is the same as
double EWMA with parameters to be identified. °

2thd. It is used as an alternative to moving averages and is able to model atrend, when it is important to keep a
memory of the entire sequence.

13By minimizing the forecasting error on the past data.

14The trend in the difference would be extrapolated; this is equivalent to assuming that the quadratic growth in the
last years will continue. In contrast, simple EWMA applied to the differences assumes that the over linear growth in
the last yearsis arandom effect and will not be sustained.

15Same as double EWMA with o = 0, 3 = .
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9.5.3 TRIPLE EXPONENTIAL SMOOTHING

is used when there is both trend and seasonal component. Triple EWMA(«, 3, 7) is defined as
follows. The model is

Y;:Clt‘i‘bt‘i‘ct“—ﬁ

where a, isthe level of the trend, b, the slope of the trend, and ¢, the correction term for seasonal
variation, assumed to have aperiod s. Thefilter is

@t:a(Y;ﬁ—ét d)+<1_05)(at 1+bt 1)
by = play — a—1) + (1 ﬁ)bt—l
e = (Ve —ar) + (1 —7)¢-a

The h-step ahead predictionis
(Y,§+h‘yl, 7Yt> = a; + hbt + CtJrhdeV%—l

In the formula, ét+h_dm isthelatest estimate of the seasonal component available at time, taken
d

at atime instant with the same phaseast + h.

Asfor smple EWMA, the parameters are in [0, 1] and need to be fitted on some training data.

APPLICATION TO EXAMPLE 9.2 ON PAGE 203. The application of triple EWMA is shown
on Figure 9.10. The coefficients are obtained by training the estimator over 230 data points. Con-
fidence intervals are obtained based on the fact that EWMA is a specia case of seasona ARMA
model, discussed in detail in Section 9.7.

Figure 9.10: Seasonal Holt-Winters prediction applied to Example 9.2 on page 203.
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954 EWMA AND STATE-SPACE APPROCHES

EWMA isin fact a simple example of Kalman filter. Kalman filters are themselves a special
case of state-space approach, where the idea is that the observable process is a combination of
non-observable ones, with known properties. For triple EWMA, the non-observable processes
are the trend and seasonal components a,, b;, ¢;. The filter equations correspond to maximizing
the likelihood, under the assumption of iid, normal noise. The parameters «, (3, determine the
variance matrix of the noise. For details, see [Harvey90-Book]. For a genera presentation of
Kaman filters, see [Weber-TS] Chapter 8.

9.6 SELECTING A MODEL ORDER

9.6.1 PROBLEMSWITH OVER-FITTING

Common sense tells us that, for equivalent fits, we should pick the simplest model. If the models
are nested and are regular, normal with same variance, then we can used ANOVA (Section 4.5) to
decide which model explains the data best.

EXAMPLE 9.3: Swiss POPULATION. Figure 9.11 shows the Swiss population fitted
to a polynomial of degree 2. The model is Y; = f(t) + €, with f(¢) = 6240.8552 +
48.130583t — .033109825¢2. The prediction at time ¢ is f(t + 1).

- 1979, M)

sapply(xx
6400 6600 6800 7000 7200 7400 7600
L L L L L ) |

T T T T T T
1980 1985 1990 1995 2000 2005

Figure 9.11: Swiss Population forecast for 2005.

We now go one step further: goodness of fit is not an absolute measure of goodness of model. To
see why, consider the model in Figure 9.12. A regression model with degree 8 gives a perfect fit.
However, its prediction power is ridiculous. At the extreme, a model with absolute best fit has 0
residual error — but it is no longer an explanatory model.
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5000
L

sapply(xx - 1979, M)

5000
L

T T T T T T T T T T T
1980 1985 1990 1995 2000 1980 1985 1990 1995 2000 2005

Figure 9.12: Problems with overfitting. First graph: Swiss Population (dots), fitted to a polynom of degree
8 (line). Second graph: prediction based on the polynomial.

Therefore afitting procedure should use some information criterion, which quantifies how much
information the model carries. In aparametric family of models, the model with smallest informa-
tion criterion is chosen.

Another family of methods for picking the right model is given by machine |earning methods such
as artificial neural networks.

9.6.2 AKAIKE'SINFORMATION CRITERION

Akaike’s Information Criterion (AIC, ) isdefined by ATC = —2i(6) + 2k where k is the dimen-
sion of the parameter ¢ and /() is the log-likelihood.

[Weber-TS] section 7.3 gives an interpretation in terms of entropy, which can be summarized as
follows. Consider an independent replication X = (X;); of Z = (Z;),. It can be shown that AIC
is an approximately unbiased estimator of Ey(—2log(f(X|0(Z))). Call H(0) theentropy of Z (or
X) and d(6||) the Kullback-Leibler distance from the distribution of Z when the true parameter
is 4 to the distribution with the estimated parameter 6. It isknown that A := H (6) + d(6)]|0) isthe
number of bits needed by an optimal code to describe X, when the optimal code thinks that the
distribution of X isthe one estimated from the sample Z (instead of the true one). A measuresthe
efficiency of our model to describe the data. We have

{ d(6]|6) == [(log f(x|0) — log f(x(0)) f (x(6)dx
H(8) = — [ log f(x|6)(x]0)dz
thus
Eo(A) = Ey(—log(f(X|0(2)))
and

Thus AIC is a (biased) estimator of the expected value of 2A.

This analysis is approximate and the AIC is known to be dlightly biased in favour of large model
sizes ks. Many variants of AIC exist, with bias corrections that depend on the parametric model.
See [Brockwel | DavisD2-book] or [ Shumway Stoffer99-book].
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9.6.3 MALLOW’'SC,

This criterion is more specific than AIC. It is used in the context of normal regression models
with same variance, as defined in Section 4.3, when the models are not nested. Assume we have
a number of models that all are subsets of one same large model 1/,. Mallow’s C,, criterion is
defined for every model M by

_ SSR(M)

Cp 2 (N - 2p>

S

where SSR(M) istheresidual sum of squares for model M, s* isthe estimator of variance for the
full model M,, N isthe total number of samples, p [resp. po] isthe dimension of model M [resp.
Mo].

QUESTION 9.6.1. Relate SSR(M,) to s? 1

We can relate C), to the F-statistic introduced in Theorem ??, and used to test whether A/ alone
explains the data. We have

F = (SSR(M) — SSR(M,))/(po — p) _ SSR(M) N —po
SSM(My)/(N — po) s2(po—p)  Po—D

thus
Cp=(Po—p)(F—=1)+p

If model M isthetrue model, then F* hasalFisher distribution with denominator degrees of freedom
n = N — po. The expectation of Fisher (m, n) is 5. Thus

2(po — p)

E(Cy|M) = m—i—p%p

where the approximation isfor alarge samplesize N.

If model M isapoor fit, F' is probably large and so is C,,. If M isagood fit, C,, is likely to be
closeto p. Mallow’s method is to choose the model with the smallest C,,. Thus, if several models
fit well, we will pick the one with the smallest dimension.

9.7 THE LINEAR TIME SERIESMETHOD

9.7.1 TESTSFOR STATIONARITY AND WHITE NOISE

Given some time series Y;, we apply the transformations mentioned earlier; the goal isto obtain a
new times series X; which is stationary. We describe tests and tools that are commonly used for
assessing whether a sequence is stationary, or isiid.

16By Theorem ??: SSR(Mpy) = (N — pp)s>
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STATIONARITY

A sequence of random variables X isstrictly stationary isthejoint distribution of any finite subse-
quence (Xi¢,, Xttty ---, Xiat,, ) ISindependent of the time shift ¢. It is second-order stationary
or weakly stationary if the first and second moments of any finite subsequence are independent
of the time shift; thisis equivalent to E(.X;) and cov (X, X,;) areindependent of ¢. For gaussion
processes, both forms of stationarity the two are equivalent, but otherwise not.

ACF AND PACF

For a stationary process, the auto-covariance function is v, = cov(Xs, Xs1¢). The auto-
correlation function (ACF) is p; = v:/7-

We call White Noise a zero-mean, uncorrelated sequence, i.e., with p, = 0 for¢ > 1.
QUESTION 9.7.1. Compare v, and v_;, 1’
QUESTION 9.7.2. What is~y, ? 1

QUESTION 9.7.3. Isthere a difference between this definition of auto-correlation and the one you
may have seen in other courses, for example in [ Thiran02-LN] ? 1°
The sample auto-covariance, for asample X1, ..., X, isdefined, for ¢ > 0 by

n—t

s=1

where X isthe sample mean. The sample ACF is p, = 4;/%.

PARTIAL ACF The Partial Auto-Correlation Function (PACF) is defined in Chapter ?? asthe
residual correlation of X, , and X;, when X, 1, ..., X; 1,1 iISknown.

ACF OF AN IID SEQUENCE If X4, ..., X, isiid with finite variance, then the sample ACF and
PACF are asymptotically centered normal with variance 1/n. ACF and PACF plots usually display
the bounds +1.96/+/n. If the sequence isiid with finite variance, then roughly 95% of the points
should fall within the bounds.

TESTSFOR STATIONARITY

e (Visual Test): Plot the sequence and look for trend or seasonal components

e If the sequence is stationary and is not long range dependent (Chapter 10), then ACF and
PACF decay fast within the +1.96/+/n bounds. If the sequence has a trend, then the sample
ACF and PACF may show avery slow decay.

" They are equal.

18y = varX, for al ¢.

19There may be. In [Thiran02-LN], autocorrelation is defined as E(X, X, . It is a different thing. We use the
terminology of stetisticians.
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e The difference sign test can be used to detect the presence of an increasing or decreasing
test inthedata. Let S, = >°"" , 1(x,>x, .- If X; isiid, then S, is approximately normal
with mean y,, = 25+ and variance o2 = L. At confidence level 0.95, the difference sign
test rgjects the hypothesis that the dataisiid if |S,, — p,|/0, > 1.96.

TESTSFOR A NOISE SEQUENCE

If the transformed time series X; can be considered as an iid sequence, then we stop the tranfor-
mations. Otherwise, we will model X; as a more complicated process (see below).

The following tests are usually done [Brockwell-Davis02-book]:

TESTS FOR 11D NOISE SEQUENCE. These tests evaluate the hypothesis H,, that the noise se-
guence iswhite and iid

e (Visual Test): lag plot: scatter plot (X, X;) for various & fixed. If the dataisiid, the plot
should show no structure. If it is slanted like an ellipsoid, this indicates a correlation in the
direction of the principal axis.

e Sample ACF and PACF should fall within the +1.96/+/n for most points (visua test). A
formal test of thisis called Portmanteau. The statistic, due to Ljung and Box, isn(n +
2) 21};1 p?/(n — t), the distribution of which under H, is approximately x7. The lag h
has to be chose appropriately (!). A variant is McLeod and Li's portmanteau, where S’ =
n(n +2) S0, 7#2/(n — t), where r() is the sample ACF of X — 2. For large n, S’ isaso
X3 under H,.

e Turning Point Test: see [Weber-TS] Section 1.7

e Rank Test: S isthe number of couples (s,t) with s < ¢ such that X; < X;. Under H,,
and for large n, S ~ N (i, s2) With i1, = n(n — 1)/4and s? = n(n — 1)(2n + 5)/72. If
|S — | islarge, weregject Hy. Further, if S islarge, thesign of S isanindication of the size
of atrend.

The following tests evaluate Hy: the noise is white and normal.

e Jarque-Bera'stest (Section 8.1.2)

e For small samples (up to 200), the correlation coefficient R? of the QQ-plot can be used.
In alinear regression model X; = aZ; +b, the correlation coefficient is R? = S /Sz2S7x
(see and Chapter ??). For normal data, it is related to a student statistic. If the regression is
valid, R? should be close to 1. Here, we apply R? to the regression of the ordered sample
X(1), ..., X(n) regressed on Z; = N~'(i — 0.5)/n, the quantiles of the normal distribution.
The distribution of R? in this case, and under H,, is tabulated.

e another method isto fit the datato an ARMA model, defined below, and pick the best model,
according to an information criterion. If the best model is the trivial model, then noise is
declared white.

EXAMPLES

EXAMPLE 9.4: Dow JONES. Figure 9.13.
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@

(b)

Figure 9.13: Closing values of the Dow Jones utilities index for 78 days (from [BrockwellDavis02-book]).

(a) One value every day. (b) ACF and PACF.
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A visual inspection shows that the data is not stationary. The ACF has a very slow decay, which
confirms non-stationarity.

We transform the data by the classical method, using a polynomial fit of degree 2 (Figure 9.14).
The transformed time series does not ook stationary or normal, and does not pass the Ljung - Box,

3 (b)

(©) (d)

Figure 9.14: Time series in Figure 9.13 transformed with classical method: (a) polynomial fit; (b) tran-
formed time series; (c) ACF and PACF of transformed time series; (d) QQ-plot of transformed time series.

McLeod - Li and Turning points tests:

Ljung - Box statistic = .31969E+03 Chi-Square ( 20 ), p-value
= .00000

McLeod - Li statistic
= .00000

.10240E+03 Chi-Square ( 20 ), p-value
# Turning points = 20.0007AN(50.667,sd = 3.6803), p-value =
.00000

# Diff sign points = 34.0007AN(38.500,sd = 2.5658), p-value =
.07946

Rank test statistic = .15340E+047AN(.15015E+04,sd =
.11589E+03), p-value = .77914
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Jarque-Bera test statistic (for normality) = 1.3573 Chi-Square
(2), p-value = .50731

Order of Min AICC YW Model for Residuals = 1

Instead of the classical method, we difference at lag 1 (Figure 9.15). The transformed time series
now looks stationary. It passes sometestsfor iid but not al, whichis compatible with the ACF and
PACF showing some correlations at small lags. The normality tests does not pass, but the normal
gg-plot looks OK.

46.428 Chi-Square ( 20 ), p-value

Ljung - Box statistic
.00070

McLeod - Li statistic
.56119

18.398 Chi-Square ( 20 ), p-value

# Turning points = 44.0007AN(50.000,sd = 3.6560), p-value
.10077

# Diff sign points = 37.0007AN(38.000,sd = 2.5495), p-value =
.69489

Rank test statistic = .15130E+047AN(.14630E+04,sd =
.11368E+03), p-value = .66006

Jarque-Bera test statistic (for normality) = 6.3217 Chi-Square
(2), p-value = .04239

Order of Min AICC YW Model for Residuals = 1

9.7.2 AR, MA,ARMA AND ARIMA MODELS

If we are convinced that, after initial transformations, the noise is not iid, then we can apply an
ARMA model, which isageneric family of processes. e assume here that X; isa 0 mean process.
This can be achieved, if necessary, by differencing, or by removing the sample mean from X.

ARMA models are called linear models because the noise X; is obtained by applying a linear
filter to aan iid noise sequence ¢,;, under the generic form

p q
Xy — Z ¢7‘Xt—r = Z eset—s
r=1 s=0

where ¢, is awhite noise sequence with variance o2. We usually impose 6, = 1.
Read [Weber-TS] Sections 1.4, 1.5 and Chapter 2 and answer the following questions.

QUESTION 9.7.4. What isthe variance of an AR(1) process ? %

2 .
Zolfqﬁ for the process X; = ¢1 Xy 1 + €, with ¢, ~ WN (02).
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@ (b)

(©

Figure 9.15: Time series in Figure 9.13 transformed by differencing at lag 1. (a) tranformed time series;
(b) ACF and PACF of transformed time series; (c) QQ-plot of transformed time series.

QUESTION 9.7.5. What is the ACF of an AR(1) process ? %

QUESTION 9.7.6. What is the PACF of an AR(1) process ? %

QUESTION 9.7.7. What isthe ACF of an MA(1) process ? %

QUESTION 9.7.8. What can we say about the ACF if the process is AR or MA ? Same question
with PACF. %

QUESTION 9.7.9. What is Levinson-Durbin’srecursion ?

QUESTION 9.7.10. Isan ARMA process stationary ? An ARIMA process ? %

PARTIAL CORRELATION An AR(p) processisaMarkov chain of order p, which explains that
the PACF is 0 at lags > p. We aso know that the PACF can be computed from the inverse of the
covariance matrix. For a stationary process, the Toeplitz structure of the covariance matrix allows
to do this with the Levinson-Durbin algorithm presented in [Weber-TS] Section 2.6.

2o = ol fork > 1.

2pr = py = ¢y and py = Ofor k > 2.

23p1 = 01/(1 +9%),pk =0,k>1.

%The ACF of an AR(p) process decays to 0 as the lag h goes to infinity. The ACF of an MA(q) process is 0 for
h > q. The PACF of an AR(p) processis0 for h > p.

2An iterative algorithm to compute the PACF. For an AR model, a method to estimate the coefficients based on
moment fitting.

ZBARMA yes, provided that the polynomia ®(¢) hasall roots outside the unit disk; ARIMA no for d # 1.
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(a) AR(Z) Xt = *0.4Xt_1 + O.45Xt_2 + € (b) MA(Z) Xt = €t — 0.4615_1 + 0.956,5_2

(c) ARMA(2,2) X; = —04X; 1 +0.45X; o+
€ — 0.4e;_1 + 0.95¢;_o

Figure 9.16: ACF and PACF of various ARMA processes.

WoLD’'s DECOMPOSITION Wold's lemma can be formalized as follows. Let (X;);cz be a
stationary, second-order time series with 0 mean, such that >, |7x|> < +oco. Define P, as the
orthogonal projector on the set of linear combinations of X, s < ¢ and the constants. In other
words, for any random variableY', P,Y = b+ Y, ¢ X; and E((Y — P,Y')?) isminimum among
all possible values of the coefficients b and ¢,. P,Y is called the best linear estimation of Y. In
signal processing, P; isaWiener-Hopf filter. A processis called deterministicif X; = P,_; X, for
al ¢.
Cal Z, = X; — P,_1 X, (theinnovation). Let §; = E(X,Z,_;)/E(Z}). Then agenera decompo-
gitionis

Xi=> 0;Z;+V;

JjEN

where V; is defined by this equation. Wold’'s decomposition says that the above equation is well
defined, and that V; is a deterministic process, i.e. P,V; =V, for al s and t. Furthermore, Z, isa
white noise sequence with common variance.
Wold's decomposition is invoked as a justification for the use of ARMA processes when the data
comes from a second-order process. V; is obtained by transforming the process into a stationary
one, and an ARMA process is an approximation in the sense that rational fractions such as %

can approximate arbitrary power seriessuchas ) |\ ¢.£°.

MA(Q) PROCESSES are characterized by thefact that v(k) = 0 for k£ > ¢. among all stationary
second-order processes. Thisisareciprocal of [Weber-TS] Section 2.5.
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SIMULATED ARMA PROCESS. Look at Figure 9.19 for a simulated sample of the process

Xt = —O.4Xt_1 + O.45Xt_2 + €t — 0'4€t—1 + 0'95€t—2

9.7.3 BARTLETT'SFORMULA

This formula gives an asymptotic distribution of the sample auto-correlation function r, for large
sample sizes. It isused to test afitted model. The distribution of 7= (r4, ..., r,,) isaymptotically
normal with mean p’'= (p, ..., p,) and covariance matrix W/n with W = (w; ; given by

Wi,j = Z (Prvi + Pr—i — 2Pipr) (pk—i—j + Pr—j — ijpk)
k>1

See Figure 2.15 for an example.

QUESTION 9.7.11. What 95%-confidence interval does Bartlett’'s formula give for p., k& > 2, for
an MA(1) process ? %’

OPERATOR NOTATION

The traditional description of linear processes uses an operator notation. Call B the back-shift
operator, defined as the one that transforms asequence y = (4 )ic(1,....»} iNt0 @anew sequence By
defined by By, = v, fort > 2 and By, = 0. B isalinear mapping, B" = 0. For a polynomial
P(§) = po + pi& + ... + p1&? we define by convention P(B) := Y. p; B".

Polynomialsin afixed operator commute, i.e., for two polynomias P(£) and Q(&), P(B)Q(B) =

Q(B)P(B).

P(B) is invertible iff p, # 0, in which case the inverse P(B)~! = >}, (Ild — P(B))* is
1

also a polynomia in B. This justifies denoting P(B)Q(B)~"' by PB) " This is aso equal to
Q(B)~'P(B).

(B
If we consider infinite sequences (y; )<z the same holds provided that all zeroes of (&) lie outside
the unit disk. Indeed, in such a case, there exists a power series expansion 1/Q(§) = j;g ;"
valid for || < n withn > 1. The set of regular sequences y; is endowed with the [, norm ||y|| =
>, lyi| and it can easily be seen that the corresponding operator norm gives HBH = 1. Thus, under
the condition that all zeroes of P(¢) lie outside the unit disk, the series "% ¢; B! converges and

satisfies Q(B) Y% ¢; B* = Id. Thuswe can also write P(B)Q(B) ™ = P(B)Q(B)*1 = %.

=

QUESTION 9.7.12. Write dth power of the differencing operator as a polynomial in B. %8

QUESTION 9.7.13. Writethe lag-s differencing operator as a polynomial in B. %

2wy, = 1+ 2p? thus a95%-confidence interval for py, is +£1.96 1+2”

28Ad ( B)d
ZQAS —1— BS
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With this notation, an ARIMA(p, d, q) process is defined by
®(B)(1 - B)Y, = O(B)e
where ¢, isiid, normal, with zero mean and finite variance 2, and

{ D) =1— & — ... — &P
O) =00+ &+ ... +0,£P

QUESTION 9.7.14. Can an AR(p) process be represented as infinite MA ? Conversely ? %

If you are comfortable with linear system theory, read Chapter 5 and answer the following ques-
tions.

QUESTION 9.7.15. How can the auto-covariance of an ARMA process be computed ? 3t

CONVENTION ON ® AND ©. We assume that

e &(0) =0O(0) = 1. Thereisno loss of generdlity, as we can modify o

e Thezeroesof ¢(¢) lie outside the unit disk; thisisto guarantee that Y; is stationary when we
extrapolate the model to infinite sequences.

e Thezeroesof O(¢) should also lie outside the unit disk; thisis to guarantee that ¢, is identi-
fiable.

e Both polynomials should have no zero in common; thisis also to guarantee that the model
isidentifiable.

9.7.4 THE BOX-JENKINSMETHOD

It isadirect application of the scientific method ! Read [Weber-TS] Sections 7.1 and 7.2.

FITTING ANARIMA MODEL

Once orders p, d, g are chose, we apply the genera principle of MLE and maximize the log-
likelihood of the sample. Thisisanon-linear optimization problem and only approximate solutions
exist. The log-likelihood of an ARMA model is

Therefore, some heuristics are often used, with the goal of starting the optimization procedure
from an initial value which is not too far from the optimal. For this, we can use an AR model or
MA model to obtain an approximate solution first.

0Any ARMA process with our convention can be represented as an MA (co) or AR(cc) process. For the former,
see [Weber-TS)]. For the latter, write 2() as apower series with a convergence radius larger than 1:

o(¢)
®(¢) S
— =1 + eifl
o () 2
and the ARMA process can be represented as an AR(oo) process:

X = Z e;Xi—; + €

i=1

3 Expand q(:)((fl)) asapower series >t ¢,£”. The auto-covarianceisy; = 3. c,cn 102,
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SPeECIAL CASES.

AR models can be fitted using a Moment Fitting heuristic. The idea is based on the observa-
tion that the autoregressive coefficients 6, for £ = 1, ..., p are uniquely determined by the auto-
covariance function (if the auto-covariance matrix is non-singular) via the Yule-Walker equa-

tions:
{ Ve = Doty GiVe—i for k= 1..p
0% = — Zf:l bii
The moment fitting method consists in replacing the ACF by the sample ACF in the Yule Walker
equations. This gives an estimator which is not the same as the MLE, but is also asymptotically
bias-free and consistent (its variance goesto 0).

The Yule-Walker equations can be solved using the iterative method called Levinson-Durbin
recursion, well known in signal processing, and given in [Weber-TS] Section 2.6. Note that
the moment fitting method is equivalent to finding the AR coefficients ¢, that minimize (X; —
b ¢:Xi—;)?, aproblem known as finding Wiener filtering (see [Thiran02-LN]).

Another method for AR models is Burg's method; for MA models, there also exist some non-
MLE methods that are numerically simple: the innovation and Hannan-Rissanen agorithms
(see [BrockwelIDavisD2-book]). For MA models, these methods give non-consistent estimators.

Read [Weber-TS] Chapter 7 and answer the following questions.

QUESTION 9.7.16. What can we say about the sample ACF and PACF of an ARMA(p, q) process ?
32

QUESTION 9.7.17. What isAIC ? What isit used for ? %3

QUESTION 9.7.18. How can a confidence interval for the estimated model parameters be ob-
tained ? 3

QUESTION 9.7.19. What tests are performed to validate the model ? %

EXAMPLES

APPLICATION TO EXAMPLE 9.4 ON PAGE 219. We applied the Box-Jenkins procedure to
Example 9.4 on page 219 except for the last 10 data points. We looked for the ARMA model
for model lagged-1 differenced data that has the least AIC, among all ARMA(p, g) models with
p,q < 10. Theresultisan AR(1) model, as shown below and in Figure 9.17. Thetestson residuals
all pass except the test for normality.

32They decay exponentidly for lags > max(p, q).

BAICis —2x thelog-likelihood, plus2x the model order. Itisused to select amodel among many; it triesto avoid
overfitting.

34For large samples, confidence Intervals for the maximum likelihood estimators of the model can be found using
the Fisher information matrix, which can be computed but is complex to describe. See [Brockwell Davis02-book]
Section 5.2 for some details.

35The residuals are tested for independence and normality.
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Method: Maximum Likelihood

ARMA Model:

X(t) = .4475 X (t-1)
+ Z(t)
WN Variance = .138317

AR Coefficients
.447470

Standard Error of AR Coefficients
.109032

(Residual SS)/N = .138317

AICC = 62.008739

BIC = 61.422006
FPE = .142508
-2Log (Likelihood) = 57.821239

Ljung - Box statistic = 27.996 Chi-Square

McLeod - Li statistic

# Turning points = 41.0007AN(43.333,sd =

# Diff sign points = 33.0007AN(33.000,sd

18.682 Chi-Square

(

(

3.4042), p-value

CHAPTER 9. FORECASTING

20 ), p-value = .10950

.60551

21 ), p-value

.49308

2.3805), p-value = 1.00000

Rank test statistic = .12360E+047AN(.11055E+04,sd = 92.395), p-value = .15783

Jarque-Bera test statistic (for normality)

Order of Min AICC YW Model for Residuals

Then we looked for the ARMA model for model lagged-2 differenced data that has the least AIC,
among all ARMA(p, ¢) models with p, ¢ < 10. Theresult isan AR(1,1) model, as shown below

11.917 Chi-Square (2), p-value =

and in Figure 9.18. Thetests on residuals all pass. This may be interpreted as a better model.

Method: Maximum Likelihood

ARMA Model:
X(t) = .3772 X(t-1)
+ Z(t) - .9297 Z(t-1)

WN Variance = .140684

.00258
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(a) Residuals.

(b) ACF and PACF of residuals.

Figure 9.17: Residuals of best ARMA model for lagged-1 differenced time series in Example 9.4 on
page 219 (Dow Jones).
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AR Coefficients
.377236

Standard Error of AR Coefficients
.166161

MA Coefficients
-.929743

Standard Error of MA Coefficients
.112450

(Residual SS) /N = .140684

AICC = 65.535640
BIC 64.791045

-2Log (Likelihood) = 59.148544

CHAPTER 9. FORECASTING

Ljung - Box statistic = 27.726 Chi-Square ( 20 ), p-value = .11606

McLeod - Li statistic = 15.466 Chi-Square ( 22 ), p-value = .84148

# Turning points = 41.0007AN(42.667,sd = 3.3780), p-value = .62174

# Diff sign points = 32.0007AN(32.500,sd = 2.3629), p-value = .83242

Rank test statistic = .95200E+037AN(.10725E+04,sd = 90.349), p-value = .18230
Jarque-Bera test statistic (for normality) = 3.3661 Chi-Square (2), p-value =

Order of Min AICC YW Model for Residuals

9.7.5 FORECASTING

=0

FORECASTING WITH A GENERAL SECOND-ORDER STATIONARY PROCESS

Consider a general second order stationary process. Assume that £(X;) = 0 (if thisis not the
case, we assume that the mean y is known and replace X; by X; — p). We want to compute
an h-step ahead forecast X;(h) := (X;.n|X1,..., X;). In general, the best one, in least square

sense, is the conditional expectation of X, given

X1, ..., X;. Inpractice, it is hard to find except

.18581

for normal processes. We take instead the best linear predictor Xt(h) = P, X, defined as
the linear combination of X1, ..., X; and constants that minimize the mean square forecast error

E((Xi(h) = Xi14)?).

THEOREM 9.7.1. Consider a second-order stationary process X; with zero mean. Let v, be the
auto-covariance of X; at lag k. Let Q(t) be the covariance matrix of the vector (X1, ..., X;)7, i.e.
Q(t) isthe t x t symmetric Toeplitz matrix defined by €(t); ; = (|7 — j|). Assume that €2(¢) is

invertible.
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(a) Residuals.

(b) ACF and PACF of residuals.

231

Figure 9.18: Residuals of best ARMA model for lagged-2 differenced time series in Example 9.4 on

page 219 (Dow Jones).
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1. The best linear predictor at timet and horizon A is

t
Xi(h) =) ui(h, )X (94)
=1
with
U(h, t) = (ul(h'> t)a ) ut(ha t)) = (7t+h—1a SE) ,Yh)Q(t)_l
2. The mean square prediction error MSE;(h) := E ((XHh - Xt(h))2> is given by
MSE, (h) = 70(1 = R} (h))
with R?(h) defined by
%Rt2<h) = (Vetn—15 s %)Q(t)_l(%%—h e %)T

3. If the process is gaussian, then (X, — X;(h)) ~ N(0, MSE,(h))

PROOF:  Item 1: from the properties of orthogonal projection (Chapter ??), the coefficients
u;(h) are obtained by expressing that E((X;(h) — X;1,)X;) = 0forall j <t.

Item 2: first note that by Pythagoras

MSE, (h) = E(X#,,) — E((u(h, )(X1, ..., X0)")?)

and by Section 12.5.1:
MSE,(h) = 7o — u(h, t)Q(t)u(h, t)”

thus

MSEt(h) =% — (/yt-l-h—l) ceey ,WL)Q(t>_1(/Yt+h—17 sy ’Vh)T
as required.
Item 3. If the process is gaussian, then by linearity, X, ., — X, (k) is a centered normal random
variable. n
REMARKS.

e Theforecast at time ¢ depends on the complete past sequence X . . . X; and the coefficients
u;(h,t) aso depend ont. However, for large ¢, they can be replaced by their limits (see more
detailsfor ARMA processes below).

e Ash — +oo, X,(h) — 0 (the process mean). Further, R?(h) — 0 and MSE,(h) — , (the
process variance).

o If Q(¢) is not invertible, more complex formulae exist. We will not need them, since for a
stationary ARMA process with 0 mean, 2(t) is always invertible
QUESTION 9.7.20. Provethis statement.

3From Section 12.5.3, the dimension of the space generated by X, ..., X; is the rank of €2,. Now X, isalinear
combination of X1, ..., X; 1 and ¢, (MA representation of the ARMA process). ¢; isorthogonal to X1, ..., X; 1, thus
the dimension of the space generated by X1, ..., X; is 1 plus the dimension of the space generated by X1, ..., X; 1.
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e Weinterpret R?(h) asthe proportion of variance which is predictable. Note that necessarily
0 < R?(h) < 1. For anon-correlated process, we have R?(h) = 0 and no prediction is
possible.

e Instead of the above formula, the coefficients u;(h,t) can be computed more efficiently
using the innovation algorithm. We give the details of this algorithm in the case of ARMA
processes in the following sections.

e There exist similar formulae for a non-stationary process [ Brockwell Davis02-book].

FORECASTING WITH AN AR MODEL

For an AR processthe general method gives simpleformulae. By adirect application of the method
in Section 9.7.5, we find that the one-step ahead forecast is X, (1) := (X41| Xy, ..., X;) IS

p
Xi(1) = Z GiXit1—i
i1

and the 1-step ahead mean sgquare error is

MSE;(1) = ¢*
The variance non explained by the prediction is that of the white noise.
QUESTION 9.7.21. What is R;(1) for an AR(1) process ? '

FORECASTING WITH AN ARMA MODEL

For an ARMA process, the method in Section 9.7.5 can be made recursive by the innovation
algorithm. It is simpler to compute, and is incremental, giving new forecasts as new data be-
comes available. It computes the one step ahead forecast as a function of past forecast errors
[Brockwell DavisO2-book].

ONE-STEP AHEAD PREDICTION.
Xt(l) = Z;:l et,j <Xt+1—j — Xt—](1)> fOI‘ 1 S n < maX(p, Q)
Xo(1) =30 ¢iXopami + 35y O (Xt+1—j - Xt—jﬂ)) else

where 6, ; are computed by solving for 6, , v, in the equations

(9.5)

To = F1,1
Ttk = (Ft+1,k+1 — Z?;& ek,k—jet,t—jrj> for0<k<n (9.6)
Tt = D1 — Z;;%) 0t2,t—jrj
and T" isthe covariance matrix of c—2®(B)X;, given by
(i = j) for 1 <4, 5 < max(p, q)
o7 . — V(i —j) = D P drye—jiy for min(i,:j).g max(p, q) < max(i,7) < 2max(p, q)
bJ >0 0r0r i) for max(p, q) < min(i, j)

0 else

(9.7)
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Aniterative solution of Equation (9.6) isstraightforward, solving inthisorder for 6 1, 71,65 , 7, ....
The 1-step ahead mean square error is

MSEt(l) = 0'27‘75

For predictions based on large sample sizes, the values can be approximated by their limits:

{ limy 4 o0 et,j = 93’

limt*)+oo Tt = 1

This corresponds to backcasting, at the end of [Weber-TS] Section 7.6. Alternatively, we can
derive the forecasting equations from an infinite past from the AR(oco) representation of an ARMA
process. From Question 9.7.14 we can write X, = > ., ¢;X;_; + ¢,. The forecast of X, based on
the infinite past before ¢ isthen > ., ¢, X;_,.

h-STEP AHEAD PREDICTION. The h-step ahead forecast X, (h) := (Xy4n| X1, ..., X;) isgiven
by

At(h) _ { Z;H;L;l Orrn—1(Xeyn—j — Xt+h j-1(1)) for t + h < max(p, q) (9.8)

X
Cbth(t +h—i)+ Zg B Otin—15(Xesn—; Xt+h j—1(1)) else

The h-step ahead mean square error is

h—1 [ j 2
MSE;(h) = * > <Z Xret+h_r,j_r> Toth—j1 (9.9)

j=0 \r=0

where yo = 1 and x; = mm(p] drXj—k. For large sample sizes, we have

>
[asry

lim MSE,(h) =0®) ¢

t——+00

.
Il
o

where X; = zj;g cjei—j isthe MA(+o0) representation of the ARMA process, i.e., the coeffi-
cients of the Taylor series expansion of % around ¢ = 0.

REMARK. The confidenceintervalsobtained with this method do not account for the uncertainty
on the parameters ¢;, 9;, which usually have to be estimated. There does not seem to be asimple
way to account for both in this framework.

NUMERICAL EXAMPLE. Figure 9.19 shows a numerical example. The values of X,(h) and
MSE;(h), with ¢ = 100 and h = 1...25 are given below. We see that the forecast rapidly
converges towards the mean (0) of the process, while the mean square prediction error converges
from the white noise variance towards the variance of the process.

ITSM: : (ARMA Forecast)
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Figure 9.19: Simulated ARMA(2,2) process in Figure 9.16, with white noise variance o2 = 1. Right part:
prediction with confidence interval.
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FORECASTING WITH AN ARIMA MODEL

Consider an ARIMA processY;: ®(B)(1— B)?Y; = O(B)e¢,. Cal X; = (1— B)%Y; theunderlying
ARMA process. The differencing filter can be inverted to

d

=X, - Y ( ! ) (1P,

j=1
from where the predictor equations follow:

Tith) = %) - 3 () (-19%ith -

Jj=1

The predictors can be recursively computed from the above, taking into account that Yt(h —j) =
Yiin—jfor h —j < 0. Itfollowsthat V(1) — Y; = X;(1) — X,. This can be used to get innovation
formulae, similar to the ARMA case:

p+d t+h—1

Yi(h) =Y o3Vilh =)+ D ronr;(Yirny — Yignja (1) (9.10)
j=1 j=h
where 0, ; is defined by Equation (9.6) and ¢} isthe jth coefficient of ®*(¢) := (1 — £)4P(¢).
Confidence intervals are computed with formulae similar to the Equation (9.9), with ¢ replaced by
"
For Seasona ARIMA models, there are analog formulae, see [BrockwellDavisO2-book] Section
6.5.1.

QUESTION 9.7.22. Consider the forecasting equation X,(1) = 1/p(X; + ... + X;_p41). What
process model does this correspond to ? 8

APPLICATION TO EXAMPLE 9.4 ON PAGE 219.

We applied the two ARIMA models (with differencing at lags d = 1 and d = 2) for the Dow
Jones trace identified in Section 9.7.4. The models are identified over the first 68 data values. The
forecasts for times 69 to 78 are plotted on Figure 9.20, together with the actual data. Both models
give similar forecasts, and both have the actual data in the 95% confidence intervals.

3t is the forecasting equation for the AR(p) model with polynomia ®(¢) = 1 —1/p_"_, €. However, ® has
root 1, thus this AR model is not stationary and does not fit our framework. Since 1 is root of &, we can factor by
1 — & and write

(§) = (1 =w(E)

After some algebrait comes
p—1
() =cstx (1-) ug)
=1

1

withu; = (—1)”1W ( p ; . It can be seen that ® does not have any other root in the unit disk than 1, by

convexity arguments, and 1 isaroot with multiplicity 1 (because ®’(1) # 0). Thus ¥ has no root in the unit disk. By
Equation (9.10), we have the forecasting equation of an ARIMA((p — 1, d, 0) model with regression coefficients u;.
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y[1:68]
120 125 130
1 1 1

115
1

110
I

1:68

Figure 9.20: Forecasts obtained by both ARIMA models (d = 1, d = 2) for Example 9.4 on page 219 (Dow
Jones), with confidence intervals. The ARIMA forecasts with d = 1 are slightly less than for d = 2. The
actual data, not used at time of forecasting, is shown with circles
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VALIDATION

Asusual, the model must be validated if confidenceintervals based on the normal noise assumption
are used. Validation usesthe testsin Section 9.7.1. See Section 9.7.4 for some examples

There is a fundamental difference with the principles applied in Chapter 2. There, we want
confidence intervals for the parameters of a model assumed to explain the data. The confidence
intervals, and the resulting diagnostic, are valid only if the model assumption are correct.

In contrast, when we forecast some data, the formulae for prediction are valid as long as the noise
iswhite, even if the noise is not normal. If the noise is not normal, they do not correspond to the
best predictors, but ssimply to the best linear predictors, as explained above. The variance of the
prediction error is still valid, but cannot be used to obtain confidence intervals from the normal
distribution.

The following method can be used to obtain confidence intervals. First, note that prediction based
on large samples, the prediction formulae can be interpreted as follows: the noise ¢, is estimated
by the one-step prediction error r;, = X; — Xt(l), also caled residuas. Second, the distribution
of the noise can be approximated by the empirical, observed distribution of the residuals. See
[Basu96-infocom] for an example with non gaussian noise.

One can even go further by using the bootstrapping methods. This method consists in sampling
random values from the distribution of the residuals, in order to obtain a confidence interval for
the prediction. Consider Equation (9.8), which, for large sample sizes, can be written as

p q p q
Xi(h) =" ¢ Xu(h— i)+ > 0;(Xipnej — Xewney(1) = > 6iXi(h— i) + > 07—
i=1 j=h =1 i=h

Assume the residuals r; are iid. We can easily check this with the standard methods. The distri-
bution of r; is independent of ¢; we obtain its empirical value by keeping a database of all values
r; (there are N such values). Now we do a simulation as follows. We pick N numbers out of the
database, with replacement, and re-construct the time series and the forecast, using the ARMA de-
finition, starting from arbitrary initial values, and the prediction equation. We repeat this M times;
this gives M values of the forecast. We compute the lower and upper percentiles of this set of M
values and use them as confidence interval.

9.7.6 SEASONAL ARIMA MODELS

ARIMA models are able to fit seasonal behaviour, depending on the ACF. See Figure 9.19 for an
example. Thus, we can model time series with seasonal components with ARIMA processes. An
MA(q) process can thus model atime series with period q.

However, if the period is not very small, we may need alarge model order, which is not good. A
Seasonal ARIMA can be used instead. It is a subset of ARIMA, where we impose constraints on
the parameters, in order to reach high model orders, while having few parametersin total. The gen-
eral model, called Seasonal ARIMA or Multiplative ARIMA, with parameters (p, d, q, P, D, Q, s)
is

®(B)W(B*)(1 — B)*(1 — B*)PY, = O(B)A(B*)¢,

where @, ©, ¥ and A are polynomials of degree p, ¢, P and (). Thisallowsto model the process as
a superposition of a seasonal components with period s and a general trend component.
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In order to apply Seasonal ARIMA model, the Box-Jenkins method needs to be complemented
with

e identification of period s
e make the process stationary by differencing at lags 1,2, .. and s, 2s, ...

Seasonal ARIMA models allow for randomness in both the seasonal pattern, unlike the classical
method approach based on linear regression.

APPLICATION TO EXAMPLE 9.2 ON PAGE 203 The ACF and PACF of the Sprint time series
(Figure 9.21) show some correlation at lags up to 5, around 16 and 32. This suggests a SARIMA
model with p,q < 5, P,Q < 2, d = D = 1. We fitted on the first 224 data points, using
the AIC criterion, and obtained that the best model isforp = 4, = 0,P = 2,Q = 2. The
resulting forecasts are shown on Figure 9.22. Compare to the model based on white noise given
in Figure 9.7: the SARIMA mode fits slightly better and gives a smaller confidence interval. The
model diagnostic on the figure shows that the residues do not passthetest for normality (p-valuein
Box-Ljung portmanteau test is small) and there is one large residual correlation at lag ~ 140. Thus
the model cannot be invoked as an explanation for the data, but it may be used for forecasting.

Series . y

Series : y

Figure 9.21: ACF and PACF of Sprint data (Example 9.2 on page 203), differenced at lags 1 and 16.
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Figure 9.22: SARIMA model with best AIC for Example 9.2 on page 203 (Sprint).
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9.8 CASE STUDIES

9.8.1 WEB SITE PLANNING
CAPACITY PLANNING

The problem is to plan for adequate capacity. Here, in addition to a prediction model, as defined
above, we need a capacity model, which links the predicted |oad to some required hardware and
software. A capacity model can be derived from a queuing or bottleneck analysis of the system.

For example, assume you are planning a video on demand center and we look in detail at the
server hardware. A prediction model gives usthe forecast penetration in number of residential and
business users. A capacity model could be as described in Chapter ?7?:

For your video on demand application, the number of required serversis given by

Ny = [ + £ and the number of disk unitsby N, = [ + 27, where R [resp.

B] isthe number of residential [resp. business| customers.

WEB SITE CAPACITY PLANNING

Read [Gunther01-LNCS] and answer the following questions.

QUESTION 9.8.1. What isthe performance metric ? How isit measured ? Were there any difficul -
ties? 3

QUESTION 9.8.2. What data transformations are applied ? %°
QUESTION 9.8.3. What isthe prediction model ? 4

QUESTION 9.8.4. What is the window used to produce a forecast #?
QUESTION 9.8.5. What is the capacity model ? 43

QUESTION 9.8.6. How are both models validated ? 4

QUESTION 9.8.7. What isthe doubling period ? %°

QUESTION 9.8.8. What confidence intervals are given ? 4

39CPU utilization, measured every “few minutes’. It was collected using a data collection tool installed by the
server vendor. Another system was put in place by the site operators, but it aggregated all datainto 8 hour summaries,
which made it impossible to do peak dimensioning.

“OFirst, the effective server demand is derived. It is defined as the hypothetical CPU utilization if there would be
enough capacity. Theideaisto use indicators of non saturated resources, model the CPU utilization as a breakpoint +
linear model (as we did with Example 4.3 on page 94), and keep only the first linear part. It is deduced from a linear
regression model, with 6 unspecified factors. Further research in the references tells us that these factors are related to
gueue lengths. Second, the peak effective server utilization is used, which leaves one data point per day

ogY; = log Yy + b(t — to) + €;. Animplicit assumption isthat ¢, is centered normal iid.

425 weeks.

43The number p of CPUs isrelated to the effective demand C' by

p
C =
() 1+o(p—1)(1+ Ap)
where o and X are parameters, estimated from previous experience, that account for contention and stale cache delays.
%The prediction model is not validated. The capacity model seems to be validated in previous references.
“SThetime it takes to double the load, according to the prediction model. Here: %.
“None.
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9.8.2 SOFTWARE REJUVENATION
SOFTWARE AGING

Due to imperfections, some (if not al) server programs do not always release all resources they
used, such as memory, kernel data objects (“committed bytes’), or processes in zombie state. As
such programs are meant to be running by all times, it is not possible to smply restart when
needed as you do with you PC. Restarting the program (rejuvenation) is the solution, but it has a
cost (service interruption), therefore it should be performed only when necessary. Some software
aging systems predict when arestart is necessary.

The framework is the same as with capacity planning, except that a capacity model is not needed.
Instead, we use exhaustion thresholds.

PROACTIVE MANAGEMENT OF SOFTWARE AGING

Read [Castelli01-IBM] Sections 1, 3 from “Predictions Algorithm” to Appendix A. Then answer
the following questions.

QUESTION 9.8.9. What is the performance metric ? 4/

QUESTION 9.8.10. What transformation is applied to the data ? %8
QUESTION 9.8.11. What isthe prediction model ? 4

QUESTION 9.8.12. How isa model selected ? *°

QUESTION 9.8.13. Why isthe breakpoint model appropriate ? 5
QUESTION 9.8.14. Arethereimplicit assumptionsin the model ? 2
QUESTION 9.8.15. Isthe model validated ? 3

QUESTION 9.8.16. What is the window used for prediction ? >

9.8.3 DYNAMIC LOAD SCHEDULING IN DISTRIBUTED SYSTEMS

Read [Dinda99-HPDC] and answer the following questions.

4"Memory (available bytes), committed bytes, used |-nodes.

“8The datais smoothed by an ad-hoc filter: the medians over non overlapping time windows are taken. Thisremoves
outliers and reduces the size of the time series.

“There are six models: linear regressions with 1, 2 or 3 breakpoints, same with the log of the data. The breakpoint
models are the same as Example 3 in Chapter ??.

*0Two methods are presented: oneis Mallow’s C,,, the other is ad-hoc (based on the prediction capability tested on
recent data).

511t removes transients.

52Yes, regular normal model with same variance.

53Not directly, but the complete system is validated experimentally. In particular, the regular normal model assump-
tion isindirectly checked by comparing the impact of the two model selection methods.

540One third of the time horizon over which a prediction isrequired. It is of the order of one day.
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QUESTION 9.8.17. What isthe goal of host load prediction ? >
QUESTION 9.8.18. What isthe general method ? 6

QUESTION 9.8.19. How is host load measured ? >/

QUESTION 9.8.20. How does this load measure relate to execution time. %
QUESTION 9.8.21. What is the time horizon of the prediction ? *°
QUESTION 9.8.22. What are the prediction models used ? %
QUESTION 9.8.23. Isthe BM model a regular AR(p) model ? ©t
QUESTION 9.8.24. What isthe criterion of fit ? 2

QUESTION 9.8.25. What isthe criterion of evaluation ? 3
QUESTION 9.8.26. What isthefit interval ? The test interval ? %
QUESTION 9.8.27. What does stepping the model mean ? %
QUESTION 9.8.28. How are the various models evaluated ?
QUESTION 9.8.29. What are the best models for prediction ? %7
QUESTION 9.8.30. Why is AR(p) preferred by the authors ? 8
QUESTION 9.8.31. What is a fractional ARIMA model ? ©°

QUESTION 9.8.32. What are the tools used in the factorial analysis ? "

5In a distributed system, schedule atask on a processor that is less loaded, in order to improve response time.

S6Host load is monitored and predicted. For a given task, the host with a predicted load compatible with the delay
requirement is selected.

5The load figure is the number of UNIX processes ready to run. It is smoothed by the UNIX OS. Itis polled by the
prediction application every second.

%BAlImost linearly (from empirical measurements), which is interpreted as an indication that the system behaves
roughly in processor sharing mode.

590ne step is one second. The prediction horizon £ is 1 to 30 seconds.

80Simple models: MEAN is the sample mean, used as predictor. BM is the predictor of an AR(p) model with fixed
coefficients ¢; = 1/p, namely X,(1) = 1/p ZZ:FPH X,. Itisamoving average of the data, causal, with window
size p and equal coefficients. Other models are AR(p) models with p = 1...32, MA(q) with ¢ = 1...8, ARMA(p,q)
withp = 1...4,¢ = 1...4, ARIMA with same p,q and d = 1,2 and fractional ARIMA with same p, g and d in the
interval (0,0.5).

61No, see Question 9.7.22 on page 236.

62Models are fitted using the standard method in this lecture.

83The 1-, 15- and 30-step-ahead prediction errors. They are analyzed visually with box-plots.

%4The fit interval is a subset of the data used for fitting the model. We could call it a training sequence. The test
interval is the subset of data, following the fit interval, that is used for doing predictions and comparing with the real
value.

850nce amodel isfitted, keep the model constant but apply the forecasting formulae such as Equation (9.5) to new
data.

86 randomized set of experiments is done, with the following factors. The fit and test intervals are between 5mn
and 3 hours. The model is as described before.

57All models give equivalent results for one-step ahead prediction. For larger prediction horizon, ARMA, AR,
ARIMA and BM are doing well. MA and MEAN are doing poorly. BM is dlightly less good in some cases.

88Because model identification is simpler, due to the Levinson-Durbin agorithm

59A long range dependent linear model, which is not a second order processin the sense of the Wold decomposition.
See Chapter 10.

"0Box-plots of the results for every model and every time horizon.
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9.9 ANOUTLOOK ON FORECASTING METHODS

In this chapter, we have seen both simple heuristic methods and the classical methods based on
fitting a linear time series model. Again, it isimportant to notice the difference between fitting a
model for explanatory purposes, or for prediction. In the former case, the fit has to be correct for
the interpretation to be valid. In the latter case, the fit has to be best in the sense of prediction —an
impossible challengein all rigor.

Cross-correl ation between time series can often be used for prediction, if we believe that one time
series anticipates the others. Joint, multi-dimensional ARIMA models are used, as an extension of
teh one-dimension ARIMA models seen in this chapter, see [BrockwellDavisO2-book] for some
examples. A simpler alternativeisregressing on a lagged time series. For example, if Y; isthe
mortgage rate of your bank on day ¢, take z; to be the stock market index at times (t — 2,¢ — 1)
and assumethemodel Y7 = x;_1 01 + x4_202 + €.

The GARCH family of models aims at capturing the fact that some time series have a very large
volatility, which is expressed by the fact that the variability ismuch larger than for ARIMA models.
A GARCH(p, ¢) model has the form Z, = \/H,e, where ¢, is iid, white noise with a specified
distribution (normal or other), and H; = a¢ + >0 w27, + 320, B;H} ;. GARCH models
can be fitted numerically using MLE. See [ Davison02-book] for some examples. GARCH models
were applied primarily to financial data; such models are not able to forecast sudden changes, but
they do account for the extreme volatility that follows such events.

An aternative set of methods consists in keeping some of the data as training data, and fit the
model that gives the least prediction error on that data (in contrast to the method seen in this
chapter which uses the complete set of data for fitting the model). This poses many problems on
how to choose the training data, but simplifies the fitting problem, and opens up new heuristic
methods, like artificial neural networks or genetic algorithms.

Last but not least, we considered only “forecasting what can be forecast”. A complete forecasting
method requires the qualitative analysis of external factors.

9.10 EXERCICES

USEFUL MATLAB COMMANDS

e Y = filter(P,Q,X) computesthe output Y = [y; 2 ys...y,] Of the filter, where P =
[Py P P..P,], Q = [1 Q1 Q2...Q,] arethefilter coefficientsand X = [z x5 x3...] iSthe
input. Thefilter is defined by the relation

Y + QYr—1 + ... + QuUi—p = Poxy + Pivg—1 + ... + Pyri_g

whereweset x; = 0andy; = O wheni < 0ori > n.

The polynomial P(§) = Py&? + P71 + ... + P, iscalled the numerator polynomial and
Q&) = &9+ Q1697 + ... + Q, the denominator polynomial.

In our terminology, thisfilter is the mapping

R* — R"

p 2
X — VY = izOPPB

Id+37%_,Q;B
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i.e. thefilter is the mapping % (Where B isthe back shift operator).
e The reverse filter is aways defined (because we have a finite n and we impose the first
coefficient of () to be non zero). The reverse filter is obtained by transposing P and Q):

X = filter (Q,P,X)

Although always defined, the reversefilter might be numerically unstable; this happenswhen

the corresponding infinite discretefilter (i.e. defined for infinite input sequences) is unstable.
o Afilter of thisformisstableif and only if al its poles areinside the unit disk (their modulus
is less than 1). The poles are the (usually complex) roots of the denominator polynomial
Q&) = &1+ Q€71 + ... + Q,. The zeroes of the filter are the roots of the numerator
polynomial P(£) = Py&? + P! + ... + P,. They arethe poles of the reversefilter. Thus,
the reversefilter is stable if the zeroes of the original filter are al inside the unit disk.
zplane (P, Q) plotsthe zeroes and the poles of the filter, together with the unit circle.
Theimpulse response of thefilter ish = [hg hy ... hy| such that

It is obtained by applying the filter to the impulse sequence imp =[1 0 0 ...]:

h=filter(P,Q,imp)

filter: Y = filter(P,Q,eps) Simulates an ARMA process when eps is iid white
noise; ¢ = filter (P, Q, imp) with imp=[1 0 0 0 0 ...] computes the coeffi-
cients ¢;, of the MA(oco) representation of the ARMA process

The convention in Matlab is different from others. Matlab uses: ®(§) = 1+ ¢+ ... + ¢,EP.
predict (System identification toolbox): gives predictors for ARMA models

armax (System identification toolbox): fitsan ARMA model

USErFUL S-PLUS COMMANDS

e X <- arima.mle () MLE fit of a seasona ARIMA model, the resulting object x con-
tainsall information. x$1oglik is —2x thelog-likelihood.

arima.diag () : plotsdiagnostics

arima.sim sSmulate an ARIMA process

acf () computes covariance at all lags

The convention in S-PLUS is different from ours and from Matlab’s. SSPLUS uses: ©(¢) =
1—6:&— ... — 0,8

EXERCISE 9.1. Assume X; = at + Z; where Z, is stationary. What is the asymptotic behaviour of
the sample ACF of X; ?

EXERCISE 9.2. Homework to be designed in detail

1. propose a forecasting method for one month ahead that works on the trace ep£ 1.
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Figure 9.23: Top : time plot of X (thin line) and Y (thick line) for P and @ as indicated, i.e. for Y, =
01Xy +0.2X, 1 4+ 03X, +02Y,1. Z =£filter(Q,PY) (dots) is equal to X in theory, but for large
values of the time, the accumulated numerical errors make a difference. Next panels: the zeroes (0) are
outside the unit disk, so the inverse filter is unstable; impulse response of filter and of inverse. Bottom:
same with the filter Y, = 0.5X, + 0.3X,_1 + 0.2X,_5. The inverse is stable.
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2. apply your prediction algorithm to predict the traffic in the month of the exam. Give a
confidence interval. The best prediction is the one which is closest to the true value, while
having the smallest confidence interval (details to be finalized).

EXERCISE 9.3. Homework to be designed in detail

1. propose aforecasting method for one step ahead that worksonthetracesdindala, dinda2a,

dinda3a and dinda4a. Try: AR, MA, ARIMA, and Holt-Winters.
2. Select the best prediction algorithmby testing your model on dindalb, dinda2b, dinda3b
and dinda4b What is the best model in each case ?
3. Apply your best algorithm to predict the load 30 steps after the end of each test sequence.
Compare your result to the real value. (we need to find a way such that you can do it only
once). The best prediction (maximum error, mean square error) wins.

EXERCISE 9.4. e Show that simple EWMA is equivalent to long-range forecasting with an
ARIMA(0,1,1) model .What is the correspondence between o and the ARIMA parameters ?
e Show that double EWMA is equivalent to long-range forecasting with an ARIMA(0,2,2)
model. What is the correspondence between o, 5 and the ARIMA parameters ?

EXERCISE 9.5. (Homework) Smulation study of the power required for a short file transfer. Do a
long simulation. Remove transients. Compute confidence interval using sub-sampling.

EXERCISE 9.6. Complete Exercises 9.9 and 9.10 before this one.

1. Read [PappagiannakiO3-Infocom]. What are the ARIMA models used for forecasting /()
and dt3(t) ?

2. Fit the best ARIMA models to traces sprintla, sprint5a and sprintéa. Do you
confirm the conclusions of the paper ?

EXERCISE 9.7. (Theory)

1. What is the orthogonal projection on the set of periodical sequences, with period s ? What
isthe corresponding de-seasonalizing filter ?

EXERCISE 9.8. In TCP, the round trip time is estimated by the following code.

sampleRTT = last measured round trip time
estimatedRTT = last estimated average round trip time
deviation = last estimated round trip deviation

initialization (first sample) :
estimatedRTT = sampleRTT + 0.5s; deviation = estimatedRTT/2

new value of sampleRTT available ->
Err = sampleRTT - estimatedRTT
estimatedRTT = estimatedRTT + 0.125 x Err
deviation = deviation + 0.250 % (|Err|- deviation)
RTO = estimatedRTT + 4*deviation
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What kind of filter isused for est imatedRTT ? for deviation?

EXERCISE 9.9. Reading Assignment. Read [ Pappagiannaki03-Infocom] and answer the following
guestions.

Co~Noak~wWNPE

10.
11.
12.
13.

What is the goal of the forecasting study ?

Are seasonal variations modeled ?.

What are the long and short term effects that affect capacity ?

How is data collected ?

How many traces are analyzed ?

Are there seasonal components ?

What does the 1st, 3rd and 4th time scales correspond to ?

How are outliers excluded ?

What isthe model resulting fromthe wavelet analysis ? An empirical statement that an upper
bound on used capacity is(t) + 3dts(t) where[(t) isthe weekly average of c¢(t) and dt;(t)
is the weekly standard deviation of ds(t).

What is the forecasting method ?

Do the forecasting models depend on the traces ?

How are the models validated ?

What is the filter that mapsc;_; toc; ?

EXERCISE 9.10. Homework: tracesto be taken from Dina’s email (part aisall but last 6 months.
Wavelet analysis to be checked with WaveThresh.

1.

2.

Implement the a-trou waveletsonthetrace sprintla, sprint5aand sprintéa. Apply
Holt-Winters to the two series ¢g and dts.

apply your prediction algorithmto sprintib, sprint5band sprintéb. How doesthe
forecast compare to the one in [ Pappagiannaki03-1nfocom] for the first trace ?
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L ONG RANGE DEPENDENCE

10.1 INTRODUCTION

Since [Leland94-ToN], models for data traffic have to incorporate an important feature called long
range dependence, which we introduce now. Consider a stationary second-order process X; with
auto-covariance function ;. In Chapter 9 we saw that, if the series;, isabsolutely summable, then
Wold’s decomposition applies and we can reasonably hope to fit an ARMA model. We call such
processes short range dependent. In this chapter, we examine the case where this assumption
does not hold, i.e. >, || = +oo. It turns out that this has many practical implications that
hold for traffic data sets that both have a high resolution (of the order of seconds) and a very long
time span.

The general theory of processes such that ), _|vx| = oo is well beyond the scope of this
course. Instead, we consider processes fro which || decays hyperbolicaly, i.e., is of the order of

= With0 < a < 1.

10.2 L ONG RANGE DEPENDENCE

10.2.1 DEFINITION

Consider a stationary second-order process X;, t = 1,2,.... We say that X; is Long-Range
Dependent or has Long Memory with order 0 < a < 1 iff there exists some constant ¢; such
that

C1

Y~ T (10.1)

where the equivalence means that the limit of theratio is 1 when £ growsto +oo.

For reasons that become obvious later, the parameter / = 1 — § (the Hurst parameter) is used
instead of «. We consider only cases with % < H < 1. Theva ue% Is the boundary between long
and short range dependence. The effect of long range dependence is higher for H closeto 1.

249
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10.2.2 EXAMPLES

ExamMpPLE 10.1: NILE RIVER MINIMA AND THE JOSEPH EFFECT. There exist statis-
tics for the level of the for the period 622-1284. See Figure 10.1 and Figure 10.2.
The time series shows periods of increase followed by periods of increase. The se-
ries seems non-stationary. These apparent trends are called the Joseph Effect, from
[Bible, Genesis 41]:

Joseph said to Pharaoh [..] “Behold, there come seven years of great plenty
throughout all the land of Egypt. There will arise after them seven years of
famine, and all the plenty will be forgotten in the land of Egypt.”
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Figure 10.1: Nile River Minima.

ExAMPLE 10.2: ETHERNET DATA. Figure 10.3 and Figure 10.4 . The number
of bytes (Figure 10.3) or packets Figure 10.4 also shows a very irregular pattern.
The ACF decays slowly. The figures show aggregation at different time scales. The
aggregate data does not seem to look more like normal iid noise, as the central limit
theorem would say. See also Figure 10.5 and Figure 10.6.

ExamMpPLE 10.3: Counter-Example: for an ARMA process, it can be shown that there
always exists some r > 0 such that p, = o(r*), thus an ARMA process is always
short-range dependent. See Figure 10.7 and Figure 10.8.
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Figure 10.2: Top row: ACF of Nile data in natural scale (with 95% confidence limits about zero) and in log-
scale. Bottom row: variance time plot with slope «; estimation of Hurst parameter is H = 1— 5 (H = 0.865);
and periodogram.
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Figure 10.3: Ethernet Data, in Bytes, aggregated at different time scales. All graphs are truncated to have
the same number of points except the top one which is the original data. [Leland94-ToN]
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Figure 10.4: Ethernet Data, in Packets.
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Figure 10.5: ACF, variance time plot, and periodogram of Ethernet byte data (confidence interval about 0
is indistinguishable from 0). Estimated H = 0.740.
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Figure 10.6: ACF, variance time plot, and periodogram of Ethernet packet data. Estimated H = 0.814

10.2.3 PROPERTIES

VARIANCE OF SAMPLE MEAN.  For a short range dependent process, the variance of the
samplemean X,, = 1/n >} | X,, decaysas1/+/n. For along range dependent process, the decay
isslower:

THEOREM 10.2.1 (Beran94-book). Let X; be long range dependent. For n — +oo:

C1 1

H(2H — 1) n20—1)

varX,, ~

QUESTION 10.2.1. What isthe order of the variance of the partial sumS,, = >" | X, ?*

SPECTRAL DENSITY. Thespectral density f() of thetime series X, is defined as the Fourier
transform of the auto-covariance: .
fw)=) me ™

keZ

(This is well defined only if we accept f to be a Distribution rather than a standard function).
Since v_, = 7k, the spectral density iseven and red: f(w) = f(—w) € R. Conversely, the
autocovariance is retrieved by the inverse Fourier transform:

Yo = % /_:rr fw)e“kdw = %/ cos(wk) f(w)dw

s
0

c1 H
HeH-1)"
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Figure 10.7: An ARMA process with p = 1, ¢ = 0, ¢; = 0.95. The top two graphs are the original time
series. Other graphs are aggregated and re-scaled. The time series has some local trends at the original
time scale, due to the auto-regressive component, but they disappear by aggregation. In the aggregation
limit, we have white noise.
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Figure 10.8: ACF, variance time plot, and periodogram of simulated ARMA data. Estimated H = 0.5

Long range dependence is visible in the frequency domain by apole at the origin (“1/ f-noise”).

THEOREM 10.2.2 (Spectral Density of LRD). If X, islong range dependent, the spectral density
f(w) isdefined for w # 0; for w in the neighbourhood of 0:

f(w) ~ calw]' ="

Conversely, this property implies long range dependence. The constants ¢; and ¢, are related by

co =2¢1T'(2H — 1) sin((1 — H)7)

In contrast, with short range dependence, the spectral density is defined and continuous for w = 0.
In the theorem, T'() is Euler’s integral, defined by T'(x) = 0+°° t*~ et If x isapositive integer,
thenI'(x) = (z — 1)!. T" isdefined everywhere except at negative integers and 0.

10.2.4 HURST PARAMETER

Hurst isafamous hydrologist who, like many, wasinterested in Egypt and The Nile. Hurst found in
1951 that the level of the Nile was a long range dependent sequence. He formulated it as follows.
Assume you build a reservoir of capacity B;. At time t,, the reservoir has initia content B,.
Hurst was interested in the value of B; that, over some time interval [t, to + h| would guarantee
a constant output rate and no overflow. Call Y, the cumulative input of water into the reservoir,
minus evaporation and leaks. The conditions are

Bo+Y,—Y;,, —cs>0forall s € [tg,to+ hl
By +Ys =Y, —cs < By forall s € [ty,to+ hl

c— Yig+n—Ytg
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It can easily be shown that it is necessary and sufficient that

By > Rty h) = Y,—Y, —cs)— min (Y,—Y, —
1 > R(to, h) seft?,?ﬁh]( ty — CS) Se[gg&h]( t — CS)

R(to, h) is caled the “range statistic”. It is the required capacity of the reservoir. A scale-free
version of it, called rescaled range statistic is R(to, h)/S(to, h), with

Sttohf =1 S (X~ X(to, )

se [to,to—i—h]

with X, =Y, — Y,_; and X (¢, h) isthe sample average of X, over [t,to + h).

It turns out that for short range dependent processes, for large h, R(to, h)/S(to, k) should be of the
order of v/h. Hurst plotted R(to, h)/S(to, h) in log-log scale for various values of t, and i and, in
contrast, found that the regression line always tended to have a slope greater than 1 /2. For along
range dependent process with order «, the slope of this line is precisely H = 1 — £, hence the
name.

10.2.5 REMARKSON TERMINOLOGY.

A dlightly more general definitionisthat v, = 2%, where L() isaslow varying function at infinity,
which meansthat limy_. o, L(kz)/L(k) = 1 for any fixed 2 > 0. Thisalowsmore general decays
than exponential, for example v, = ‘°g’“ We do not use this dlightly more general definition for
simplicity, as this does not impact the r&eults in this chapter.

Some authors call fractional process a stationary process that satisfies our definition or its variant
with slowly varying functions, leaving the concept of long range dependence for the general case

> ken k] = +o0

Finally, note that we focus on processes with finite variance .

10.3 FRACTIONAL ARIMA PROCESSES

Fractional ARIMA processes (FARIMA) are generaizations of ARIMA processes that have
long range dependence.

FRACTIONAL DIFFERENCE OPERATOR. AnARIMA processisdefined by (Section 9.7.2)
®(B)(Id — B)"Y, = ©(B)e,

First note that

(Id — B)* i() B*

k=0

da\ _d I'(d+1)
(k’>_k!(d—k)!_F(k:Jrl)F(d—k:Jrl)

with
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The function I is defined in Section 10.2.3. T" is defined and # 0 for all real numbers except for
Z can thus be extended by the above formula
to all positive, real values of d and all integer values of k. If d isinteger and £ > d + 1 then
I'd—k+1)=o00and ( Z ) = 0. Thus, we can define, at least formally,

integersthat are < 0. The binomial coefficient

+o0

a-g'=Y (1) v

k=0

and the definition coincides with the usual one if d € N. We call it the fractional difference
operator. It iswell defined for finite time series, and it can be shown that the convergence occurs
in 2 sense for infinite time series.

+0o0
(u—Bw:§2(2>@4ka (102)

k=0
Note that ( Z ) (—1)* is also simply equal to []¢_, I—=4. The z-transform of the fractional
difference operator is H(z) = > ;5% ( Z (=1)kB* = (1 — 2)?. The linear filter theorem

continues to apply: if Y; = (Id — B)?X, with —1/2 < d < 1/2 then the spectral density relation
holds
frw) = [1= e[ fx(w)

It followsthat, if aprocess X; isLRD with Hurst parameter H,thenY = (1 — B)?¢X is SRD (with
d=H — %). See Figure 10.9. This suggests the following family of models.

FRACTIONAL ARIMA. A fractional ARIMA processY; hasparametersp, d, ¢, , ©, F', where
p,q areintegers, —1/2 < d < 1/2, ®, © are polynomials with the same restrictions as for ARMA
processes, and F' is a probability distribution with 0 mean. It is defined as the stationary solution
to

®(B)(Id — B)"Y; = ©(B)e,

where ¢; ~ iid F. Unless otherwise specified, we take F' = N (0, o2).
For d = 0, the processis simply ARMA.
The definition is equivalent to

®(B)Y; = (Id — B)™"©(B)e,

which shows that the processiswell defined. The commutativity of power seriesin B aso implies
that
(I)(B)}/;f = @tWt

where
(Id — B)W, = ¢, (10.3)
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Figure 10.9: Fractional Difference Operator (Id — B)¢ applied to the mean corrected time series “Nile” Y;
(d = 0.36) (bottom), compared to original time series (top) The transformed time series is SRD.

We caninterpret Y; asan ARMA process where the noiseis IW;. Such anoiseis called fractionally
integrated white noise. Itsvarianceis

w(0) =0 %

Its spectral density is
2

iw|—2d J_

Jw(w) = ‘1 B | 2T

Thus, by Theorem 10.2.2, it islong range dependent for 0 < d < 1/2, with

1
H=>+d
2+

The same holds for FARIMA processesin general.
For —1/2 < d < 1/2 the operator (Id — B)“ can be inverted and itsinverseis (Id — B)~%. Thus,
following Equation (10.3):

W, = (Id — B) ¢

It can be shown that for 0 < d < % the FARIMA model can be assumed stationary, just like an
ARMA process (i.e. if the auto-regressive polynomial has al roots outside the unit disk, and we
pick asinitial condition the stationary distribution).

The ACF of fractionally integrated white noiseis

T'(k+d)T ﬁj—1+d

k
pw (k) = [k — d+1 el
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The autocovariance of aFARIMA processis

=3 Uitsyw(h+j—k)

7,keN

where > ;67 = ©(£)/®(€). It can also be computed from the spectral density relation

2

O(e™) ’1 B

O(e™) fw(w) = ‘q)(eiw)

)=o)

2
iw|*2d U_
27

See Figure 10.10, Figure 10.14 and Figure 10.7 for smulations of FARIMA processes.

H= 0.95

H= 0.99

0 100 20 a0 r s00

Figure 10.10: Simulations of fractionally integrated white noise, with unit variance. Top: H = 0.5 (iid
normal noise). Long range dependence increases as H becomes close to 1. We see that for H close to 1
the time series exhibits apparent local trends, typical of long range dependence.

QUESTION 10.3.1. Is a FARIMA process stationary for 0 < d < 1/2 ? Same question for an
ARIMA processwith d € N. 2

2FARIMA is stationary for 0 < d < 1/2, unlike ARIMA which is not stationary, except for d = 0.
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10.4 LRD AND SELF-SIMILARITY

10.4.1 SELF-SIMILAR TIME SERIES

Self-similarity was introduced by Kolmogorov and Mandelbrot. A deterministic geometrical ob-
ject is self-similar if it repeats the same pattern, independent at the distance from which we look
at it. A stochastic process is self-similar if the sample paths “look the same”, independent of the
distance, but are not arepetition of a pattern.

Formally, consider a stationary time series X;. For all m, define

w1
XM = -~ (X(—1yms1 + oo+ Xim)

Xt(m) is obtained by aggregating the datain X; by blocks of size m, and averaging.

DEFINITION 10.4.1. X, is a self-similar time series iff for all m, X; and Xt(m) have the same
distribution, up to a scaling factor.

If atime seriesisthe limit of normalized partial sums of a stationary time series, then it is self-
similar. Thusthe role of self-similar time series among stationary time series is the same as stable
distributions among univariate distributions (Section 8.2).

The factor in Definition 10.4.1 necessarily has the form ml;_H for some H (called the Hurst para-
meter). If we assume that the time series has second moments and the autocorrel ation decays to 0
then the only possiblecasesare0 < H < 1. For0 < H < % the process is short-range dependent
and has the property that all correlations are negativeand  _, ., pr = 5 — acase that we will not
consider in practice. Thus we will consider only thecase H € [1/2,1). The only self-similar time
series we will encounter is a Gaussian times series called fractional Gaussian noise, defined later.

A second order stationary time seriesis called a(second order) self-similar time series with Hurst
parameter H € [1/2,1) if for al m, X; and mll,HXt(m) have the same second order characteristics
(mean and auto-covariance).

A second order stationary time series has the following properties.

e ItSACFis

1
=3 ((k+1)*" = 2k*" 4 (k — 1)*)

e For H = 1/2, the time series is non correlated. For H > 1/2, alimited development of
(1 + x)*H showsthat, for large k

pp ~ H(2H — 1)k*12

thus ", _, pr = +oo and the seriesislong range dependent.
e the spectral density for w # 0 is

f(w) =c(1—cosw) Z 1275 + w|2H 1
€T
with ¢ = 202 sin(mH)['(2H + 1). Further, for v — 0:

f(W)NWzH_l
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lid time series are self-similar iff the distribution of X is p-stable. lid normal time series are
self-similar with Hurst parameter H = 1/2.

QUESTION 10.4.1. What isthe Hurst parameter of a stableiid time series ? 3

The only other example we will encounter is Fractional Gaussian noise. Fractiona ARIMA
processes are long range dependent but not self-similar.

QUESTION 10.4.2. Show that FARIMA(0, d, 0) is not self-similar. 4

10.4.2 FRACTIONAL GAUSSIAN NOISE

DEFINITION 10.4.2. Fractional Gaussian noise (fGn) is the only self-similar time series X;,
t € N, that is gaussian and such that

[ J E(Xt) - 0
e var(X;) = o? for somefixed o > 0
e |tissecond order stationary and its auto-covariance function is

2
g
e = = (k4127 =282 4 (k = 1)*7)

where H € [%, 1) isafixed parameter (called the Hurst parameter).

For H = 0.5, 7 = 0 and fractional Gaussian noise is the usual normal white noise. For H > 0.5,
fGn isnot white noise.

QUESTION 10.4.3. IsfGn stationary ? °

QUESTION 10.4.4. How would you simulate fGn ? ©

Efficient smulations of fGn are based on the fact that the discrete Fourier transform X (w) of a
stationary time series X, with auto-covariance ;. is non-stationary white noise (i.e. E(X (w)) =0
and X (w), X (') are independent) with variance v(w) = discrete fourier transform of ;. See

Figure 10.11 for an example.

QUESTION 10.4.5. Trouvez I'intrus. Three smulated and aggregated time series are shown on
Figures 10.12 to 10.14. The first two graphs are the original time series (all samples, 250 first
samples), the following graphs are 250 samples of the aggregated time series, aggregated 4 times
each.

The three time series are one of the following:

SH =1/p.

“4Plot the auto-covariance function and see that it does not have the proper form.

5Yes: it is second order stationary and normal

SFor t = 0, draw a normal random variable with variance o2; this gives a number z,. For t = 1, compute the
conditional distribution of X given X, = z¢. From Theorem 12.5.4, it is normal with mean p;xy and variance
o?(1 — p?). Draw arandom normal variable with these parameters and obtain z; . Iterate: x5 is obtained by sampling
the distribution of X, conditional to X_0 = zy, X; = z1, and soon.
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ARIMA processwithp = 1,d = 0, ¢ = 0,01 = 0.95
FARIMA processwith H = 0.9, p=1,¢ =0, ¢1 = 0.95,
fractional gaussian noisewith H = 0.9,

fractional gaussian noisewith H = 0.5.

Say which iswhat. ’

Therest of this section explains how fractional Gaussian noise can be mathematically constructed
from a continuous time process called Fractional Brownian motion (fBm). You can skip it afirst
reading.

DEFINITION 10.4.3. A continuous time process Y; is self-similar with stationary increments iff

e For any stretching factor ¢, the process Y (ct) has the same distribution as Y (¢), up to some
scaling factor (which depends on c).
e Thedistribution of Y (¢ 4+ k) — Y'(¢) isindependent of ¢.

Necessarily (apart from pathological processes), the scaling factor must be of the form ¢ for
some H > 0. If the process has finite second momentsthen 0 < H < 1. We consider in this
lectureonly thecase 1 < H < 1.

A zero mean self-similar process with stationary increments and with second moments necessarily
has a covariance function given by

0.2

Pap = (7 = (¢ =)™ +5™) (10.4)

where 02 = var(Y'(1)). Thusfor H = 1 the processis uncorrelated.

DEFINITION 10.4.4. Fractional Brownian motion By ,2(t), with Hurst parameter H € [1/2,1)
and variance parameter o2 is the only process with the following properties.

. By (t) isgaussian with O mean.

. By (t) isaself-similar process with stationary increments.
(
(

S/

1

2

3. By(0) =0as
4. var(By (1)) = o?

For 0% = 1 we call it the standard fractional Brownian motion By (¢) = By 1(t)

The covariance function of the fractional Brownian motion is given by Equation (10.4). By(t)
is a convenient mathematical abstraction, but it has non smooth properties: its sample paths are
continuous but nowhere differentiable.

Note that By (t) is not stationary.
For H = 3, we have the ordinary Brownian motion. It is the only one for which the increments
are independent.

DEFINITION 10.4.5. Fractional Gaussian noise is the time series of increments of a Fractional
Brownian motion: X; = By (t) — By(t—1),fort =1,2,....

7(a)=fGn 0.5, (b)=fGn 0.9, (C)=FARIMA.
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() Simulated Time Series

Series : {Gn.sim(nsamp, h)

(b) ACF

263

Figure 10.11: Simulated fractional Gaussian noise for H = 0.5 (top) to H = 0.99 (bottom) with sample

ACF.
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Figure 10.12: Series (a) of the game in Question 10.4.5

Figure 10.13: Series (b) of the game in Question 10.4.5
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Figure 10.14: Series (c) of the game in Question 10.4.5

Fractional Gaussian noise is a Gaussian time series with the following properties:

it has zero mean

it is stationary

itisself-similar

For H = 1, fGnisthe ordinary sequence of iid noise: X; ~ iidN(0,5?). Inall other cases,
itisnotiid and islong range dependent

This gives auseful intuitive representation of fractional Gaussian noise. For H = 1/2 we have the
usual Brownian motion

The definition of fGn can be extended to other self-similar time series, with stable marginal distri-
bution. Such time series have infinite variance and no auto-covariance function can be defined.

10.4.3 ASYMPTOTIC SELF-SIMILARITY AND LRD

Long range dependence and fractional Gaussian noise are related as follows. A general result is
that (under some mild conditions), the partial sums of along range dependent time series, re-scaled
by 1/n", convergesin distribution to afractional Gaussian noise. For ashort range dependent time
series, thisisthe usual central limit theorem. See Figure 10.7 and Figure 10.14

Thisillustrates an important visual aspect of long range dependence. For a short range dependent
time serieswith finite variance, the partial sums converge to amemoriless process. In contrast, with
long range dependence, the limits of partial sumsarestill correlated: short memory disappearswith
aggregation, while long memory resists.

This aso gives a useful intuitive representation of fractional Brownian motion. For H = 1/2 we
have the usual Brownian motion B(t). Intuitively, think of the Brownian motion as the limit of a
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random walk when the time step is very small: B((¢t + 1)) = B(t0) + €41 where ¢, isiid white
noise. By the central limit theorem, the increments of B(t¢) are normal. Thus the random walk
ARIMA(0, 1, 0) gives an approximation of brownian motion.

In contrast, for H € (1/2,1), think of By (t) asthe limit of arandom walk where the increments
¢; are long range dependent, with Hurst parameter H.

10.5 STRUCTURAL MODELSWITH LRD

Structural models try to reproduce the essential features of a system (as opposed to black-box
models such as time series or regression models). Some models are able to explain long range
dependence by heavy tails.

FLUID MODEL WITH HEAVY TAILED INTER-ARRIVAL TIMES.  The following model is
adapted from [Grossglauser96-sigcomm]. It represents traffic intensity on a network link or a
web server, as follows. There is a sequence of rate change epochs 7,,, such that the sequence
T, = Tay1 — Ty isiid, with complementary distribution function F'(¢) = P(T,, > t). Attimer,,
arate A(n) is picked at random, independently of the past and present of the system, from afinite
set of rates {\,...\;}. Let m; = P(A(n) = \;). Let X (¢) be the rate at time t. We assume that
the system has been running for along time and is in stationary regime, which meansthat X; isa
stationary sequence.

Assume that the distribution of 7, is heavy tailed and has afinite mean, i.e.
F(t) ~ct™?

withl <p < 2.
We now compute the auto-covariance of X;. Themeanis

1
p=EX)=> m\
i=1

and for h > 1 we compute
r(h) = cov(Xin, Xo) = E((Xppn — p)(Xe — 1))
We condition with respect to the event
A(t,h) := {Noarriva occursin[t + 1,¢ + h]}

Conditiona to A(t, h), Xivn, = X;, and conditional to non-A(t, ), the rates X; and X, are
independent, by construction. Thus

r(h) = E((X; — p)*|A(t, h))P(A(t, h))
Now by construction, X; isindependent of A(¢, k). Thus

r(h) = E((X; — p)*)P(A(t, h)) = r(0)P(A(0, h))
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By Palm’sinversion formula (Section 11.3):

E j7l /1

Since0 < p—1 < 1, itfollowsthat X, isLRD.

Conversely, if F/(t) < ¢t for some p > 2 and for ¢ large enough (fast decay), then 7;, is light
tailed and > |r(h)| < oo and the process X is short range dependent.

This example provides an intuitive explanation for long range dependence, rooted in heavy tail.
It remains to see whether thisis realy an explanation, and whether we need an explanation at all
(the quest for an explanation lies on the assumption that SRD would be normal). For an attempt to
explain heavy tail in session duration and in file size distributions, see [Downey0O1-IMW].

P(A(0, h) =

OTHER STRUCTURAL MODELS. A similar structural model is the ON-OFF source model,
where the on and off periods are iid and mutually independent. Consider the superposition of M
such sources and let X; be the number of sources that are ON at time ¢. This represents traffic
generated by the superposition of unit rate sources. It isshownin [Leland94-ToN] that if either the
ON or the OFF period is heavy tailed, then X; isLRD. This holds for any value of M.

Another class of structural modelstriesto explain LRD by fractal processes, namely, patterns that
arereproduced identically at every scale. For an introduction to such constructions, see [ Cappe02-
SPM] and [Abry02-SPM].

STRUCTURAL MODELS FOR SRD. For user level sessions, i.e., on-off models of human be-
haviour, there are some indications that ssimple, SRD models such as Poisson processes fit well
[Paxson95-ToN]. In fact, such models were (successfully) used for dimensioning telephone net-
works for almost a century.

10.6 TESTSFOR LRD

LRD istested by estimating the Hurst parameter. A large number of methods exist, see [ Tagqu02-
html] for an exhaustive list with examples. Many of the methods do not work well. We focus here
on two, which do work.

10.6.1 VARIANCE TIME PLOT

This is a simple method, which is easy to understand, but may give some rough results. It con-
sists in verifying asymptotic self-similarity by plotting an estimator v(m) of the variance of the
aggregated process.

For large enough m, we should find v(m) ~ ¢ x m~20=H), for some constant c. This can easily be
verified in log-scale. The corresponding diagramis called avariance time plot. See Figures 10.2,
10.5, 10.6 and 10.8.
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In practice, the plot may be difficult to interpret because, for large m, where the scaling occurs, we
have few data blocks. For example, on Figure 10.18 we find a slope largely less than 1, which is
impossible in theory.

10.6.2 LOG-SCALE DIAGRAM

The Log Scale Diagram is based on a wavelet analysis of the time series. See Section 13.2
for background information on wavelets. Roughly speaking, for a fixed j, the series of wavelet
coefficients d;, k represent the difference between the time series aggregated by factors of 271
and 2. The method is based on the fact that wavelet coefficients are short range dependent, even
for LRD time series. More precisely, we have [ Abry00-book]

THEOREM 10.6.1. Let X; be a long range dependent time series. Let d;;, be the wavelet coeffi-
cients at octave j (as defined in Section 13.2). If the mother wavelet has N vanishing moments
and its Fourier transformis NV times differentiable at the origin, then

e For any fixed j, d; ; is 2nd order stationary
o E(djx) ~ ;278D asj — oo
e For any fixed j, the auto-correlation function of d; ;, ; satisfies;(h) ~ h2H-N-1

The second item expresses that the wavelet coefficients reproduce a power law behaviour. Since
the number of vanishing moments NV isat least 1, the third item meansthat the wavel et coefficients
are short range dependent. The assumption in the theorem are true for all the wavelets usually
used.

The log-scale diagram is as follows [Abry00-book]. Let n; be the number of wavelet coefficients
available at octave j. An estimator of E(d, ;) is

nj

An estimator of logE(d; ;) is

1
n;log 2
where the last term is an attempt to cancel the bias due to the non-linearity of log. A plot of j
versus s; is called the log-scale diagram. If the points are close to aligned for large j, the lope is
an estimateof « = 2H — 1.

A confidence interval may be obtained as follows. If the data comes from a normal process (such
as FARIMA) the estimator & obtained by aleast squarefit of the s, to astraight line, over the range
[71, 72] where scaling occurs, is approximately normal, with zero mean and variance

o 11-277

v n F

With J = jo — ji+ Ln = Y22 nyand F = (log2)2' 91 (1 — (J?/2 +2)277 4 27%),

See Figure 10.15 for an application to Ethernet and Nile examples.

s; = log p; —

QUESTION 10.6.1. Compare the log-scale diagram estimates to the variance time plot estimates
in Figures 10.2, 10.5 and 10.6. &

8
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Logscale Diagram, N=2 [(jl,j2)= (1,12), o-est=0.634, Q=0], D-init

Logscale Diagram, N=2 [(jl,j2)= (2,5), o-est=0.72, Q=0.43257], D-init
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Figure 10.15: Logscale Diagram for (a) Nile data, (b) Ethernet byte data and (c) Ethernet packet data.
LRD is found with confidence intervals for Hurst parameter as shown.
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10.6.3 NON-STATIONARITY VERSUSLRD

Non-stationarity and LRD look the same in some respects.

ERRATIC TRENDS that remain after aggregation are a common feature of LRD time series, but
also of integrated, non stationary processes such asARIMA. For example, consider an ARIMA(0, 1, 0)
process, which is not stationary (Figure 10.16). The original time seriesis

t

X = Z €t
n=1

where ¢, isiid centered normal with variance o%. We have var(X;) = to? and X7 isnot stationary.
For the aggregated time series, we have

1

VarﬁXt(m) =

thus the aggregated time series remains non-stationary at al aggregation time scales. See also
Figure 10.17) for amore sophisticated ARIMA example.

1

—mto? = to?
m

NON-STATIONARITY MAY BE INTERPRETED ASLRD . Remember that LRD isdefined for
astationary process.

Consider the Sprint data in Example 9.2 on page 203, (with 6400 data points instead of 250).
Figure 10.19 shows the data, the variance and ACF diagrams. The slow decay in ACF and the
slope of the variance time plot suggest that LRD is present. Consider now the differenced time
series, at lags 1 and 16 (Figure 10.19). The diagrams clearly indicate short range dependence.

Thus, if we have adata set that obviously does not ook stationary, considering it as a sample path
generated by a stationary process may lead to the conclusion that the processisLRD. If we remove
trends from the data set (by differencing), the conclusion may be opposite. Always analyze trends
and seasonality before anything else!

WAVELET COEFFICIENTS have the property that polynomial components of degree < N — 1
are cancelled (but not in the coarse approximations). More precisely, if X; = Y; + P(t), where
P(t) isadeterministic polynomial of degree < N — 1 and Y; is stationary, then for any j, d; , isa
stationary sequence. The same holdsif A?X, = Y,, withd < N — 1.

The number of vanishing momentsis NV = 1 for the Haar wavelet and > 2 for other wavelets used
in practice. Thusfor al j d;; isazero mean time series, even if X, isnot. See Figure 10.20.

Thus wavelet based methods are more robust against trends. The same holds for seasonal com-
ponents, which are removed by the low pass filtering performed when computing the coefficients.
Indeed, the log-scale diagram method does not find LRD even if the Sprint datais not differenced
(Figure 10.21).

Log scale diagram estimate  variance time plot estimate

Nile [0.722,0.998] 0.865
Ethernet Byte [0.815,0.819] 0.740
Ethernet Packet [0.876,0.881] 0.814

The estimates are not too far away, but the point estimates are not in the confidence intervals.



T

Figure 10.16: Simulation of an ARIMA(0, 1,0) model (random walk, discrete time approximation of stan-
dard brownian motion. The process is nhon stationary and remains so after multiple aggregations. It is a
self-similar non stationary (short range dependent) process.
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[ —_——

Figure 10.17: Simulation of a (non-stationary) ARIMA(3,1,3) model fitted to the (stationary) fractional
ARIMA series of Figure 10.14, aggregated at several time scales. We see that the non-stationary time
series exhibits the same apparent trend behaviour that resists aggregation.
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Figure 10.18: Sprint data in Example 9.2 on page 203, original and differenced at lags 1 and 16. The
variance analysis of the original time series suggests LRD with H = 0.905.
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Figure 10.19: Variance analysis of Sprint data in Example 9.2 on page 203, differenced at lags 1 and 16.
shows that the time series is not LRD. The data in Figure 10.18 should not be assumed to come from a
stationary model.

STATIONARY OR NOT ? For a given data set, it often possible to fit a stationary model or a
non-stationary one. Consider for example Figure 9.11. Wefit anon stationary datamodel, and this
gives us useful information about the growth pattern. In fact, we are interested there in the non
stationary part of the data.

In contrast, if the data shows erratic trends, we may not be interested in modeling the trends
explicitly, but rather, have a model that will incorporate such trends as random events. ARIMA
processes are such models, as well as LRD processes (Figure 10.16).

Distinguishing between ARIMA and LRD modelsis not easy if the number of pointsis small. In
contrast, if it is large, then we can apply log-scale diagrams. Indeed, polynomia non-stationary
components are mostly cancelled by wavelet analysis. If the estimated Hurst parameter is not equal
to 0.5, then along range dependent model should be assumed.

Remember that stationarity is a property of an abstract process, not of the data itself...

10.7 APPLICATIONS

10.7.1 SIMULATION AND CONFIDENCE INTERVALS

REFAIRE EN UTILISANT MON TUTORIAL SIGMETRICS

Assume we want to compute a confidence interval of the mean of some stationary process in one
long run, and the data appears to be long range dependent. We cannot apply the sub-sampling
method described in Section ?? since correlation persists across long time intervals.

A possible method uses the ACF. We can estimate the ACF by the sample ACF for small lags,
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Figure 10.20: Wavelet and scaling coefficients of a process with polynomial trend. First graph: Haar
wavelet, which has 1 vanishing moment. The wavelet coefficients are zero mean, but not stationary. Second

graph: Daublet-4, which has 2 vanishing moments. The wavelet coefficients look stationary.
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Logscale Diagram, N=3 [(j J,)= (1,10), a-est=178, Q=0], D-init Logscale Diagram, N=3 [ (j,J,)=(1,10), c-est=-0.306, Q=0], D-init

Octave j Octave j

@ (b)

Figure 10.21: Logscale Diagram for Sprint data (a) without differencing (b) with differencing. No LRD is
found.

and by its asymptotic expression in Equation (10.1) otherwise. An estimator of the exponent «
is given by the log-scale diagram in Section 10.6.2. An extension of the same method can be
used to compute the intercept in the log scale diagram, which gives an estimator of logc;. See
[VeitchO1-2parms] for a detailed analysis and implementation.

10.7.2 FORECASTING WITH LONG RANGE DEPENDENCE

For LRD processes with finite variance and known auto-covariance function, the forecasting method
is essentially the same as for classical time series (Section 9.7.5). In practice, the following meth-
ods can be used.

¢ (FARIMA) Compute MLE asfor ARMA. This part is computationally expensive. Forecasts
are done as usual.

¢ (FARIMA with known Hurst paramter) First identify the Hurst parameter. If the confidence
interval is small, then fit a fractional ARIMA model to the fractionnally differenced time
series. Use the classical methods for prediction.

¢ (ARIMA) An ARIMA model isnon stationary and, over short period of times, may be ableto
track the apparent trends of an LRD process. The method here consistsin fitting an ARIMA
model to the recent data and use the classical method for prediction. The model is fitted
again periodically. See [Bansali] for details.

o (Wavelet Analysis) Decompose the time series into a multi-resolution analysis: model the
details by ajoint, multi-dimensional ARMA process or Kalman filter. Model the coarse ap-
proximation by a simple regression model. See [Pappagiannaki03-infocom] for an example
in that direction.

Peter Dinda reports in [Dinda99-HPDC] that, for host load prediction, FARIMA models perform
marginally better than ARIMA models. Figure 10.22 confirms that fact: the predictions for both
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FARIMA and ARIMA are close (and almost equal to the mean), but the confidence interval is
smaller with FARIMA.. [Beran-94] finds that thisis a general finding: long memory helps finding

smaller confidence intervals.
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data and forecast
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Figure 10.22: Forecasts for Nile data, fitted on the time series minus the last 26 data points. Top: Best
FARIMA(p,d,q) model for p, d < 2. The estimation found d = 0.391 (H = 0.891). Bottom: best ARIMA(p,1,q)

model for p,d < 5.
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10.8 REVIEW AND QUESTIONS

Hurst Parameter | 0.5 < H <1 | H=0.5meansSRD | H =1 — ¢
Decay Exponent of ACF | 0 < a < 1 a = 1 means SRD a
FARIMA(p,d,q) | 0 <d < 0.5 | d =0 means SRD d=H —

QUESTION 10.8.1. For each of the following process type, say if it is stationary (assume that the
auto-regressive polynomials have all roots outside the unit disk):

1. ARMA

2. ARIMA(p, d, q) (assumethat d > 1 and d € N)
3. FARIMA(p, d, q) (assumethat 0 < d3)

4. fGn(H) (assumethat 3 < d < 1)

QUESTION 10.8.2. Same question with : “ self-similar” instead of “ stationary” °
QUESTION 10.8.3. Same question with : “long-range dependent” instead of “ stationary” *
QUESTION 10.8.4. What is the difference between a FARIMA process and fGn ? 12
QUESTION 10.8.5. Isthere a difference between fractionally integrated noise and fGn ? 2
QUESTION 10.8.6. What are the differences between LRD and self-similarity ? 4
QUESTION 10.8.7. What is the difference between heavy tail and LRD ? 1°

QUESTION 10.8.8. How can | know if my time seriesis LRD ? 16

QUESTION 10.8.9. If atime seriesis non-stationary, does this go away by aggregation ? */

QUESTION 10.8.10. Is it possible to have a stationary model and a non-stationary one for the
same data ? 8

SARMA, FARIMA and fGn are stationary. ARIMA is not.

©tGnissalf-similar; ARMA, FARIMA and ARIMA are not (except for special cases)

1ARMA isnot LRD. ARIMA isnot stationary so the question of LRD does not apply. FARIMA and fGn are LRD
for H # 0.

2FARIMA has both LRD and a short range structure that can be exploited to fit some data that is not strictly
self-similar.

13Yes. The former is not self-similar (its auto-covariance function does not have the right form, whereas the latter
is. Both are noise modelswith LRD.

l4sdlf similarity is a property of aggregated processes. Aggregation tends to produce self-similarity. If the original
data is SRD, the aggregation limit is white noise (=fGn 0.5)(after proper re-scaling); if the original datais LRD, the
aggregated data is fGn with same hurst parameter.

BHeavy tail is a property of the distribution of one random variable. LRD is a property of the ACF of a second
order process. If we build a processes by superposing indepedent on-off sources that have independent on and off
period, when the On (or Off) duration is heavy tailed, the processis LRD, and conversely.

16First make sureit looks stationary. Then look at variance time plotsin log-log scales, or (better) use the scalogram
method.

In general no. There are exceptions. seasona components go away by aggregation, but trends do not. Random
trendslikein ARIMA(0,1,0) do not go away.

18Yes, if the data set is large and exhibits apparent trends. An ARIMA-like model (non-stationary) and a LRD,
stationary model (for example: FARIMA) may both explain the data well.
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10.9 EXERCICES

EXERCISE 10.1. Compute the Hurst parameter of the Sprint, Dinda and Ethernet traces. Cut the
tracesin two and re-do the computations. What do you find ? Use confidence intervals (see Darryl
\eitch’'stools).

EXERCISE 10.2. Compute the Hurst parameter for the traffic load generated by Surge. Explain
the resullt.

EXERCISE 10.3. Read [ grossglauser 96-sigcomm| and answer the following questions.

e What isthe main finding of the paper ?
e What isthe model ? How isLRD created ?
e How isthe queuing system solved ?

EXERCISE 10.4. Compute confidence intervals for the bottleneck utilisation in your SURGE ex-
periment, using a single long run.

EXERCISE 10.5. Forecast the Dinda time series using methods that account for LRD. Compare to
methods that do not. Same question for the Sprint traces.

USEFUL S-PLUS COMMANDS

e arima.fracdiff fitaFARIMA model
e arima.fracdiff.sim smulateaFARIMA process
e gamma (), lgamma: I'() andlogI'()
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CHAPTER 11

PALM CALCULUSOR THE IMPORTANCE OF
THE VIEWPOINT

11.1 INTRODUCTION

11.1.1 THE IMPORTANCE OF THE VIEWPOINT

ExamMpPLE 11.1: VIDEO SERVER. Consider the question mentioned in Chapter ??: “A
video server starts the film on a channel three times per hour. Is it fair to say that the
average waiting time is 60mn/3/2 = 10mn ?”. The operator viewpoint may be that a
performance metric is that A = 3 films per hour are started. A customer may have a
different viewpoint. If she connects to the system at a random instant, she will have to
wait until the next movie starts, and we may take as performance metric the average
waiting time. Assume for example that films are started at the hour, the hour plus 5mn,
and the hour plus 20 mn. We can compute the average waiting time by assuming that
our customer picks a minute at random uniformly in the hour. She will thus experience
an average waiting equal to

5 15 40
W, = 50 X 2.5mn + 50 x 7.5mn + 50 x 20mn = 15mn25s

In an attempt to become customer oriented, the provider might change his perfor-
mance metric and compute the average time between films, as follows.

1 1 1
Xp = §5mn + §I5mn + §40mn = 20mn

and since the average time between films is 20 mn, the average waiting time is esti-
mated by the provider to W), = X,,/2 = 10mn.

This shows the importance of the viewpoint. Both computations may look reasonable, in some
sense. In this chapter, we give aframework to analyze the two viewpoints and how they relate.

281
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This example illustrates the use of conditional probability. More generally, it isimportant to scru-
tinize the model used, whenever a probability or an average is used as performance metric. Any
probabilistic result, must come with model assumptions.

11.1.2 PALM CALCULUS

Consider now another example. Assume you are simulating a complex system (for example arate
control protocol). You can sample the system at an arbitrary time instant (an external observer
comes at random, hits the stop key and looks at the system state), or at arbitrary points of interest
(arrivals of feedback messages in the protocol). How do the two relate ?

We will see that Palm Calculus can be use to relate the two viewpoints.

We give the Palm calculus results for both discrete and continuous times, but expose the theory for
discrete time only. The continuous time framework is obscured by constructions that are needed
for existence and stability, but which make the theory difficult to access. In contrast, computations
are sometimes a little more cumbersome in discrete time. We also leave out proofs of stationarity
and ergodicity, which are often difficult problems.

Note that the same framework as we show hereis used in stochastic geometry [Stoyan]. After read-
ing this chapter, the aert reader will find it considerably easier to understand stochastic geometry
concepts (see also exercise 11.7).

11.2 STATIONARITY

WHAT IS STATIONARITY ? Stationarity is a property of a model. A stochastic model X; is
stationary if, for any finite sequence of timest,, t,, ..., t,, and for any time offset v thejoint distri-
bution of Xy, 1, Xty 10, ..., Xt, 4+ 1S INdependent of v.

It means in practice that the system does not become older: a stationary system is one for which
there is no way to gain any information about the age of the system by by looking at its output.

Examples of non stationary models fall in the two broad following categories.

e unstable models: observe the buffer length in agueuing system where the input rateislarger
than the service capacity. The longer the simulation is run, the larger the queue length is.

e modelswith seasonal or growth components, or more generaly, time dependent inputs; for
example: internet traffic grows month after month and is more intense at some times of the

day
Figure 3.1 on Page 64 illustrates the simulation of stationary and non-stationary models.

In many practical cases, we want to separately analyze the effect of time varying inputs (such as
seasonal variations) and of the internal dynamics of the system; we then use a stationary model of
the system.

WHEN IS A SYSTEM STATIONARY ? Thereisno formal answer to this question. Informally,
we think of a system as being non-stationary if the well accepted models of the system are station-
ary. A model iswell accepted if it provides useful answers to some questions. In Chapter 10 we
see some cases where both stationary and non-stationary models can apply to the same data.
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ASYMPTOTIC STATIONARITY AND MARKOV CHAINS Most simulated models can be inter-
preted, at least theoretically, as Markov chains. Thusit isimportant to understand stationarity for
Markov chains.

Consider a Markov chain on a enumerable state space (we recall in appendix the basic properties
of Markov chains). A Markov chainis stable when

e itisirreducible (any state can be reached from any state)
e there exists anon zero solution to the balance equation

For a stable Markov chain, a solution of the balance equation is unique (up to a multiplicative
constant). The only solution that sumsto 1 is called the stationary probability.

Now the distribution of an ergodic Markov chain converges exponentially fast to the stationary
distribution.

This explains why we can think of stationarity as the regime obtained after running a ssimulation
long enough.

A Markov chain is dtrictly stationary if the distribution of the state space at time ¢t = 0 is the
stationary distribution.

QUESTION 11.2.1. Can a model be non-stationary while all of its inputs have a time independent
distribution ? 1

11.3 PALM PROBABILITY

11.3.1 STATIONARY POINT PROCESS

We wish to model a sequence of events that isin stationary regime. Think of it as as a simulation
that has been running for a long time. The mathematical framework for that is the Stationary
Point Process [Baccel li88-book].

A point process in discrete time is a sequence of random time instants 7, € Z withn € Z. Itis
also convenient to use the counting time series instead of the sequence of points 7,,.

DEFINITION 11.3.1. Indiscretetime, the counting time series N associated with a point process
is the random sequence defined by N(t) = > ., L1, -, i.€. N(t) isthe number of points at ¢.

A point processis defined either by the sequence of timeinstants 7;, or the counting time series V.
In continuous time, the counting time series is replaced by the random counting measure defined
by N(I) = the number of pointsin theinterval I.

DEFINITION 11.3.2. A stationary point process in discrete time is a sequence of time instants
T, € Z withn € Z, such that

e (stationarity) the corresponding counting time series N (t) is stationary
e (simple point process) for any ¢t € Z, P(N(i) > 1) =0

1Yes, if it is unstable.



284 CHAPTER 11. PALM CALCULUS OR THE IMPORTANCE OF THE VIEWPOINT

o (liveness) with probability 1, there are infinitely many points in any unbounded interval.

We consider only simple point processes. This means that the counting time series N (t) is always
equal to 0 or 1. Stationarity means that for any finite sequencet; < t; < ... < t,, and for any u the
distribution of N(t; +u), N(t2 + u), ..., N(t, + u)) isindependent of u. See Chapter 9 for testing
whether atime seriesis stationary.

EXAMPLE 11.2: BUSES AT SAINT-FRANCOIS. You stand at the bus stop and observe
buses passing by. T, is the sequence of bus arrival instants. If you arrive at an arbi-
trary time and board the next bus, you experience only one point 7;,. A bus inspector
who measures all bus arrival epochs is able to give an estimate of the time series
N(t). We do not assume here that the bus interarrival times T,, — T,,_; are iid.

EXAMPLE 11.3: RENEWAL SOURCE MODEL. Consider one infinite iid sequence of
positive numbers U,, n € Z. Run a simulation as follows. Draw a point at T} = Uy,
then at Ty = U; + Us, etc. Run the simulation long enough for it to reach steady state.
(We will see a more rigorous solution later). For any interval I, N(I) is the number of
points in that interval. Such a sequence is used in some traffic models, where T, is
the time at which a source changes its rate (Section 10.5).

EXAMPLE 11.4: PoISSON PROCESS. A Poisson process is a point process in contin-
uous time. For any interval [a,b], NJa,b] is a Poisson random variable, i.e. P([a,b] =

k) = 27e~* for some \ > 0. If two intervals T and J are disjoint, then N (I) and N(J)

are independent.

11.3.2 INTENSITY

DEFINITION 11.3.3. By stationarity, A = E(N(¢)) isindependent of ¢ and is called the intensity
of the point process.

Consider now an arbitrary subset I of timeinstants. E(N (1)) = > .., E(N(i)) = A>_,,; 1. Thus
E(N(I)) = Al

where || is the number of elementsin /. In continuous time, the formula is the same, with |/
equal to the “length” (Lebesgue measure) of 7, and we usually require that 7 is measurable. Thus

e incontinuoustime: E(NJa,b]) = A(b—a)
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e indiscretetime: E(N(a,b]) = A(b—a)
QUESTION 11.3.1. In continuoustime, what iSE(N (a, b]) ? 2

QUESTION 11.3.2. Indiscrete time, what isEE(N|a, b]) ? 3

For a Poisson process, A is the usua one. For the renewal source model, we will see below that
A= 1/(E(U,).

In asimulation, X is estimated by the number of points per time unit during steady-state.

We assume the following [Baccelli88-book]:

e \>0

For the Poisson process, thisis naturally true. For the renewal source model, this corresponds to
E(U,) < +oc.

QUESTION 11.3.3. What isthe intensity for the video server examplein Section 11.1.1? 4

11.3.3 PALM PROBABILITY
THE ARBITRARY TIME INSTANT. Intherest of this chapter we use the following convention.
e Thetimeinstants7,, aresuchthat ... < T o < T 1 < Ty <0< T} < T < ...

In other words, we call by convention T, the time instant just before or at time 0. This convention
is the one used by mathematicians to give a meaning to “arandom time instant”: weregard¢ = 0
as our random time instant, in some sense, we fix the time origin arbitrarily.

This differs from the convention used in many simulations, where t = 0 is the beginning of the
simulation. Our convention, in this chapter, isthat ¢ = 0 is the beginning of the observation period
for asimulation that has run long enough to be in steady state.

PALM PROBABILITY AND EXPECTATION.
DEFINITION 11.3.4.

Timeis discrete. Given a point process 7}, the Palm probability P° isthe conditional probability,
giventhat 7o = 0 (i.e, given that thereis a point at time 0).

Thereisasimilar definition for the Palm expectation. The Palm probability represents the point
of view obtained by sampling a system at times7T,,.

Why use a specia notation (P°) instead of the classical conditional probability notation P(...|T, =
0) ? The reason is that, in continuous time, the conditional probability is not defined, since the
probability that a point occurs exactly at time 0 is 0. However, the Palm probability still exists
and all properties are the same as in discrete time. The rigorous definition is complicated: see
[Baccelli88-book].

2\(b—a)

SAA\b—a+1)

4\ = 3 per hour.
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EXAMPLE: BUSES AT SAINT-FRANCOIS. E°(T1) is the average time between buses,
seen by an inspector standing at the bus stop and who spends the hour counting
intervals from bus to bus. E(7}) is the average waiting time experienced by you and
me when we come to the bus stop at some arbitrary time instant and wait for the next
bus. We will see that E°(T}) = 1.

EXAMPLE: RENEWAL SOURCE MODEL. Consider the following special case. Assume
U, is constant, equal to the same value u. Let X; be the time duration from ¢ to
the next point. Given that there is a point at ¢t = 0, the time duration until the next
point is , thus E°(X() = u. In contrast, if we pick a random instant as beginning of
observation period, we should fall anywhere between two points, thus we expect to
have E(Xo) = §. We will give a formal proof later.

EXAMPLE: POISSON PROCESS. Let X; be the time duration from ¢ to the next arrival.
Then P°(X, > x) = P(Xo > 2) = e~*7, in other words, X; is an exponential random
variable, both under P and P°.

REMARK. One should be careful with the convention that 7, < 0 < 7;. Indeed, once we accept
it, T,,.1 — T,, isno longer the interval between two arbitrary consecutive points. In contrast, it is
the nth interval that follows an arbitrary point in time. In this framework, the distribution of the
interval between two arbitrary consecutive points is the Palm distribution of 77 — Tj, (= the Pam
distribution of T7). For example, for the renewal source model mentioned above, we should now

H _ 1
write A = IR

QUESTION 11.3.4. For thevideo server examplein Section 11.1.1, what is (1) the Palm expectation

of the time between films (2) the expected time froman arbitrary instant to the start of the next film?
5

QUESTION 11.3.5. Under P°, what is the probability that 7, = 0 ? ©

11.3.4 JOINT STATIONARITY.

Consider both a point process 7,, with counting time series N(¢), and some process X, on the
same probability space (i.e., both T}, and X; are observed during the same simulation). X; can take
values in any space.

5(1) 20mn (2) 15mn25s.
61.
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DEFINITION 11.3.5. We say that 7,,, X, are jointly stationary iff the process (IV(t), X;) isstrictly
stationary. This means that for any finite sequence of timest; < t, < ... < t,, the distribution of

(N(tl —+ u), Xt1+U7 N(tg -+ U), Xt2+'m couy N(tn -+ 'U,), th+u>

isindependent of w.

If T,,, X; arejointly stationary, then X, isstrictly stationary. Intuitively, the process X; moveswith
T,, whenever we change the time origin. We will freely use informal synonyms such as “ X, is
jointly stationary with 7;,”.

PrRoPOSITION 11.3.1. If T},, X; areisjointly stationary then for any bounded deterministic func-

tion f(): EY(f(X,)) = E°(f(Xo))

Proof. By definition, E*(f(X¢)) = E(f(t)|N(t) = 1) = $E(f(X:)1{n()=1)}) Which, by stationarity,
isindependent of t.

Thus, both E(f(X;)) and E*(f(X;)) areindependent of ¢, for any bounded f.

EXAMPLE 11.5: ELAPSED AND RUNNING TIMES. We use the following notation. Let
TT(t) [resp. T~ (t)] be the first point after [resp. before or at] t. Thus, for example,
T+(0) =Ty and Ti(()) =Tp.

Let X; = T*(t) — t (time until next point), Y; = ¢ — T (¢) (time since last point),
Zy = T (t) — T~ (t) (duration of current interval). Then (X, Y;, Z;) is jointly stationary
with T,,.

QUESTION 11.3.6. IsT"(t) stationary ? *

EXAMPLE 11.6: MARKOV CHAIN. Consider an irreducible finite Markov chain in dis-
crete time and 7;,, = n. Joint stationarity is true iff the initial distribution is the stationary
distribution of the Markov chain.

THINNING. Atevery arrival T,, of astationary point processweassociateatypel, € {1,2,,, M}.
Consider the thinned point process 7' obtained by selecting those points for which 7,, = i. If I,
isthe value of thetype at time T}, then T"! is stationary. Let \; be itsintensity.

QUESTION 11.3.7. Show (in discretetime) that A = -2 A, 8

"No, it is not stationary —its mean is larger for large t.
8

M
A=P(N(t)=1)=Y P(N(t)=1and I, = i)
i=1

Now \; = P(N(t) = 1 and I,, = i).
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11.3.5 ERGODIC INTERPRETATION OF PALM PROBABILITY.

We say that X; is ergodic if the sample path averages of any bounded function of X; converge
to anon-random number. If, in addition, X, is strictly stationary, then this limit is necessarily the
expectation of f(.X;) (which isindependent of ¢). In particular, thisimplies, in discrete time:

E(/(X0) = E(/(X) = lim =3 f(X.)
and in continuous time

E(f(Xo) = E(f(X)) = lim ~ / (X

For a stationary ergodic system, we can thus interpret a stationary probability P(X; € A) asatime
average.

The strong law of large numbers says that an iid sequence with finite mean is ergodic. An irre-
ducible, finite, aperiodic Markov chain is ergodic. If we remove the finite assumption, ergodicity
requires that the chain is positive (i.e. there exists a stable solution to the Kolmogorov equations),
which is a stability argument. Thisis quite general: a process is ergodic if it is stable and mixes
well (any state can be reached from any state).

We say that X;, T,, constitute an ergodic-stationary system if they are jointly stationary and the
process X;, N(t) isergodic. For an ergodic-stationary system, we have the following result:

E°(f(Xo)) = lim NZf Xr,)

This gives the interpretation of Palm probability as an event average. Note that the various formu-
lae (direct, inversion, Campbell) do not require ergodicity; but their interpretation is simple if the
system is ergodic.

EXAMPLE 11.7: Stop AND GO PrROTOCOL. A source sends packets to a destination.
Error recovery is done by the stop and go protocol, as follows. When a packet is
sent, a timer, with fixed value Sy, is set. If the packet is acknowledged before S,
transmission is successful. Otherwise, the packet is re-transmitted. The packet plus
acknowledgement transmission and processing have an constant duration equal to
S < §1. The proportion of successful transmissions (fresh or not) is . We assume
that the source is greedy, i.e., always has a packet ready for transmission. Can we
compute the throughput of this protocol without further information ?

An ergodic interpretation gives the answer. Call N(¢) the number of successfully trans-
mitted packets over some long period of time [0, ¢] and S, (¢) the average time to suc-
cessfully transmit a packet, measured over this interval. Thus S,,(t) = t/N(t). Call A
the throughput and assume the system is stationary ergodic. We have lim;_. -, N(t)/t =
E(N(0)) = X and thus

Sav = tl}er Sav(t) = 1/A

Let Ny (¢) be the number of timeouts occurring during the same time. We have

t=N()S+ Ni(t)S +e€
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where epsilon is an error term, bounded by S;. Call \; the intensity of the timeout
process. Divide the above by ¢, let ¢ go to infinity and obtain:

1=A5+ X5

We need one more equation, in order to compute \;. Call A(¢) the fraction of packets
or acknowledgements lost in [0, t]; we have

A1) (N(£) + Ni(£) = N () £ 1
Further, lim;_,, - A(t) = «, thus, dividing the above by ¢ gives, at the limit
Oé()\ + )\1) == Al

Combining the equations gives

Suw =8+ ——8
11—«

and the throughput is A = 1/S,,,.

11.3.6 RYLL-NARDZEWSKI AND SLIVNYAK'SINVERSION FORMULA

THEOREM 11.3.1 (Inversion Formula). If 7},, X; isjointly stationary, then, in discrete time

Ty Ty —1
= \E° (Z X5> = \E° (Z XS)
s=1 5=0

E(Xp) = AE° < /0 " Xsds)

Proof. (discrete time) We show first that E(X() = AE° (ZST; XS). Condition the main term in the
right hand-side with respect to 77 = ¢;:

and in continuous time

t1

o [ o E(Xslyry =ty Lym=0})
EO (D XTy =t ) =) EXX.|Ty = t) Z B(T, = 1, = 0)
s=1 s=1 ’

thus

E° iX fiEX slir =,y Limy=0) )P(Th = 1, Ty = 0)
= t1=1s=1 P(Ty = t1,To = 0)P(1p = 0)

Multiply by A and obtain, for the right-handside:
RHS= > E(X.{1,—t,}1{z,—0})
(8,t1):1<s<ty
Re-arrange the summation by summing first with respect to ¢; and obtain

+00 400 too >
RHS =3 > E(Xlir—jlin=0) = ) E(Xelir>0lin=0)) = ) E(XsLinp,0=0) Lino)=1))

s=1t1=s s=1 s=1
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By joint stationarity of X, and N:

+oo
RHS = E(Xol{n[1-s,0)=0} L{N(-s)=1})

s=1
+oo —+o0
= ZE(Xol{T—(—l):—s}) =E (Z X01{T—(—1)——s}> = E(Xo)
s=1

s=1

This shows the first formula. The proof for the second formula, E(X,) = AEO(ZST;gl) issimilar.

REMARK. There are many variants of the inversion formula. For example, one can similarly

show that
E(Xy) = AE° (Z XS)

seVp

where V,, (Voronoi cell) isthe set of times that are closest to 7,,, with rounding by excess:

V. = Tn—1+Tn Tn+Tn+1
" 2 2

QUESTION 11.3.8. What does Palm's formula give for X; = T (¢) ? °

11.3.7 APPLICATION TO INTENSITY.

Apply the inversion formulato X; = 1 and obtain
PROPOSITION 11.3.2.

For a stationary point process with intensity A:

1
= ENTy — Tp) = EX(TY)

Thisformulaiswell known for aPoisson process, but we now know that it istrue for any stationary
point process.

11.3.8 APPLICATION: RESIDUAL LIFETIME AND FELLER’S PARADOX

Consider a stationary point process 7,,, with intensity \. Let X, = T (¢) — ¢ be the time from ¢
until the next point, Y; = ¢t — T (t) the time since the last point, and Z;, = X, + Y; the interval
seen at arandom instant.

QUESTION 11.3.9. Whatis X, ? Y, ? Z,? ©

9Nothing, because X, T,, isnot jointly stationary.
10X0 =1 and Yo = -1y, Zo =T, — Tp.
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Note that, with our convention, X; > 0 and Y; > 0.

THEOREM 11.3.2. For any ¢, the distributions of X; and Y; have densities given by

{ fx(s) = APY(T} > s)
fy(s) = APY(Ty > s)

The distribution of Z, is given by
dFz(s) = AsdFr(s)
where Fr isthe Palmdistribution of 7 — T5,.
The Palm probability P°(T; > s) isthe complementary distribution of the time between points. In

discrete time, the theorem meansthat P(X; = s) = APY(T} > s), P(Y; = s) = AP*(T; > s) and
P(Z; = s) = AsPY(Ty = s).

In continuous time, if the Palm distribution of T} — T, has adensity fr, (i.e. dfip(s) = fr(s)ds)
then X; and Y; both have a density equal to

+0o0

fx(s) = fr(s) = A Jr(u)du

s

and Z,; has density
fz(s) = Asfr(s)

Proof. (discretetime) X, isjointly stationary with T, thusits distribution is independent of ¢, and we
can apply the inversion formula. For any s > 0 we have

T:—1
P(Xo = 5) = E(1{xo=s}) = AE" (Z 1{Xu—s}>

u=0

Given that thereisapointat 0 and 0 < u < T} — 1, wehave X,, = T} — u, thus

Tlfl
P(XO = S) = )\EO (Z 1{T1—u+s}>

u=0

Now the sumin theformulais1 if 73 > s and 0 otherwise. Thus
P(Xo =17) = AE° (1{7,55}) = APO(T} > s)

which shows the formulafor X;. Theformulafor Y; issimilar,usingY, = ufor0 < u < Tj — 1.

For Z;, apply the inversion formulaand obtain

T -1
P(ZO = S) = AEO <Z 1{Zu—s}>

u=0

Now under P°, Z, = T} does not depend on « for 0 < « < T} — 1 thus

T -1
P(Zy = s) = AE° <1{T1_5} > 1) = AE® (T11r,—s)) = AsPO(T) = 5)
u=0
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EXAMPLE: POISSON PROCESS.We have fr(t) = Ae™* and PY(T} > s) = PY(T} > 5) =
e~ thus fx(s) = fy(s) = fr(s), as expected: the time until the next arrival, or since
the last arrival, has the same distribution as the time between arrivals. The distribution
of Z; has density

fr(s) = A2se™

i.e., itis an Erlang-2 distribution.

COROLLARY 11.3.1 (Mean Residual Times and Mean Interval). With the notation of Theo-
rem11.3.2:
E(Z:) = AE*(T7))

Further, in discrete time
E(X,) = 3BT\ (T} + 1))
{ E(Y;) = 3EY(Ty(Ty — 1))

and in continuous time )
E(X:) = E(Y;) = §E°(Tf)

Proof. Apply Theorem 11.3.2 or apply the inversion formula directly.

EXAMPLE: BUSES AT SAINT-FRANCOIS. The average time until next bus, seen by you
and me, is

1/1

E(X:) = = [ ~ + Avar’ (T} — Tp)

2\
where var’(Ty — Tp) is the variance, under Palm, of the time between buses. It is the
variance estimated by the inspector. The expectation E(X;) is minimum, equal to %
when the buses are absolutely regular (17 — Ty is constant). If the interval between
buses T} — Ty seen by the inspector is heavy tailed, then E(X,;) is infinite. Thus,
when the inspector should report not only the mean time between buses, but also its

variance.

QUESTION 11.3.10. For the video server examplein Section 11.1.1, verify the value found for the
expected time from an arbitrary instant to the next film, by applying the corollary. *

QUESTION 11.3.11. If T,, is a Poisson process, what isE(7-(0)) ? 12

UTime unitisaslot of 5mn: E°(T7) = (12 + 3% + 8%) = 74/3; A = 1/4; E(X,) = A\/2E°(T?) = 74/24 time

units = 15mn25s as found earlier.
121
by
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FELLER'S PARADOX. Apply now the corollary to Z,, the duration of the interval, seen at an
arbitrary instant. We find

1
E(Z,) = Tt Mvar’ (Ty — Tp)

thus, except for constant bus interarrival times, the mean interval, seen at an arbitrary instant, is
always larger than the mean interval between buses E°(T}, — Tp) = % measured by the inspector !
Thisis called Feller's paradox, and, as we have shown, it holds for any stationary point process
(in particular, whatever the correlation between successive intervalsis). An intuitive explanation
isthat if we pick arandom time interval, we are more likely to fall in alarge one.

QUESTION 11.3.12. For the video server example in Section 11.1.1, what is (1) the Palm expec-
tation of the time between films (2) the expected time between films measured from an arbitrary
instant ? 13

QUESTION 11.3.13. Isit fair to say that the average waiting time is the average interval between
evants, divided by 2 ? 4

QUESTION 11.3.14. Answer the question asked in Chapter ?? about the video server example: “ Is
it fair to say that the average waiting timeis 60mn /3/2 = 10mn " ?

QUESTION 11.3.15. Does Feller’s paradox apply to a Poisson process ? 16

QUESTION 11.3.16. How do you interpret the difference between the discrete time and continuous
time resultsin Corollary 11.3.1 ? ¥/

QUESTION 11.3.17. Prove the statements for the renewal source model in Section 11.3.3. 8

11.3.9 WHEN CAN A SEQUENCE OF TIME INSTANTS BE CONSIDERED A
STATIONARY POINT PROCESS ?

In some cases, such as the random waypoint model in Example 3.5 on page 68, we are given the
state of the system at transition instants. In this section we examine whether it isformally possible
to build a point process for which the states sampled at transition instants correspond to the Palm
viewpoint.

To understand why thisis an issue, consider the following example.

EXAMPLE 11.8: RANDOM WAYPOINT. The random waypoint model is defined in
Example 3.5 on page 68. The intensity of the process of transitions (or “waypoints”)
is given by the Palm inversion formula:

AT =BT = B

13(1) 20mn (2) E(Z;) = 2E(X;) = 30mn50s.

14ves, if averages are at arbitrary instants, since (at least in continuous time) E(X;) = %E(Wt).

5No, this performance metric does not represent customer waiting times. It is fine to divide by 2 for expectations
at arbitrary time points, but it does not represent customer waiting time if we apply it to Palm averages.

18For a Poisson process, E(W;) = 2/\ = 2E°(T}), so the answer is yes. The average at arandom instant is twice
as large as seen at arandom point of the Poisson process.

17An observer arriving at an arbitrary discrete time instant samples the system slightly differently than one arriving
at an arbitrary continuous time instant. If the time unit is very small, the difference can be neglected.

18Direct application of Corollary 11.3.1, in continuous time, taking d 'y = Dirac mass at .
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with Dy := ||M; — My||. By construction, D, and 1}, are independent. Thus

A= E(DDE( )
0

It is finite if and only if EO(VLO) is finite, which means v, > 0.

If vimin = 0, the formula would give A = 0, which means that there is a problem.

In the case v,,;, = 0, Pam calculus does not apply, i.e. we cannot consider the transitions as
the transition instants of a stationary process. A simulation study shows that in fact, the system
“freezes’: asyou run the simulation longer and longer, it becomes more likely to draw avery small
speed V,,. When such asmall speed is drawn, the system stays with a very long time at this speed.

In contrast, for v,,;, > 0, it does. We give in this section a theorem that states such aresult.

THEOREM 11.3.3. Consider a sequence of wide sense increasing, random, times 7y, = 0 < 77 <
T, < ..., and of randomvariables Yy, Y;, ... such that

C1 (T, — T,,-1,Y,) isstationary with respect to the index n.

Then T,, can be considered as the points of a stationary, marked point process, observed condi-
tional to the event “ thereisan arrival at time 0" if and only if

C2 EO(Tl) < 00

C3 ]P)O(T1 > O) =1

Further, define the process Z; by Z; = Y,, withn suchthat 7, <t < T,,.;. ThenT,,, Z, arejointly
stationary.

The proof iscomplex — see[Baccelli88-book]. In continuoustime, thereis an additional condition:

C4 E°(N(0,t)) < coforalt > 0.

REMARK. A process Z; such that

o T, 7, arejointly stationary
e 7, isconstant on intervals of the form [T,,, T},.1)

iscalled amark of the point process.

EXAMPLE 11.9: RENEWAL SOURCE MODEL (l.1.D INTERARRIVAL TIMES). Let T, =
0,7y =Us,...,T, = Uy + Uy + ...+ U, where U, is iid > 0. Under which conditions can
we consider these points as the realization of a stationary point process with a point
attimet=0 ?

The answer is: the inter-arrival time .S, is not identically zero (with probability 1) and
has finite mean.
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Proof.

Here condition C1 is obviously true. We now apply the remaining conditions in the
theorem.

Conditions C2 and C3 mean that the inter-arrival time Sy is not identically zero
(with probability 1) and and has finite mean.

Condition C4 is always true if U; is not identically 0. We prove this now.
First note that

E(N(0,) = Y KPO(N(0,t) =k) =Y PO(N(0,t) > k) = Y P°(Tx <t)

E>1 k>1 k>1
(11.1)
Pick some arbitrary, fixed s > 0; by Markov’s inequality:
]P)O(Tn S t) S estEO (e_ST")

Now E° (e=5T») = E (e~*(i+--+Un)) is the Laplace-Transform of the convolution
of n independent random variables. Thus

PO(T, < t) < e™'GF(s)

where G(s) := E (e*U*) is the Laplace-Transform of U;. We have G(s) = 1 if and
only if sU; = 0 with probability 1. Thus, by hypothesis, G(s) < 1 since s > 0. By
Equation (11.1):

E(N(0,1)) < ey " G¥(s) < o0

k>1

ExAMPLE 11.10: RANDOM WAYPOINT. The random waypoint model is defined in
Example 3.5 on page 68. We apply the theorem to the sequence of times T,, and
marks (M,, V,,). We obtain that the random waypoint is stationary if and only if vy, >
0.

Proof. Condition C1 is true by construction since speed and next position at tran-
sition instants are iid.

Condition C2 follows from :
1
E°(Ty) = E°(D1)E% ()
Vo

It is bounded if and only if EO(VLO is finite, which means here vy, > 0.

Condition C3 is obviously true.

Condition C4 : The inter-transition times S,, = T,, — T,,_1 are not all independent,
but S,, and S,, are independent if n — m > 2. The rest of the proof is similar to the
proof in Example 11.9 on page 294
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11.4 A MENAGERIE OF PALM CALCULUS FORMULAE.

We give here a few useful theorems which hold in discrete and continuous times. We give the
proofsin discrete time only.

11.4.1 CAMPBELL'SFORMULA

THEOREM 11.4.1 (Campbell’s Formula). let T,, be a stationary point process with intensity A and
F(t) a bounded, random (not necessarily stationary) process.

E (Z F(T,J) =AY EY(F(t))

nez teZ

where E* isthe conditional expectation, given that thereisa point at .

Proof. The left handside of the equation in the theorem is

E (Z F(t)l{N{t}—1}> =Y E(FM)liny=1y) = D E(F@O)P(N{t} = 1) =AY E'(F(1))

tEL teEL teEL tEL

0

In continuous time, E! is not strictly speaking a conditional expectation, and a rigorous state-
ment requires a complex formalism, which we do not develop here. Assuming such aformalism,

Campbell’sformulais
E (Z F(Tn)> =\ / E(F(t))d (11.2)

nez

SPECIAL CASE If F'(t) = f(t) isnon-random, Campbell’s formula gives, in discrete time

E (Z f(Tn)) =AY f(t) (11.3)

neL teZ

and in continuous time

E (Z f(Tn)> - [ s

neZ

ExAmMPLE 11.11: SHOT NOISE WITH DETERMINISTIC SHOTS. A shot noise process
is defined by X(t) = >, ., h(t —T,), where T, is a stationary point process (“shot
epochs”) and h(t) a function such that i(t) = 0 for ¢ < 0. Shot noise is used to
model traffic in a backbone network in [Barakat02-infocom], where T;, represents the
beginning of sessions and h(t) the bit rate generated by one session that would start
at time 0. We say here that the shots are deterministic to express that h(t) is non-
random.
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A direct application of Campbell’s formula to f(t) = k(7 — t) gives, for any time 7:

=E (Z f(Tn)> =A> h(t—7)

neL teZ

thus
E(X(7)) =E(X(0)) =AY _h(t) (11.4)

teZ

which is also known under the name of Campbell formula. In continuous time, we
have

+oo
E(X(r)) = E(X(0)) = A /O oy

APPLICATION: SHOT NoOISE A genera shot noise processisdefined by X (t) = > ., h(t —
T., Zr,), where T,, is a stationary point process (“shot epochs’), Z, amark, and h(t, z) afunction
suchthat h(t,z) = 0 fort < 0. For the example of internet traffic, 7,, isthe beginning of asession,
Zr,, isthe random parameter chosen for session n and h(t, z) the bit rate generated by one session
that would start at time 0, and has parameter z. A direct application of Campbell’s formula to
F(t) = h(—t, Z;) gives

0)) =AY E(h(—t,Z)) =AY _E'(h( t),2,))

teZ teZ
now ¢t — T (t), T,, isjointly stationary. Thus, by Proposition 11.3.1
E!(h(~T~(t), Z) = E (h(t = T~ (t) — t, Z) = E°(h(~t. Zy))

and
=AY E(h(—t,Z)) = AE° (Z h(—t, ZO))
teZ teZ

which can be re-written as
0)) =AY E°(H(t)) (11.5)
teN
where H(t) := h(t, Zy) isthe value at time ¢ of the random function chosen for a typical shot.
Thereis an equivalent formulain continuous time:

E(X(0)) _)\/0 T E(H()d

Equation (11.5) is also known as a Campbell formula for shot noise. Note that the stationarity
assumption impliesthat X () is stationary and thus E(X (7)) = E(X (0)) for any time 7. Compare
to Equation (11.4): the expected value of the shot noise is the same as if we replace the random
shot H (t) by its expected value. We have shown that this holds quite generally, whether the shot
epochs are a Poisson process or not.
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11.4.2 LITTLE'SFORMULA.

THEOREM 11.4.2 (Little). Consider a sequenceT,,, Y, stationary with respect to index n. Assume
that 7;, can be viewed as a stationary point process, with intensity A\ (see Theorem 11.3.3). Let
X(t) = > ez Vimu<t<vo+1,y and define Z, by Z, = Y, if and only if T}, < leqt < T),1,. We
interpret 7,, as customer arrival times, Y,, as the residence time of the nth customer, Z; as the
residence time of the last customer who arrived before or at t and X (¢) asthe number of customers
present in the system at time ¢t. Then for any ¢

E(X(0)) = AE*(Z)

The theorem relates the average number of customers at an arbitrary instant to the average resi-
dence time seen by an arbitrary customer.

Proof. Apply Campbell’sformula, with F'(t) = 1;<o<z,++- Theleft-handsidein Campbell'sformula
isE(X(0)).

Let us compute the right-handside. If ¢ > 0 then F'(¢) = 0. Else EY(F(t)) = P!(Z; > —t). Now by
joint stationarity, P*(Z; > u) = P%(Zy > u) for any w > 0. ThusE!(F(t)) = P°(Z, > —t) and the
right handsideis

A PU(Zy > —t) =AY PY(Zy > u) = AE'(Zy)

t<0 u>0

Note that, by stationarity, we also have E(X (t)) = AE'(Z;) for any ¢.

11.4.3 NEVEU'SEXCHANGE FORMULAE

THEOREM 11.4.3 (Exchange Formula). Consider two jointly stationary point processes 7;, and
T, with counting time series V and N’, and intensities A\, \'. Let X; be jointly stationary with
them. This means that the joint process N (t), N'(t), X, is strictly stationary. Call EY; [resp. E%,]
the Palm expectation with respect to the first [resp. second] point process. Timeis either discrete
or continuous. Then:

AEY (X)) = NEY, (Z XTm1{0<Tm§T1/}> — VE%, (Z XTm1{0§Tm<T{}>

MEZ meZ

Proof. (discretetime): Apply theinversionformulato XN (s) andnotethat >, X, Lio<r,, <17} =
S XN ().

COROLLARY 11.4.1.
A = NEY, (N(0,T7]) = NEY, (N[0,17))

Proof. apply the theorem with X, = 1
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0
COROLLARY 11.4.2 (Wald’s Identity).
0 Bl (X ez X1 Lo<ra<ryy)
IE’N (XO) = 0 /
IE‘:’N’ (N(()?Tl])
Proof. First Corollary 11.4.1, then apply Theorem 11.4.3
0

REMARKS. The exchange formulae do not make any assumption about the joint behaviour of
the two point processes, other than stationarity. Wald's identity is often shown under restrictive
assumptions (for example, when X, isan iid sequence), but we have shown here that it is generally
true.

The exchange formula can aso be applied to Voronoi cells.

APPLICATION: THE STOP AND GO PROTOCOL. Were-visit the computation of the stop and
go protocol given in Section 11.3.5. Apply the corollary with the first process equal to arrivals of
fresh packets, and second process equal to all retransmission attempts. Thus the second process
contains al points of the first process, and more. We have, by Theorem 11.4.3 with X, = 1:

A= NEQ, (N, 7T'1]) = N(1 — «)
where the last equality is by definition of o.. We compute A’ from Proposition 11.3.2:

%:(1—04)5”51

Combining the two giveﬁi = S+ %5, asdready found.

11.4.4 MATTHES DIRECT FORMULA

The direct formula gives an intuitive interpretation of Palm probability:

THEOREM 11.4.4 (Direct Formula). If T,,, X, isjointly stationary, then for any interval I:

EO(XO) = ﬁE ( Z XTn>

n such that T,,€1l

Proof. Apply Campbell’'sformulato F'(t) = Xp— 10— @en:

E ( > XTn) =E(Q_ F(T0) =AY E' (Xo- L= men)

n such that T,, €Tl teZ
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Now, by stationarity

E'(X7- ) 1ir-wen) = EX(Xr- o) 17— 0)ery) = E°(Xolpoer—t}) = LieryE*(Xo)
where I — tistheset {i —t,i € I}. Thus

E ( Z XT,1> = )\Z LienyE°(Xo) = AH|E°(Xo)

n such that T,, €Tl teZ

ExXAmMPLE 11.12: ELAPSED AND RUNNING TIMES. Consider some stationary point
process T, and let Z, = T+ (t) — T~ (t). (Z;,T,) is jointly stationary and thus we can
apply the direct formula. Let us take I = [0, ¢]. On one side we have:

E%(Z) = E'(Th) = %

On the other side, we find

1 1 1 _
EE (nﬂ;;q ZTn) = EE ( Z Thy1 — Tn) = %E (T*(t) - T7(0))

n0<Tp<t

Thus
E(T*(t) —t =E(T(0)) =E(t - T (1))

which expresses that, in average, the time from an arbitrary instant to or from the next
point are equal.

11.5 CASE STuDY: THROUGHPUT OF TCP

TCP is considered to be the reference protocol in the Internet, and any session should have a
throughput not exceeding that of TCP. Therefore, there is interesting in understanding the perfor-
mance of TCP. TCP controls its sending rate by increasing it when there is no congestion,a nd
reducing it when it receives a congestion signal. A congestion signal is a packet loss in the cur-
rent internet, or abit in an acknowledgement packet in the future. The following paper relates the
throughput of a TCP connections to the characteristics of the loss process.

Read [Altman00-Sigcomm] and answer the following questions.
QUESTION 11.5.1. What isthe performance metric used for a TCP connection ? *°

QUESTION 11.5.2. What is the equation describing the evolution of the rate of the TCP connec-
tion ? 20

19The throughput X (¢), assumed to be represented by a stationary process.
20

XnJrl = VXn + OzSn
where v is the decrease factor and o the linear increase term.
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QUESTION 11.5.3. What are the values of o and v? !

QUESTION 11.5.4. What is the stationary point process used in the paper ? What is its intensity
called ? %

QUESTION 11.5.5. In our framework, how would we write E( X)) and E((X)% ?
QUESTION 11.5.6. Howare E(X)) and E°(X (0)?) computed ? 24

QUESTION 11.5.7. How isthe throughput related to X, ? %

QUESTION 11.5.8. Which jointly stationary process in the inversion formula applied to ? %

QUESTION 11.5.9. What is the difference between loss event rate and the intensity of the loss
process ? %/

QUESTION 11.5.10. What is the loss-throughput formula obtained in the paper ? %

QUESTION 11.5.11. What is the “ famous square root formula” ? Under which assumptionsis it
valid ? %

QUESTION 11.5.12. What isthe conservative timeout model ? *

QUESTION 11.5.13. How do the authors derive the throughput formula for the conservative time-
out model ? 3t

Ao =1/(bRTT?). Infact, b = 1/M SS? (maximum TCP segment size). v = 0.5.

2The sequence of loss events. It is not necessarily stationary, but the authors show that it converges to a stationary
point process and place themselves at the limit. A = 1/E°(S;).

23These are Palm probabilities. We would write them E° (X (0)) and E°(X (0)?).

2First, an EWMA representation of the stationary sequence X is given. Second, this is used to derive the mean
and second moment, using a direct computation.

2By the inversion formula.

BX(t).

2'The loss event rate, p, is defined by an ergodic interpretation as the long term average of the number of losses per

data unit sent. It isequal to

A
o8 E(X(0))"

1+1/ 1 iy

where C‘(k) is the normalized auto-covariance function (covariance/square of mean), under Palm, of S,,.

2|t jsthe formula obtained for a deterministic S,,.

30A more accurate model that accounts for the fact that |oss events are of two types: with timeout (TO) or without
(TD). With TO, the dynamic of the system is dlightly different. During some period, in average equal to Z, the rateis
setto 0

3lFirst, they derive the throughput X' of the virtual system where the idle periods are deleted. Thisis the same as
in the original case. Second, they use an ergodic interpretation to show that the real throughput is related by

X = (1- \oZ)X'

Itisin fact athinning formula and could be obtained by reasoning with conditional probabilities.
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QUESTION 11.5.14. What isthe model with transmission rate limitation ? How is it solved ? 3
QUESTION 11.5.15. How isthe mode! validated ? %

QUESTION 11.5.16. How do the authors compare their model to competing ones ? 3

11.5.1 MODULATED MODELS.

A powerful, generic family of models can be built using modulators, as follows. Consider a sta-
tionary point process 7;, with amark Z, that takes afinite number of values 1, ..., I, called “ states”.
Given afunction y; of the state i, we are interested in the process Y; = y,,. We say that Z; isa
modulating process and Y; is amodulated process.

There is a discrete time, finite space, ergodic Markov chain X,,. At step n we draw a random
number S,, according to adistribution F;, withi = X,,, independently of all past, given that we are
in state 7. A continuous time process Z;, called the modulator, stays in state 7 for a duration equal
toS,. Cadl T, =5 +..+S,. Wehavethus Z, = X, iff T,, <t < T,,,. We assume that the
system is stationary, thus 7, is a stationary point process, and Z; is a mark.

PROPOSITION 11.5.1. Let 7) be the probability that the modulator is in state i at an arbitrary
transition and T; = E°(T}, — Ty|Z, = 1) the expected duration of an inter-transition time, starting
from state ;. \e have

{ A=> W?Ti

E(Y:) =AY My

Proof. Apply theinversion formulato 1 thento Y;

O

32In many cases, therate X (t) cannot grow indefinitely, but islimited to amaximum M. This changesthe dynamics
of the system to
Xpyr1 =M A WX, + aS,)

The new system is harder to study. The authors take v = 1/2 use a bounding technique and min-plus algebra, they
re-write the dynamics as

1 1
Xn+1 = (M — §Xn) A (O[Sn) + an

which can be used to show that an upper bound is X, with

Xng1 = [(M A (aSp)] + =X,

N |

and alower bound is X,, with

Xn+1 = |:]2w A (QSW):| + %Xn
Then the same method is used to obtain the palm expectations and the throughpui.
33By alimited number of measurements.
34Their model makes no specific assumption on the loss process. Competing works assume the loss process s either
deterministic or Poisson. The authors find that this introduces some errors, but in some cases the errors are largely
cancelled by inaccuracies in the model (such as absence of TO or rate limitation effects).
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ExAmMPLE 11.13: Loss CHANNEL MoDEL. A path on the internet is often model
as a loss system, where the packet loss ratio P, depends on the state of a hidden
modulator. Assume that when the modulator Z; is in state i, the loss ratio is p;. We
have P, = pg,.

We find that the time average loss rate is

p=Lo

See exercise 11.7 for an application to the Internet.

QUESTION 11.5.17. What isP(Z; = i) ? *®

REMARK. MARKOV MODULATED PROCESS. A special caseiswhen Z; isamarkov process.
The modulated process Y; isthen called amarkov modulated process. Note that Proposition 11.5.1
does not assume any Markov property.

11.6 APPLICATION TO MARKOV M ODELING

For aquick review of Markov chains, see Section 11.8.
| to be completed— add Erlang|

11.6.1 EMBEDDED SuUB-CHAIN

If we observe a Markov chain at selected transitions, we obtain an embedded sub-chain. We
explain in this section how to compute all elements of the embedded subchain.

Consider first a discrete time chain. Let C' be a matrix such that A — C' is wide-sense positive.
We consider that C' defines a process of selected transition, as follows. Whenever a transition
i, j of the markov chain occurs, we draw a random number, independent of all past, and with with
probability C'i, j/(Q); ; decide that the transition is “ selected”. To gain some intuition, consider the
smplecasewhereC; ; = A; ; or 0. Define F = {(i, j) € E? : C;; = Q,,}; atransition is selected
if itisin F. In continuous time, the definition isthe same with A in lieu of Q.

Call T,, the point process of selected transitions. Then X, isitself a markov chain, since the
knowledge of the state at the nth transition is sufficient to compute the probabilities of future
events (this is the strong markov property). The sequence Y,, = X, is called the embedded
sub-chain and we say that C' isthe matrix of selected transitions.

THEOREM 11.6.1 (LeBoudec84-diss). Consider an ergodic, stationary markov chain X;, t € Z,
with stationary probability 7. Consider an embedded sub-chain Y;, with matrix of selected transi-
tions C; ;.

*Apply the propositionto y; = 1;—;y and find P(Z; = i) = AnT;.
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1. Thetransition matrix J of the embedded sub-chain Y, satisfies (ld —Q + C)J = C (discrete
time) or (C' — A)J = C (continuous time).

2. Theintensity of the point process of selected transitionsisn = Zm‘ mCij

The probability that a selected transition is (¢, j) iSPY(X_; =4, Xy = j) = %m(J(z’,j).

4. The probability to be in state j just after a selected transition is 7} = P(Xy, = j) =
% >, mC(4, 7). The probability to bein state i just before a selected transition isP%(X_; =

i) =y 2, C(i, 7).

w

Proof. By the strong markov property:
Jij =P Xr, = j| X1, = i) = P(X7+(0) = j| Xo = 7)
Condition with respect to the next transition, selected or not:

Ji»j = Z Qi,k —+ Z Qi,k’P(XT‘*’(O) = ]|X1 =k and Xo = Z)
k:(i,k)EF k:(i,k)EF

Now, for (i, k) & F, given that X = i, X1 = k, wehave T"(0) = T (1). Thus, the last term in the
previous equation is

> QuPXriqy=jlXi=kand Xo=i)= Y QixJi,
E:(i,k)gF E:(i,k)gF

Combining the two gives J = C + (Q — C)J which showsitem 1.

Now, by definition of an intensity, n = Z(m)ep P(Xyg=jX1=diadP(Xg=j,X_1=1) =
WiQi,ja which shows item 2.

By application of Matthes's direct formula
0 . ) 1 1 ) .
PY(X_1=4,Xo=1j) = ;E(I{X,lzj}l{XO:i}l{(i,j)eF}) = EP(X—l =7j,Xo =)@ jery

which showsitem 3. Item 4 follows immediately.

QUESTION 11.6.1. Isthe embedded sub-chain irreducible if the original oneis ? 3¢

EXAMPLE 11.14: ARP REQUESTS WITHOUT REFRESHES. IP packets delivered by a
host are produced according to a Point process with A packets per second in average.
The packet delivery is a renewal source model, with the time between packet arrivals
having a phase type distribution. This models an almost constant inter-arrival time.
When a packet is delivered, if an ARP request was emitted not more than ¢, seconds
ago, no ARP request is generated. Else, an ARP request is generated. (¢, is the ARP
timer). What is the probability p that an arriving packet causes an ARP request to be
sent ?

Consider discrete time. We can model the system as a Markov chain X; with state
(i,s) where i is the phase of the modulator of the inter-arrival time model and s €

3Not necessarily, it may have states that are never reached. For example, take F = {(0, 1)}; all states other than 1
are never reached.
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{0,1,...,t,} is the remaining lifetime of the timer. Let Q;; be the transition matrix
of the modulator and 6; the arrival rate given that the modulator is in state i. The
transitions of X; are

(1,s) — (4,s — 1) with probability Q; ; for s # 0
(¢,0) — (J,0) with probability Q; ;(1 — 6;)
(2,0) — (J, tq) With probability Q; ;6;

We can thus compute the stationary probability 7s(i) := E(X; = (i,s)) from the
steady-state equations (75 is a row matrix and © = diag(6;)) :

s =TMer1Q 0 < s <t,
Tt = mrOQ
o = mQ + mo(ld — ©)Q

which solves into
Ty = mpOQ 1S

and
7o = mOQ T + Iy (Id — ©)Q

The last equation gives my up to a multiplicative constant.

Now we apply Theorem 11.6.1 with selected transitions corresponding to a packet
arrival. Call ¢(i, s) the probability that an arriving packet sees the system in a state

(i,s). We have
p= Z Q(iv ta)

Now ¢(i,s) = Y (ms:10Q)[i] for s # t, and q(i,t,) = 0~ H(mOQ)[i] = n~(m,)[i].
Thus p =n~" >, m,[i]. We compute n by the normalizing condition _, . q(i, s) = 1.

Numerical App to Erlang-k|

'to be completed- add Erlang|

“OBSERVABLE TRANSITIONS” OF A DISCRETE TIME CHAIN. Consider achain with more
than 1 state, such that Q;; > 0 for some, i.e.,, there are some looping states. Let C' be the set of
non-looping transitions: C; ; = @, ; fori # j and C;; = 0. The embedded sub-chain is the chain
that is observable. Itstransition matrix is J = D~'C' = diag((1 — Q;,;)~")(Q — diag(Q.).

QUESTION 11.6.2. Whyis1 — Q;; # 0 inthisexample ? ¥

11.6.2 DISCRETE TIME CHAIN EMBEDDED INA CONTINUOUSTIME CHAIN.

Consider a stationary ergodic continuous time chain X, with generator A. Let 7, be the point
process of transition epochs. The embedded sub-chain has transition matrix J = D~'(A + D)
where D = —diagA, ; isthe diagonal matrix whose ith element is the rate of transition out of state

3"Because ; ; < 1 otherwise the chain is not irreducible.
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i. Pug differently, this saysthat the probability that the next transition leadsto state j, starting from
i,is 5t

7,2

Define T; = E°(T1|X, = i) the mean sojourn time is state .. We know that T; . By

application of Proposition 11.5.1 we find the relation between state probabilities at an arbltrary
time and at an arbitrary transition:

m
D,

The rate of transitions 7 is obtained by expressing that >, 7, = 1:

™ ="

11.6.3 PASTA

THEOREM 11.6.2 (PASTA). Consider a system that can be modeled by a stationary, ergodic
Markov chain. We are interested in a matrix of C' > 0 of selected transitions such that

e For any state ¢, Zj C;; = Alisaconstant.

The point process of selected transitions is a Bernoulli process (discrete time) or Poisson process
(continuous time) with intensity A. The Palm probability to be in state i just before a transition is

the stationary probability.

A Bernoulli process isaPoint processin discrete time such that N (¢) isan iid sequence.

Proof. (discrete time) The probability that there is a transition at time 1, given that X, = ¢, is A,
independent of . Thus V(1) isindependent of the state at time 0. Since we have a Markov chain, the
state at time 1 depends on the past only through the state at time 0. Thus N (1) isindependent of N (¢0)
forall ¢t > 0. By stationarity, it followsthat N (¢) isiid, i.e. isaBernoulli process.

The relation between Palm and stationary probabilities follows from Theorem 11.6.1, item 4. The Palm
probability to bein state i just before atransitionis

%TQZC(Z,']) = -

The sum of probabilitiesis 1, thus necessarily % =

INTERPRETATION Theconditionthat } . C; ; is aconstant is called the “Lack of Anticipation
Assumption”. Another way to view the theorem isto say that a Poisson process of events sees the
system as an observer at an arbitrary point in time, provided that the future of the event processis
independent of the state of the system.

Interpret C' as external arrivals into a queuing system. The theorem is known as “Poisson Arrivals
See Time Averages’, hence the acronym.
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ExXAMPLE 11.15: ARP REQUESTS WITHOUT REFRESHES. Consider the example in
Example 11.14 on page 304, but assume that the IP packets delivered by a host are
produced according to a Poisson process with intensity A\. What is the probability p
that an arriving packet causes an ARP request to be sent ?

Call T,, the point process of ARP request generations, and p its intensity. First, let p
be the probability that an arriving packet causes an ARP request to be sent. We have

= pA (11.6)
(to see why, assume time is discrete and apply the definition of intensity).

Second, let Z, = 1 if the ARP timer is running, 0 if it has expired. Thus p is the
probability that an arriving packet sees 7, = 0. To see why the PASTA property
applies, think in discrete time. The system can be modeled by a Markov chain with
X; = the residual value of the timer. We have Q;;—1 = 1fori > 0, Qo:, = A\, Qoo =
1 — A. The selected transitions are packet arrivals, corresponding to C; ; = Cp s, = A
and C; ; = 0 otherwise. Thus we can apply Theorem 11.6.2 in discrete time, and we
extrapolate that we can do the same in continuous time. Thus p = P(Z; = 0).

By the inversion formula:

1
p= P(Zt = 0) = :UJEO(TI - ta) =p (M - ta) =1—pt, (11'7)
Combining the two equations gives p = ﬁ (and p = ﬁ).

ExXAaMPLE 11.16: M/GI/1 QUEUE. A similar reasoning shows that for a queuing sys-
tem with Poisson arrivals, an arriving customer sees the system (just before its own
arrival) in the same way as an external observer arriving at an arbitrary instant.

EXAMPLE 11.17: A POISSON PROCESS THAT DOES NOT SATISFY PASTA. The PASTA
theorem requires the event process to be Poisson or Bernoulli and the lack of antici-
pation assumption. Here is an example of Poisson process that does not satisfy the
lack of anticipation assumption, and does not have the PASTA property.

Construct a simulation as follows. Requests arrive as a Poisson process of rate A
into a single server queue. The service time of the request that arrives at time T,, is
%(Tnﬂ —T,). The service times are exponential with mean % but not independent of
the arrival process. The system has exactly one customer during half of the time, and
0 customer otherwise. Thus the stationary distribution of queue length X, is given by
P(X; =0) =P(Xy =1) =0.5and P(X; = k) = 0 for £ > 2. In contrast, the queue
is always empty when a customer arrives. Thus the Palm distribution of queue length
just before an arrival is different from the stationary distribution of queue length.

The arrival process does not satisfy the lack of anticipation assumption: at a time
t where the queue is not empty, we know that there cannot be an arrival; thus the
probability that an arrival occurs during a short time slot depends on the state of the
process.
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APPLICATION TO MEASUREMENTS. The PASTA property shows that sampling a system at
random observation instants, distributed like a Poisson or Bernoulli process, provides an unbiased
estimator of the stationary distribution.

11.6.4 APPLICATION: PERFECT SIMULATION

In some cases, it is possible to start a smulation immediately in the stationary regime (Perfect
Simulation). Theoretically, if we know the stationary distribution of a Markov chain, all we need
to do isdraw a state at random according to this distribution and run the program. In practice, this
may not be as simple.

Consider the Renewal Source Model defined in Section 11.3.1. Think of it as a Markov chain,
with X; = T*(t) — ¢, ie. the state of the model is the time until the next arrival. The stationary
distribution is given by theresidua life resultsin Theorem 11.3.2. Thuswe can start the ssimulation
immediately in steady state by drawing a random number V; that follows the distribution of the
residua time, which has adensity f(¢) = AP°(U; > ¢). Then set 77 = V; and from there on run
the simulation as before.

11.7 EXERCICES

EXERCISE 11.1 (Residual Time). Consider the notation of Theorem 11.3.2. Is the distribution of
Z, equal to the convolution of those of X; and Y; ?

EXERCISE 11.2. Adistributed protocol establishes consensus by periodically having one host send
amessageto n other hostsand wait for an acknowledgement. Assume the timesto send and receive
an acknowledgement areiid, with distribution F'(¢). What is the number of consensus per time unit
achieved by the protocol ? Give an approximation using the fact that the mean of the kth order
statistic in a sample of n is approximated by F—1 (niﬂ). Compare to [ Bakr02-PODC].

ExERCISE 11.3 (File Distributions). Packets arriving at a router belong to flows. Let P(x) bethe
probability that, for an arbitrary packet, its flow is of size = packets. Let F'(x) be the probability
that an arbitrary flow is of length = packets. Show that there is a necessary relation between P()
and F(). Verify thisrelation on Figure 2 in [ Anees99-S gcomm].

EXERCISE 11.4 (ARP protocol with refreshes). |P packets delivered by a host are produced ac-
cording to a stationary point process with \ packets per second in average. Every packet causes
the emission of an ARP if the previous packet arrived more than t, seconds ago (¢, is the ARP
timer). What is the average number of ARP requests generated per second ?

EXERCISE 11.5. Read [Rougier00-PE] and answer the following questions. To be done.

EXERCISE 11.6. (Rekeying for Multicast) Read [ Zhang02-Perf] and answer the following ques-
tions. To be done.
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EXERCISE 11.7 (Rate Control in the Internet). Read [Vojnovic02-Sgcomm] and answer the fol-
lowing questions.

What isa TCP friendly rate control ?

Why isthere a difference between TCP friendly and conservative ?

What is the loss parameter p ?

What isthe “ loss event interval” 6,, ? What is the estimator én ?

What isthe basic control ? What is the relation between average rate and 0, ?
What is the main argument in the proof of Theorem 1 ?

What is the main conclusion of Section 5.1 ?

Do we need the Markov chain property in Section 5.1 ?

Why do the authors expect TCP to see a higher loss parameter than a rate controlled appli-
cation ?

Why does a Poisson source experience the stationary |oss estimator ?

WCoNoak~wWNPE

H
o

EXERCISE 11.8. Consider the Aloha with a finite number of stations. More precisely, we consider
a set of m stations running the slotted Aloha protocol. Assume they operate as follows:

e fresh arrivals to a station is according to a Bernoulli process, with 0 or 1 packet arrival
per time slot per station. ¢, is the probability of 1 arrival during one time slot. All arrival
processes are independent. All packets have a transmission time equal to one time slot and
all stations are synchronized.

e When a station experiencesa collision, it becomes backl ogged and remains so until the packet
is successfully transmitted. Backlogged stations attempt to retransmit according to mutually
independent Bernoulli trials; call ¢, the probability that a given sbacklogegd station attempts
to retransmit during one time slot. When a station is backlogged, all arriving (fresh) packets
are simply discarded.

1. Compute a(k, i), the probability that there are £ fresh arrivals in one time slot given that
there are i backlogged stations, compute r(k, i), the probability that there are k retransmis-
sion attempts in one time slot given that there are ¢ backlogged stations.

2. Give a discrete time Markov chain model with (m + 1) states for this system. Write the
transition probabilities (7, j). Express Q(7, j) by using a() and r().

3. Call p(i) the steady-state probability of state n; find a method to compute p(z). You can use
a mathematical package such as Mathematica.

4. Call S(i) the expected number of succesful transmissions in one time slot given that there
are i backlogged stations at the beginning of the slot. Show that the following holds for all

| > p(@)S() = 3 p(i)m = g,

7

(find an interpretation).
5. Intherest of the exercise, we consider the following combinations of parameters:
* ¢, = =5 to L byincrementsof -
® ¢ = o §r = 2qa; ¢r = 440
Compute the steady state probability p for all caseswith m = 5 and m = 10.
Do the following verifications for all numerical cases:



310 CHAPTER 11. PALM CALCULUS OR THE IMPORTANCE OF THE VIEWPOINT

(a) Verify that @ isa stochastic matrix

(b) Verify that p satisfiesp@ = p

(c) Verify the equality of the previous question
6. For all numerical cases, compute :

the offered load A

the throughput 0

the average transmission and retransmission rate GG

the averagelossratio L

the average delay (not including the 1 slot transmission delay) for a packet which is
not |ost.

Put all these results on one diagram by plotting the results as a function of A. Also plot ¢ as
a function of G and comment on the resullts.

7. (Thisquestion isoptional) If you have numerical problemsor do not want to use a numerical
package, you can write an algorithm to compute p(:) iteratively. For that purpose, use the
cut lemma to obtain p(7) asa function of p(j), 7 <1 — 1.

EXERCISE 11.9. (Continuation of Exercise 11.7)

1. Consider now the cases m = 10. Does the previous method work ? Analyze why. How can
you obtain a solution ?

2. An alternative is to use an ad-hoc solution method, which exploits the fact that the Markov
chain does not have skips to the right, namely, transitionsn — n — k are possible only for
k < 1. The method below is called the Hessenberg method.
The idea isto compute ratios instead of the steady state probabilities.
Define r; by p(i) = rip(i + 1).

(& Show that

p(i) (1 — Q) — 3 QUL i)) — pli+ Qi + 1,1)

j<i—1
(b) Show that
D ririen e risQ 1) = ro(P(0,8) + 11 (P(0,1) + ... (ria P(i — 1,1))))
j<i—1
(c) Derivefromthe previousequationsan algorithmto compute r; iteratively, starting from
To.
(d) Solve againthecasem = 10

EXERCISE 11.10. (Double Campbell)

1. Let T,, be a stationary point process in discrete time. Show that, for any bounded random
function F'(s, t):

E( > F(Tm,Tm)A(ZE%F(t,wH > 6l EE <s,t>>)
(m,n)€eZ € (s,t)€Z2 55t (118)

where ¢(u) = E°(NN(u)) isthe probability that there is a point at time u, given that thereiis
one at time 0. (Hint: try to extend the Proof of Campbell’s formula.)
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2. Assume that 7,, is a Bernoulli process, i.e, N(t) is an iid sequence. What does Equa-
tion (11.8) give ?

3. Give the corresponding formula in continuous time.

4. Consider a shot noise process with a Poisson point process for the shot epochs:

= h(t—T., Zr,)

ne”L

Compute the variance of X (0).

11.8 APPENDIX: QUICK REVIEW OF MARKOV CHAINS

For more details see for example [Thiran02-LN] or [Bremaud01-book]. We consider a markov
chain on some enumerable set £. In discrete time, the chain is given by a transition matrix @),
with Q;; = P(X;1 = j|X; = 4). Q isastochastic matrix, i.e. Q(i,j) > 0and >, Q;; = 1.
In continuous time, the chain is determined by the generator matrix A, where 4, ; is the rate of
transition from state ¢ to j; it is such that P(X, 4 = j|X; = i) = A; ;dt + o(dt) for i # j. A has
non-negative entries everywhere except on the diagonal and ; Ay =0.

QUESTION 11.8.1. Whatis A;; ? %

Cadll 7 (t) the row vector of probabilitiesat timet, i.e. m;(t) = P(X; = i). Wehave 7(t) = 7(0)Q"
in discrete time, and 7r(¢t) = 7(0)e~* in continuous time. The exponential of a matrix is defined
like for complex numbersby e = >~ A" /nl.

A stationary probability isarow vector 7 that satisfies 7() = 7 (discrete time) or 1A = 0 (contin-
uoustime), iswide-sense positive, and sumsto 1. For afinite state space F, thereis always at least
one stationary probability. There may be severa if the chain branches into subsets of state spaces
from which it cannot exit. For an infinite state space, there may not exist a stationary probability
(the chain “escapes to infinity”).

Thechainis stationary if = (¢) isindependent of ¢. For a chain starting at time 0, thisis trueiff the
initial probability distribution 7(0) is a stationary probability.

The chain is irreducible if any state can be reached from any state. The chain is positive is the
steady-state equation () = p (discretetime) or pA = 0 (continuoustime) has at least one solution

w1 with finite sum (1 isarow vector). If the chain is not irreducible, there may be some states such
that ; = 0 for a stationary probability .

Thechainisergodicif itisirreducible positive, and for discretetime, aperiodic. If so, the stationary
probability is defined as the only solution of the steady-state equation that sums to 1. Such a
solution is necessarily positive. For an ergodic chain, we have lim; ., 7(t) = = where 7 isthe
unique stationary probability.

An ergodic chain is also stationary iff the initial probability 7(0) is the stationary probability 7.
Otherwise, it becomes stationary for ¢ large enough.

For a continuous time markov chain, the time until the next transition given that X; = i is an
exponential random variable with parameter d(i) = — A, ;.

Bhii == Aig
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A phase type distribution isthe lifetime of afinite, transient markov chain X, defined asfollows.
Thereare I + 1 states labeled 0, 1, ..., I; state 0 is the fina state. The random variable 7' is the
first time ¢ > 0 for which X, = 0. Let A, ; be the rate of transition from state i # 0 to state
J,d(i) = Zj:i# A, ; (departure rate), and «; the probability that the chain in in state ¢ at time 0.
We assume that ay = 0. The moment generating function of 7', m(s) := E(e*7), is obtained by
solving the set of linear equations, defined for all i = 1...1:

B Aij Aiq @)

which are obtained by letting m;(s) := E(e*T]| X, = 1).
Special cases often used are
o the hypo-exponentia distribution, for which 4; ; = 0 exceptfori < I,j =i+ 1o0ri =

I,j = 0. If the non-zero rates A; ; are all the same, thisisthe Erlang-I distribution.
e the hyper-exponential distribution, for which A, ; = 0 except for j = 0

PH-type distributions have a rationa moment generating function (quotient of two polynoms).
They can approximate any distribution, in some sense.
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CHAPTER 12

PROBABILITY THEORY AND TABLES

Probability derives the properties of models. A model is, in general in our framework, a collection
of random variables (independent or not). It is a branch of pure maths. given a model, we can
derive proven properties and do computations. In contrast, statistics starts when the model itself
is not known. The problem of statistics is to infer a model from the data and return something
useful about the data. Determining a model is not a pure mathematical exercise, in the sense that
it is not possible to prove formally whether a model is appropriate or not — though in many cases
some models are obviously wrong. Much of this book is about finding the right model for the right
situation. In this chapter, we give the results of probability theory that we used throughout the
book.
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1255 Conditiona Normal Distribution . . . . . . . . . . .. . ... .. .... 323
12.5.6 Partial Corrélation . . . . . . . . . . . e 323

12.1 RANDOM VARIABLES AND DISTRIBUTIONS

A real random variable isamapping from the set of randomness () to R, i.e. the output of arandom
generator that produces areal number. For area random variable X:

e The Cumulative Distribution Function (cdf) is the function F' : R — [0, 1] defined by
F(z) = P(X < z). Thedistribution of arandom variable is entirely defined by its cdf. A
cdf isaways right-continuous, i.e. F'(z) = lim,_.+(x) for al c € R.

e A probability density function (pdf) of X isafunction f : R — R such that for any
subset A C R: P{X € A} = [ _, f(z)dx, if it exists. f isdefined up to a zero mass set,
which means in particular that you can change the value of f on a enumerable set of points
and still obtain a density. The distribution of arandom variable that has a density is entirely
defined by its pdf. There are random variables that do not have a density, for example the
(degenerate) random variable that is deterministically equal to some (non random) value .
Its cdf is called the Dirac mass at .

12.1.1 RANDOM VECTORS

Covariance matrix

12.1.2 CHANGE OF VARIABLE

12.2 CONVERGENCE RESULTS

Def of convergence in distrib and in probaand in /2

THEOREM 12.2.1 (Slutzky’s Lemma). Sutzky’s lemma (conv en proba + en loi implique en loi

If X,, convergesin distribution to X and Y,, convergesin probability to a constant ¢, then X,,/Y,,
convergesin distributionto X/c

CLT

12.3 ORDER STATISTIC

(X(j), X(k)) has a density.
E(X(;) = 74 if distrib is uniform
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12.4 LINEAR ALGEBRA AND NOTATION

12.4.1 GENERAL NOTATION

We consider in this chapter alinear space E of finite dimension. We assume the reader is familiar
with the definitions of linear space, linear mapping, dimension, and coordinate system.

BAsis, COORDINATES Any linear space has a basis, and all bases have the same number of
elements. If this number is finite, it is the dimension of the linear space. Any vector Z can be
written uniquely as alinear combination of elements of the basis.

Examples:

o £ =R xR/ x RE. A vectorisatriple (X,Y, Z)with X €¢ RL)Y € R/, Z € RX. The
dimensionis/ + J + K.

e £ =R, J,K]|. A vector isan array a[,,| with three indices (more generally, n indices).
This set is called the set of “tensors’ inphysics. For1 <i < 1,1 <j < J 1<k <K,
ali, j, k] isareal number. Thedimensionis/JK.

Thetensor al, , | can be written

a[a 7] = Z a[iajv k]zi,j,k

i7j7k:

where z; ; . isthe tensor defined by z; ; (7', ', k'] = 1yimin =iy Lie=r}. Thelist

Sty xdhy v s

isabasisof the space of tensorsand a[i, j, k| isthe coordinate of a[, , ] attached to the element
Zi gk of the basis.

Itistraditional to identify avector 7 and itsp x 1 matrix of coordinates X in some well-know basis
(p isthe dimension of the linear space). However, this may sometimes be counter-productive, for
example for reasoning about tensors. There are many ways to map an array af, , | to a column
matrix of coordinates. This is unpleasant to write and is best |eft to the statistical software to
handle. An example where this occurs is given in Section ??. Another example is with wavelet
analysisin Chapter 13,

LINEAR MAPPING AND MATRIX A linear mapping f from a space £ with dimension p to
a space F' with dimension ¢ is a mapping such that f(aZ + 3y) = af(Z) + Bf(y) for all real
numbers o, 3 and al vectors z, y € E. Let (€;)1<i<p [resp. (f;)lgqu] be abasisof E [resp. F].
The matrix A associated with f isthe two-dimensional array defined by

Alr, s] = rth coordinate of f(é;)

A linear mapping is commonly identified with its matrix, assuming there is a non-ambiguous, well
defined basis. However, it is sometimes useful to make the distinction. See Section ?? for a place
where such aviewpoint is helpful.
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e Thenull space of f isthe set of # suchthat f(#) = 0.

e Theimage of f isthe set of & that can be written ¥ = f (i) for some

e Both null space and image are linear subspaces of (£ and I’ respectively). The dimension
theorem says that the sum of their dimensionsis the dimension of E.

OTHER NOTATION For two arbitrary sets F, F:

e [ x Fistheset of couples (e, f) wheree € Eand f € F.
o ET isthe set of mappingsfrom F to £. When F isfinite, thisisthe same asthe set of arrays
indexed by F'.

12.4.2 DIRECT SUMS

Let £ bealinear spaceand E;, i = 1...k sub-linear spacesof E. If any ¥ € E can be decomposed
inaunique way as

T=12T)+ ..+ T

where 7; € E;, then we say that E isthe direct sum of the E;s and we write

Example: let £ = R[I, J]. Let E; bethe set of constant arrays, E» [resp. Es] the set of arrays that
depend only on i [resp. ;5] and that sum to 0, and E, the set of arrays a[,] such that > ", a[i, j] =

> ali, ] = 0.

QUESTION 12.4.1. Showthat E = £, @ B, @ Es ® Eyt

12.4.3 PROJECTOR

A projector isalinear mapping f from E'to £ suchthat f o f = f,i.e. f(f(Z)) = f(&) fordl Z.
Then E isthe direct sum of the null space of f and theimage of f.

Conversely, consider adirect sum £ = F; & Ey; and let ©¥ = 7 + 2> be the corresponding
decomposition. The mapping from 7 to & is a projector, with null space £, and image F;. Thus
aprojector is entirely defined by its null space and itsimage.

We have the following characterization. For any & € E, I, (%) isthe unique vector such that

g, () € E
{ # 11y, (7)) € Ey (121

IHint: write
a[ivj] =a+ (@[i, ] - &) + (&[uﬂ - @) + (a[’&’]] - @[i, ] - @[.,j] + @)

witha = % Zi,j a[ia.jLa’[ia } - % Zi,j Cl[i,j], &[-,j] = % Zi,j CL[?,]]
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12.4.4 |INNER PRODUCT, | SOMETRY

Notation: inner product @ - 7. It isequal to u”v where u, v isthe column vector of coordinatesin
some orthonormal basis.

Two subspaces E; and F, are orthogonal iff 7y - #5 = 0 for all 77 € F1, 75 € Es.
Anisometry isamapping that preserves the norm. It is necessarily linear.

MAPPING A VECTOR TO ITSCOORDINATES Let (¢;): € I anorthornormal basisof £, 7 € E
and X7 the column vector of coordinates of 7 in this basis. The mapping ¥ — X is an isometry
from E to R!

12.4.5 ORTHOGONAL PROJECTORS

Given a sub-space E, the set of vectors i that are orthogonal to all vectorsin £ is called the
orthogonal of E;. F; and its orthogonal are in direct sum. The projector with image £; and null
space the orthogonal of F; iscalled the orthogonal projector on to £; and is denoted with Iz, .

Thefollowing characterization follows from Equation (12.1). For any ¥ € E, I, (%) isthe unique
vector such that

HEl(f) € B
forallye By : (2 —1lg, (%)) -y=0

The following theorem relates minimization of sums of squares to orthogonal projectors.

THEOREM 12.4.1. The optimization problem (where ¢/ is the unknown)

minimize || 7 — |2
subjectto i € F4

has a unique solution, equal to i = Il g, (%)

Example: Haar function

12.5 NORMAL VECTORS

Let X bearandom vector in afinite dimension. Thenif h is linear, non random:

—

E(h(X)) = h(E(X))

In matrix form, for any non-random matrix H, E(HX) = HE(X)
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12.5.1 COVARIANCE FORM

For arandom vector X such that all first and second moments are defined, the covariance form w
isasymmetric bilinear form defined by

w(tt, ) = cov(i- X,7- X)
or equivalently .

w(t, @) = var(d - X)

In some orthonormal basis where we identify X with acolumn vector X of coordinates, the matrix
Q of w iscaled the covariance matrix. Itisgiven by

Q:=E((X — ) (X —p)")
with ¢ = E(X). In matrix form:

cov(u' X, v' X) = v Qu
var(u? X) = u"Qu
Now consider a new basis, where the coordinates of X is X'. Let A be the square matrix defined
by:
Alr, s| = rth coordinate, in the old basis, of the sth vector of the new basis.

Then X = AX'. It follows that cov(u’ X, vTX) = uTQv = «/T ATQAv' thus the covariance

matrix of X in the new basisis
0= ATQA

w is obviously a wide-sense positive form, i.e. w(u, o) > 0. From the general theory of bilinear
forms, we know that there exists an orthonormal basis f. ..., f,, inwhich the matrix of w isdiagonal
with diagonal terms \; > 0. If we call X; the ith coordinate of X in the basis fl, - f:L then the
collection of random variables X; is non-correlated (i.e. cov(X;, X;) = 0).

Thenull space of therandom vector X isthe space generated by those vectors f; forwhich \; = 0.
Its dimension is n minus the rank of the matrix of w in any basis. It can be computed by solving
u? Q) = 0 where u is the column vector of coordinates of i is some basis, and €2 the matrix of w in
the same basis. 2 isinvertible iff the null spaceis{0}.

The null space is also the set of vectors @ such that var(i - X) = 0, i.e, @ - X isas. constant. In
other words, X takes its values in the affine sub-space orthogonal to the null space that contains
the mean /i. The dimension of this sub-space is the rank of w. In any basis, the direction of this
sub-space is the linear space generated by the columns of €.

EXAMPLE. InR3, letthe covariance matrix be

a 0 a
Q= 0 b b
a b a+t+b

Therank is2. Thelinear space generated by the columnsof €2 isthe planedefined by x+y—z = 0.
Thustherandom vector takesits valuesalmost surely inthe planedefined by x+y—2 = zo+yo— 20
where 11 = (2o, Yo, 20)-
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12.5.2 NORMAL VECTOR

A random vector X is normal iff for any @ € RR", the real random variable @ - X has a normal
distribution. The expectation and the covariance matrix completely characterize a normal distrib-
ution.

DENSITY If Q hasfull rank, X has adensity, given by

fe(@) = s | C:ay 1) R i € )

(in the above, we identified a vector and its coordinates). Else, X spans an affine sub-space of
dimension equal to the rank of (2.

CHARACTERISTIC FUNCTION Inal cases, the characteristic function is

E(eiuTX) — eiuT;L—%uTQu

For any normal vector X, there exists an orthonormal basis ( fl, f;, ﬁ) in which the r first coor-
dinates of X are mutually independent, and the n — rth others are almost surely constant. Here,
isthe rank of 2. Thisfollows from diagonalization of the covariance matrix 2.

If X1,..., X, isnormal and is a sequence of independent variables, then a change of coordinate
system basiswill, in general, not keep independence (except for homoscedastic vectors, see below).

12.5.3 THE EuUucCLIDIAN SPACE OF A NORMAL PROCESS

Given a normal process, the linear combinations of it form a Hilbert space. Homoscedasticity
means that it is the same as normal geometry.

Otherwise, the rank of €2, isthe dimension of the space generated by X1, ... X,.

12.5.4 HOMOSCEDASTIC VECTOR

THEOREM 12.5.1. If the matrix of the covariance form of a random vector is 2 Id in one ortho-
normal basis, with o € R*, then the same holds in any other orthonormal basis.

DEFINITION 12.5.1. A normal vector is called Homoscedastic if its covariance matrix in one
basisis o2 Id for some o > 0.

Thusif Xy, X,, ..., X,, isjointly normal, saying that it is homoscedastic means that X; = u; + ¢;,
with y; non-random and ¢; normal iid with.

A homoscedastic normal vector always has a density (since its covariance matrix is invertible),
given by
1 gl

fx(@) = (2m)zom
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THEOREM 12.5.2. Consider an homoscedastic normal vector X with valuesin a space E and let
i =E(X).

e For any orthogonal transformation U of £, U (X ) isalso homoscedastic (with same common
variance o?).

e Let II,, be the orthogonal projector on some linear sub-space M. I1,;(X)and Y = X —
Ty (X) are independent, [Ty (X) — T (70)|* ~ X2, and Y — ji + Ty ()| ~ X2,
wheren = dimE and m = dim M.

MLE FOR HOMOSCEDASTIC NORMAL VECTORS

THEOREM 12.5.3. Consider a vector X of independent, normal random variables X, with com-
mon variance o2, where the index r is in some finite set R (V is the number of elements in R).
Assumethat ji := (1, ).cr isrestricted to a linear subspace M of R%. Let k = dim M.

e The MLE of (i, o) isgiven by
fr =Ty (X)

1 =
~9D ~ 112
=X -
5= —IX — g

Ejo(f) = fi = Epo(X)
Under i, 0. X — 1 and /i are independent normal vectors. Further

1X — ill* = 11X — all* + 117 - Al

Under 7,07 || X — j1]|> ~ x3_,0 and || i — fi]|*> ~ x30?
o (Fisher distribution) Under i, o
lla—gal?
k
X412
N—k

~ Fp Nk

Proof. Thelog likelihood of an observation (z,.),cr IS

B 1 1 1.
l.(fl,0) = —3 In(27)—N In(o ~ 552 Z —p)? = —3 IH(QF)—Nln(O')—@HJZ—/JHQ (12.2)
reR

For a given o, by Theorem 12.4.1, the log-likelihood is maximized for i = i = I/ (&), which is
independent of o. Let ji = /1 in Equation (12.2) and maximize with respect to o, this givesthefirst item
in the theorem. The rest follows from Theorem 12.5.2.

COROLLARY 125.1. Let (X;)i—1..n ~ N(p,0?).

e The MLE of (i, o) isgiven by
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e Under 1,0 Sxx and X areindependent. Further

D (X —p)* = Sxx +n(X —p)’

i

o Under ji,0: Sxx ~ x2_102and X ~ N(u, ).
e (Student distribution): Under i, o

12.5.5 CONDITIONAL NORMAL DISTRIBUTION

Assume we have a decomposition of the linear space into two orthogonal sub-spaces. Let X =

X1+X, be the corresponding decomposition of anormal vector X . In matrix form: X = ( ? )
2

if we take a basis compatible with the decomposition.

The covariance matrix of X can be decomposed into blocks as follows.

Ql 1 Ql 2
Q= ’ ’
( Q2,1 92,2 >
where (2, ; (cross-covariance matrix) is defined by
Qij = E((X; — E(X:))(X; - E(X;))")
X, and X, areindependent iff ; , = 0. Notethat 2, , = QF

THEOREM 12.5.4 ([Davison02-book]). If €25, is invertible, the conditional distribution of X;
giventhat X, = x5 iswell defined and is normal, with mean

fi1 + 2005 5 (22 — puo)

and covariance matrix
-1
Q1,1 - Q1,292,292,1

Note that the covariance matrix is independent of z,. Thisistrue only for normal vectors.

12.5.6 PARTIAL CORRELATION

[ Davison02-book]
Consider the case X; = (X1,0,...,0,X,)T and X = (0, Xs, ..., X,_1,0)7. The conditional

covariance matrix of )(71 given )(72 isa2 x 2 matrix. Letitbe ( ' Tin ) The number v, ,,

1n ")/n,n
is called the partial covariance and ry,, = v1.,/+/71.17n.n the partial correlation of X; and X,,.
The partial correlation expresses the residual correlation between X, and X,, when we know the
other variables Xs, ..., X,,_1.
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THEOREM 12.5.5 ([Davison02-book]). When €2 (the covariance matrix of thejoint vector (X, X, ..., X,,_1, X))
has full rank, the partial correlation of X; and X, isgiven by therelation

Tin

\ T1,1Tnn

"n =

where 7, ; isthe (4, j)thtermof Q.

If X1,..., X, isaMarkov chain, and n > 1, then X,, isindependent of X, given X5, ..., X,,_1. In
such a case, the partial correlation of X; and X, is 0 (but the covariance of X; and X, is not 0).
Partial correlation can be used to test if aMarkov chain model is adequate.



CHAPTER 13

ORTHOGONAL WAVELETS AND
MULTIRESOLUTION ANALYSIS

We give ashort summary of key factsrelated to orthogonal wavel ets. For amore general theory, in-
cluding non-orthogonal wavelets(called “bi-orthogonal”) seethe course pageat 1cavwww.epfl.ch
and [Vetterli95-book].

13.1 HILBERT SPACES

transposition and scalar product

Notation: inner product i - 7. It is equal to u”v where u, v is the column vector of coordinatesin
some orthonormal basis.

Define inner product and Hilbert space E. Linear form: def, matrix, continuous, representation in
Hilbert spaces.

Linear combinations and series in case of Hilbert.

13.2 MULTI-RESOLUTION ANALYSIS

Wavelets are defined for functions of continuous time (but we will apply them to time series, i.e.
functions of discrete time, see later). We consider functions that are square integrable, thus we are
in the Hilbert space L?(RR). Orthogonal wavelets comein pairs: afather wavelet ¢(t), also called
scaling function and a mother wavelet, or just “wavelet”, ¢)(¢). They are such that

/tER é(t)d = 1 and /t€R¢(t)61t =0

Orthogonal wavelets are required to have some other specia properties, some of them are men-
tioned as needed in the rest of this document.

325
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Examples: Haar wavelet. Put a figure. Other orthogona wavelets: Daublets, Symmlets, Coiflets.
Different wavelet families give dlightly different decompositions. The only important aspect we
will use is the number of vanishing moments and the regularity (see below).

For j € Z (octave) and k£ € Z (location) define the dilatations and translations of the wavelet
functions by

bialt) = 2920(279(t = DR)) wyalt) = 27920(279(t - 2k)

2/ is aso called the scale parameter: think of it as the inverse of a frequency parameter, roughly
speaking.

QUESTION 13.2.1. Draw ¢ 10 and ¢3 _5 for the Haar wavelets. 1

Call V; the space generated by ¢, ., & € Z. The orthogonal wavelets are such that the sequence
¢o,1 congtitute an orthonormal basis of 14, i.e.

/ ot —k)p(t —h)d =0if k # hand 1if k =h
teR

and similarly the set of ¢, x, k € Z constitute an orthonormal basis of V.
QUESTION 13.2.2. \erify that ¢ constitute an orthonormal basis of 1 for the Haar wavelet 2
QUESTION 13.2.3. What is V, for for the Haar wavelet ? 2

QUESTION 13.2.4. Does a high octave number j correspond to a high frequency ? *

MULTI-RESOLUTION ANALYSIS, STEP 0.  Consider a fixed function f(t). We cal C, :=
Iy, (f) the projection of f on V4. It follows that

Co(t) = Z co,x o,k (t)
keZ
with
Cok = / " f(t)¢(t B k)dt

Cy(t) isasmooth approximation of f(¢). Thedifference f(¢t) —Cy(t) istheinitial detail, in practice
we expect it to be negligible (but see below for adiscussion).

MULTI-RESOLUTION ANALYSIS, STEP n.  Multi-resolution analysis is based on coarser and
coarser approximations of Cy(t). First, the wavelets are such that ¢(¢/2) € V4. In other words,
there exist a sequence u;, such that ¢(t/2) = >, ., uxo(t — k) (equality is in the mean square
sense).

QUESTION 13.2.5. Find u;, for the Haar wavelets ®

tbd

2thd

3The set of functions f(¢) that are constant between integers.

“No, with our convention, it is the opposite. Negative octaves correspond to high frequencies.
Stbd
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Now consider V;, the space generated by the sequence ¢, ;. It followsthat V; C V;. Let C) =
Iy, (Cy) bethe projection of Cy on V; and D, := Cj — C4. In other words

Co(t) = Dy (t) + Ci(t)

C(t) isacoarser approximation of f(t) than Cy(t).

The step can be iterated by considering V;,, the space generated by ¢, x, k € Z, C,, the projection
of C,,_; onV, and
D,(t) = C,(t) — Ch_1(1)

for n = 1 tosomeinteger J. ThuswehavelV, > V; O ... D V;and
Co(t) = Di(t) + Da(t) + ... + Dp(t) + Cy(t) (13.2)

Cy(t) is caled the coarse approximation of C; at octave J, and D,, the detail at octave n. C;
is a coarser approximation than Cy (Figure 13.1 and Figure 13.2). Equation (13.1) is called a
multi-resolution analysis of f(t¢) at octaves(to J.

ENERGY AT OCTAVE j By construction, the details D; and C,, are mutually orthogonal. Thus
(“conservation of energy”):

ICo[* = ID1I* + .. + [[Dall® + [1Cw]1®

Also, the smooth approximation C, and f are orthogonal, thus
112 = 11Coll* + [1f — Coll?

QUESTION 13.2.6. Write the conservation of energy in terms of integrals ®

NEGATIVE OCTAVES In practice (see below) the function f(t) isvery closeto its projection on
Vo, and multi-resolution analysis works as explained above. A general property of waveletsis that
the sequence of V;, when j goes to —oo, is densein L*(R), in other words, any function can be
approximated by its projection on V; for some j.

If the difference between f(¢) and Cy(¢) is not negligible, multi-resolution should be started at
some negative octave J,, instead of at octave J, = 0. The rest is without change. Note that
the functions C; and D; are always the same, independent of the octave .J, at which we start the
multi-resolution.

13.3 THE SCALING AND WAVELET COEFFICIENTS

The orthogonal wavelets are such that the sequence ¢, ., k € Z, isan orthonormal basis of V;, and
the sequence v; , k € Z, is an orthonormal basis of the orthogonal of V; in V;_;. Thus, we can

write
{ Cj(t) = ZkeZ i k®ik(t)
Dj (t) = ZkeZ dj,k:%‘,k:(t)

Sthd
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Figure 13.1: First graph: Decomposition of Cy(t) into a coarse approximation Cy(t) and successive details
D;(t). Second graph: the successive coarse approximations C;(t). The data is equal to Cy(t) and is shown
at the top of each graph; it is the amount of internet traffic in bytes on a backbone link of the American
operator SPRINT; one point is the aggregate over 90 mns. Wavelet basis: Daubechies 6. The details are
high at octaves 3 and 4, which corresponds to timescales of 12 hours and 24 hours.
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Figure 13.2: Same as Figure 13.1 but with Wavelet = Haar.
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with

Cik = fteR £) &k (
{ _ Ol ) (13.2)

c;r iscaled ascaling coefficient and d; , awavelet coefficient.

THE PYRAMIDAL ALGORITHM.  The coefficients ¢;, d;, are not computed by means of
Equation (13.2). Instead, a discrete wavelet transform (DWT) is used, based on the pyramidal
algorithm.

It computes ¢, ;, and d; 5, assuming that the coefficients at scale 0, ¢, , are known. It is given by

{ Cik = ﬂZnEZ UnCj—12k+n

djr = ﬂZneZ UnCj—12k+n

where u,,, v,, are equal the coordinates of ¢, , Y1 o in the basis ¢y, :

{ P(t/2) = 2nez und(t — 1)
V(t/2) = 2nez vnd(t —n)

IDWT isthe inverse transformation

NUMBER OF COEFFICIENTS Assume we are given only a finite number of coefficients cg .
At every octave, the number of scaling and wavelet coefficients is divided by 2. If we have 2/n
coefficients at step 0, then at octave j, 1 < j < J, we have 27/ ~/n, coefficients. The complexity of
the pyramidal algorithm is O(V), where NV isthe total number of coefficients computed.

ATOMS A multi-resolution analysis at octaves 0 to J can be written as

Colt) =Y condin(t) + DY djwthjn(t)

kEZ j=1 keZ

The individual terms in this summation are called atoms. The J + 1 sequences (¢, )kez and
(d;x)kez for j = 1to J arecalled crystals.

ENERGY AT OCTAVE j Themapping from avector to its coordinates in an orthonormal basisis

an isometry, thus
{ 1Cs1* = D ke C2J,k
HDJ‘HQ - ZkeZ d?,k
and we can re-write the conservation of energy as

/te )2t = chk—l—ZZd?k

kEZ j=1 kezZ

and similarly if we start at octave .J, < 0 instead of 0.
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Figure 13.3: Scaling and Wavelet coefficients for the example of Figure 13.1 with wavelet = Daubechies
6 (first graph) and wavelet = Haar (second graph). The variability of the time series is mainly at octave 3,
(first graph) or 3 and 4 (second graph).
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VANISHING MOMENTS The number of vanishing moments isthe largest M such that
/ t"p(t)d =0 form =0,1,.... M — 1
teR

If f(¢) isapolynomia of degree < M — 1, the wavelet coefficientsare 0. If f(¢) iswell approxi-
mated by the first M terms of its Taylor expansion, the wavelet coefficients are small.

13.4 TIME SERIES

Consider z,,, n € Z. Wavelets apply to functions of continuous time — this shows up in particular
for the computation of coefficients asintegrals. Thanksto the pyramidal algorithm, the playsarole
only for the computation of the initial coefficients ¢ .

DETERMINISTIC CASE If 2, is non random, all we need is a mapping z,, — X (t) that pre-
servesthe norms, i.e. ||z||*> = || X||* (the mapping is an isometry). A generic formis

= Z Tpg(t —n)

A simplefunctionis go(t) = 1o<i<13. A better oneis g (t) = sinc(t) = %ﬁ By Shannon’s sam-
pling theorem, the resulting X (¢) is the band-limited process which can be perfectly reconstructed
from the samples z,,. In either case we have X (n) = z,, for n € Z.

Theinitial coefficients can be computed as follows.

Coj = an/ o(t —k)g(t —n)d an/ ot —k+n)g(t)d

nez neZ
= Y wuliy = (w* D) (13.3)
nez
with
I, = ot —k)g(t)d

teR
Thus we should apply a convolution filter to the time series before taking its wavelet transform. In
practive, there is only a small number of coefficients /, that are non 0 or non-negligible.

Some packages do not do the correct initialization; instead, they initialize multi-resolution analysis
with o, = . Thisis equivalent to applying the wavelet analysisto Y'(t) = >, ., o(t — k)xy,
This mapping of x,, to Y,, is an isometry because ¢, ., is an orthornormal system, however, it does
not seem natural. Thisisbecausethetimeserieswhichisanalyzedinreality isy, = Y, ., Tx¢(n—
k), which, in general, is not equal to z,,. This may introduce some distortion into the coefficients
at lower octaves.

QUESTION 13.4.1. Compute y,, for the Haar wavelet. ’

The mapping from the time series z,, to the coefficients so obtained is called discrete time wavel et
transform. It is an orthogonal transformation, and is used by some authors in replacement of the
true DWT.

Y (t) isthe natural extrapolation > nez Tnlin<t<nt1y @dy, = z,. Thereisno distortion in this specific case.
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MPACT OF FIRST OCTAVE Jy. Inmulti-resolution analysis, we often limit ourselvesin practice
to Jo = 0, i.e. we assume that Cy(t), the projection on V; of X (), is close to X (¢). Thisis
particularly trueif wetake X (t) = >, _, xnsinc(t —n), dueto the spectral properties of wavelets,
it ismore accurate for wavelets with higher degree of regularity.

For thetime seriesin Figure 13.1 and Figure 13.3, the error is negligible (of the order of computa-
tion errors).

QUESTION 13.4.2. How can we verify whether this approximation holds ? &

In the rare cases where this approximation is not valid, this does not impact the values of coef-
ficients obtained with the pyramidal algorithm. It simply means that the coefficients for negative
octaves are not negligible and should be computed as well. This can be done with the pyramidal
algorithm, starting with ¢, ;, instead of ¢, ;. It is equivalent to replacing the original time series
with the up-sampled time series

xh = 2%0/2 X (270n)

where X (¢) is the continuous time interpolation of z,, (remember that J, is negative; we have

* J—
Ty gy, = Tn

STOCHASTIC CASE  Assume now that x,, isarandom sequence, and we are interested in second
order properties of x;. Then we should use only the mapping

X(t) = Z xpsinc(t — n)

neZ

This definition is shown to be valid in the mean square sense in [VeitchOO-Init], provided that
the father wavelet ¢ is bounded, which is the case for the ones we use. It can be shown that
the second-order properties of X (¢) and x,, are the same. We use this property for analyzing the
auto-covariance functions of time series.

PADDING AND BOUNDARY CONDITIONS See S+Wavelet tutorial.

USErFUL S-PLUS COMMANDS

e make.signal: out of adataframe, make an object that wavelet functions can use

e ca <- dwt (ic) perform DWT oninitial coefficients; returns scaling and wavel et coeffi-
cients, plot (ca) displaysthe scaling and wavelet coefficients

e cda (ca) plotsdistribution of energy and other summary data

e ca <- mrd(ic) multi-resolution analysis (decomposition) (returns the coarse approxi-
mation and details); ca <- mra (ic) multi-resolution approximation (returns the succes-
sively coarser approximations; plot (ca) plotsthe results.

e reconstruct: returnsthetimeseries Cy[t]; top . atoms: returnsthelargest coefficients;
decompose returns the atoms.

e dwt .matrix the discrete time wavelet transform

8By plotting =, — Co(n), where Cy isthe sum of crystals, or by comparing the sum of squares of z,, with that of
the coefficients.
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CHAPTER 14

TABLES AND DISTRIBUTIONS

A good list of distributions can be found in [McLaughlin97], a compendium of distributions
by Michael P. McLaughlin that is publicly available (see web site for more information).
We add here the tables and concepts that could not be found there.

14.1 CATALOG OF DISTRIBUTIONS

We give alist of commonly used distributions and the notation for their cdf. For more details see
[McLaughlin97].
14.1.1 Binomial

Bn 7p

14.1.2 Multinomial M,, 5

A sequence Ny, ..., N, in N¥ has the multinomial distribution M, yif and only if

Zf:l Ni=mn
n! o 14.1
P{N, =ny,... Ny =ni} = ( )pll...pk’“ (14.3)

nyl...ng!

Assumen random variables X; areiid, takevaluesinthefiniteset {1,2, ..., k} and P(X; = i) = p;.
Let N; = Z;?:l 1ix,—; (number of observations that are equal to ¢). Then the distribution of the
vector (Ny, ..., Ny) is M, 5.

14.1.3 Geometric

Geom(6)

335
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14.1.4 Normal

also called gaussian N, 2

14.1.5 Chi-Square

x> isthe distribution of the sum of the squares of n independent random variables with distribution
No.1. Expectation: n; Variance: 2n

14.1.6 Fisher

F,.» isthe distribution of

where X ~ x2,Y ~ x2 and X and Y are independent.

If F' ~ F,,, then % ~ By, thusif F,, . (n) =y then F),,,(1/n) =~
If T ~ t, then T? ~ Fy, n.

14.1.7 Student

t,, isthe distribution of
X

VY/n

where X ~ Ny, Y ~ x2 and X and Y are independent.

14.2 CONFIDENCE INTERVALS FOR QUANTILES

The following tables can be used to determine confidence intervals for quantiles (including me-
dian), asfollows (see Theorem 2.2.1 for more details).

For asample of n iid data points x4, ..., z,,, the tables give a confidence interval at the confidence
level v = 0.95 or 0.99 for the g-quantile with ¢ = 0.5 (median), ¢ = 0.75 (quartile) and ¢ = 0.95.
The confidence interval is [z(;), 7 ()], where z(;) isthe jth data point in increasing order.

The confidence intervals for ¢ = 0.05 and ¢ = 0.25 are not given in the tables. They can be
deduced by the following rule. Let [x(;), z()] be the confidence interval for the ¢g-quantile given
by the table. A confidence interval for the 1 — g-quantileis [z(;,, ()] with

j=n+1-k
F=n+1-j
For example, with n = 50, a confidence interval for the third quartile (¢ = 0.75) at confidence

level 0.99 is [x(29), 7(45)], thus a confidence interval for the first quartile (¢ = 0.25) at confidence
level 0.99 is [33(6), 33(22)].
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The tables give p, the actual confidence level obtained (it is not possible to obtain a confidence
interval at exactly the required confidence levels). For small values of n no confidence interval is
possible. For large n, an approximate value is given.
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[~ [ g l [ p ] [n [ | +* [ » ]
n < 5: no confidence interval possible. n < 7: no confidence interval possible.
6 1 6 0.969 8 1 8 0.992
7 1 7 0.984 9 1 9 0.996
8 1 7 0.961 10 1 10 0.998
9 2 8 0.961 11 1 11 0.999
10 2 9 0.979 12 2 11 0.994
11 2 10 0.988 13 2 12 0.997
12 3 10 0.961 14 2 12 0.993
13 3 11 0.978 15 3 13 0.993
14 3 11 0.965 16 3 14 0.996
15 4 12 0.965 17 3 15 0.998
16 4 12 0.951 18 4 15 0.992
17 5 13 0.951 19 4 16 0.996
18 5 14 0.969 20 4 16 0.993
19 5 15 0.981 21 5 17 0.993
20 6 15 0.959 22 5 18 0.996
21 6 16 0.973 23 5 19 0.997
22 6 16 0.965 24 6 19 0.993
23 7 17 0.965 25 6 20 0.996
24 7 17 0.957 26 7 20 0.991
25 8 18 0.957 27 7 21 0.994
26 8 19 0.971 28 7 21 0.992
27 8 20 0.981 29 8 22 0.992
28 9 20 0.964 30 8 23 0.995
29 9 21 0.976 31 8 24 0.997
30 10 21 0.957 32 9 24 0.993
31 10 22 0.971 33 9 25 0.995
32 10 22 0.965 34 10 25 0.991
33 11 23 0.965 35 10 26 0.994
34 11 23 0.959 36 10 26 0.992
35 12 24 0.959 37 11 27 0.992
36 12 24 0.953 38 11 27 0.991
37 13 25 0.953 39 12 28 0.991
38 13 26 0.966 40 12 29 0.994
39 13 27 0.976 41 12 30 0.996
40 14 27 0.962 42 13 30 0.992
41 14 28 0.972 43 13 31 0.995
42 15 28 0.956 a4 14 31 0.990
43 15 29 0.968 45 14 32 0.993
44 16 29 0.951 46 15 33 0.992
45 16 30 0.964 a7 15 33 0.992
46 16 30 0.960 48 15 33 0.991
47 17 31 0.960 49 16 34 0.991
48 17 31 0.956 50 16 35 0.993
49 18 32 0.956 51 16 36 0.995
50 18 32 0.951 52 17 36 0.992
51 19 33 0.951 53 17 37 0.995
52 19 34 0.964 54 18 37 0.991
53 19 35 0.973 55 18 38 0.994
54 20 35 0.960 56 18 38 0.992
55 20 36 0.970 57 19 39 0.992
56 21 36 0.956 58 20 40 0.991
57 21 37 0.967 59 20 40 0.991
58 22 37 0.952 60 20 40 0.990
59 22 38 0.964 61 21 41 0.990
60 23 39 0.960 62 21 42 0.993
61 23 39 0.960 63 21 43 0.995
62 24 40 0.957 64 22 43 0.992
63 24 40 0.957 65 22 44 0.994
64 24 40 0.954 66 23 44 0.991
65 25 41 0.954 67 23 45 0.993
66 25 41 0.950 68 23 45 0.992
67 26 12 0.950 69 24 46 0.992
68 26 43 0.962 70 24 46 0.991
69 26 44 0.971 71 25 47 0.991
70 27 44 0.959 72 25 47 0.990
n>71 | =~ [050n— | = 0.950 n>73 | = [0.50n — | = 0.990
0.980/1] [0.50n+1+ 1.288/n| [0.50n+1+
0.9804/72] 1.288v/n]

Table 14.1: Quantile ¢ = 50%, Confidence Levels v = 95% (left) and 0.99% (right)
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n | J k p n_ | J k p ]
n < 10: no confidence interval possible. n < 16: no confidence interval possible.
11 5 11 0.950 17 7 17 0.992
12 6 12 0.954 18 8 18 0.993
13 7 13 0.952 19 9 19 0.993
14 7 14 0.972 20 10 20 0.993
15 8 15 0.969 21 11 21 0.991
16 9 16 0.963 22 11 22 0.995
17 9 17 0.980 23 12 23 0.994
18 9 17 0.955 24 13 24 0.992
19 10 18 0.960 25 13 25 0.996
20 12 20 0.956 26 13 25 0.993
21 12 20 0.960 27 15 27 0.992
22 13 21 0.956 28 15 27 0.993
23 13 22 0.974 29 16 28 0.992
24 14 23 0.970 30 16 29 0.995
25 14 24 0.982 31 17 30 0.994
26 15 24 0.959 32 18 31 0.993
27 16 25 0.958 33 18 32 0.996
28 17 26 0.954 34 19 32 0.991
29 17 27 0.971 35 20 33 0.990
30 17 27 0.954 36 21 35 0.991
31 18 28 0.958 37 21 35 0.993
32 20 30 0.956 38 21 35 0.990
33 20 30 0.958 39 23 37 0.990
34 21 31 0.955 40 23 37 0.991
35 22 32 0.950 41 23 39 0.997
36 22 33 0.968 42 24 39 0.994
37 22 34 0.979 43 25 40 0.993
38 23 34 0.961 44 26 41 0.992
39 24 35 0.960 45 26 42 0.995
40 25 36 0.958 46 27 42 0.990
41 25 37 0.972 a7 28 44 0.993
42 25 37 0.961 48 29 45 0.991
43 26 38 0.963 49 29 45 0.993
14 28 40 0.961 50 29 45 0.990
45 28 40 0.963 51 31 47 0.990
46 28 40 0.951 52 31 47 0.991
47 29 41 0.953 53 31 49 0.996
48 31 43 0.952 54 32 49 0.993
49 31 43 0.954 55 33 50 0.993
50 32 44 0.952 56 34 51 0.992
51 32 45 0.966 57 34 52 0.995
52 33 46 0.964 58 35 52 0.991
53 33 47 0.975 59 36 53 0.990
54 34 47 0.959 60 37 55 0.992
55 35 48 0.959 61 37 55 0.993
56 36 49 0.957 62 37 55 0.991
57 36 50 0.969 63 39 57 0.991
58 37 50 0.951 64 39 57 0.991
59 38 51 0.951 65 40 58 0.991
60 39 53 0.961 66 41 59 0.990
61 39 53 0.963 67 41 60 0.993
62 39 53 0.954 68 42 61 0.993
63 40 54 0.956 69 42 62 0.995
64 42 56 0.955 70 43 62 0.992
65 42 56 0.956 71 44 63 0.991
66 43 57 0.955 72 45 64 0.991
67 44 58 0.952 73 45 65 0.994
68 44 59 0.966 74 45 65 0.992
69 a4 60 0.975 75 47 67 0.992
70 45 60 0.962 76 48 68 0.991
71 46 61 0.961 77 48 68 0.992
72 47 62 0.960 78 48 68 0.991
73 47 63 0.971 79 50 70 0.991
74 48 63 0.956 80 50 70 0.991
75 49 64 0.956 81 51 71 0.990
n>76 | =~ [0.75n — | = 0.950 n>82 | = [0.75n — | =~ 0.990
0.849v/n [0.75n+1+ 1.115y/n] [0.75n+1+
0.849,/7) 1.115v/n]

Table 14.2: Quantile ¢ = 75%, Confidence Levels v = 95% (left) and 0.99% (right)
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n [ g l k[ » ] n [ | k[ » |
n < 58: no confidence interval possible. n < 89: no confidence interval possible.
59 50 59 0.951 90 76 90 0.990
60 52 60 0.951 91 79 91 0.990
61 53 61 0.953 92 80 92 0.990
62 54 62 0.955 93 81 93 0.991
63 55 63 0.957 94 82 94 0.991
64 56 64 0.958 95 83 95 0.991
65 57 65 0.959 96 84 96 0.992
66 58 66 0.961 97 85 97 0.992
67 59 67 0.962 98 86 98 0.992
68 60 68 0.963 99 87 99 0.992
69 61 69 0.964 100 88 100 0.993
70 62 70 0.964 101 89 101 0.993
71 63 71 0.965 102 90 102 0.993
72 64 2 0.965 103 91 103 0.993
73 65 73 0.966 104 92 104 0.993
74 66 74 0.966 105 93 105 0.993
75 67 75 0.966 106 94 106 0.993
76 68 76 0.966 107 95 107 0.993
77 69 77 0.966 108 96 108 0.993
78 70 78 0.966 109 97 109 0.993
79 71 79 0.966 110 98 110 0.993
80 72 80 0.965 111 99 111 0.993
81 73 81 0.964 112 100 112 0.993
82 74 82 0.964 113 101 113 0.993
83 75 83 0.963 114 102 114 0.992
84 76 84 0.962 115 103 115 0.992
85 77 85 0.961 116 104 116 0.992
86 78 86 0.960 117 105 117 0.992
87 79 87 0.959 118 106 118 0.991
88 80 88 0.957 119 107 119 0.991
89 81 89 0.956 120 108 120 0.991
90 82 90 0.954 121 109 121 0.990
91 83 91 0.952 122 109 122 0.995
92 84 92 0.950 123 110 123 0.995
93 84 93 0.974 124 111 124 0.995
94 85 94 0.973 125 112 125 0.994
95 86 95 0.972 126 113 126 0.994
96 87 96 0.971 127 114 127 0.994
97 88 97 0.970 128 115 128 0.994
98 89 98 0.969 129 116 129 0.993
99 90 99 0.967 130 117 130 0.993
100 91 100 0.966 131 118 131 0.993
101 91 100 0.952 132 119 132 0.992
102 92 101 0.953 133 120 133 0.992
103 93 102 0.953 134 121 134 0.992
104 94 103 0.954 135 122 135 0.991
105 95 104 0.954 136 123 136 0.991
106 96 105 0.954 137 124 137 0.990
107 97 106 0.954 138 124 138 0.995
108 98 107 0.954 139 125 139 0.995
109 99 108 0.954 140 126 140 0.995
110 100 109 0.954 141 127 141 0.994
111 101 110 0.954 142 127 141 0.992
112 102 111 0.953 143 128 142 0.992
113 103 112 0.953 144 129 143 0.992
114 104 113 0.952 145 130 144 0.992
115 105 114 0.951 146 131 145 0.992
116 106 115 0.950 147 133 147 0.992
117 107 117 0.965 148 134 148 0.992
118 108 118 0.963 149 135 149 0.992
119 109 119 0.961 150 136 150 0.991
120 110 120 0.959 151 137 151 0.991
121 110 120 0.967 152 138 152 0.990
122 111 121 0.966 153 138 152 0.992
123 112 122 0.966 154 139 153 0.992
n>124 | =~ [0.95n — | = 0.950 n>155 | =~ [0.95n — | =~ 0.990
0.427+/n] [0.95n+1+ 0.561y/n] [0.95n+1+
0.427+/n] 0.561y/n]

Table 14.3: Quantile ¢ = 95%, Confidence Levels v = 95% (left) and 0.99% (right)
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