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Abstract
Artificial Intelligence (AI) has been repeatedly associated with the potential for
automating, or even augmenting, occupational tasks. However, the geographical
impact of AI remains unclear. Building on previous work, we employed a deep
learning natural language processing model to automatically identify AI patents
impacting various occupational tasks. We analyzed a dataset of 17,879 task
descriptions and quantified AI’s potential impact at metropolitan statistical areas
(MSAs) within the U.S. by examining 24,758 AI patents filed with the United States
Patent and Trademark Office (USPTO) between 2015 and 2022. Our findings reveal
that MSAs that will be more likely to be impacted by AI are not just hubs of creative
industries but will also be characterized by a lack of economic diversity. Indeed, the
U.S. MSAs that will be more likely to be impacted are those heavily specialized, with
little to no efforts at diversification. These dynamics suggest that AI could amplify
existing divides, hitting hardest in areas where economic opportunities are already
concentrated in a few sectors, leaving many behind in the race for innovation-driven
growth.

Keywords: Future of work; AI; Patents; Labor market; Deep learning; Geography;
Natural language processing

1 Introduction
Artificial Intelligence (AI) has emerged as a pivotal technology in transforming occupa-
tional tasks through automation and augmentation [1–6]. It has already reshaped various
industries by enhancing productivity, efficiency, and accuracy. Automation via AI involves
the complete delegation of routine and repetitive tasks to intelligent systems, which can
operate with precision on par with or even better than human counterparts. This has been
particularly evident in manufacturing where robotic process automation and machine
learning algorithms optimize production lines and quality control processes [3], or chat-
bots and virtual assistants have taken over routine inquiries and support functions in cus-
tomer services [7]. Additionally, AI augments human capabilities by providing advanced
tools that enhance decision-making and problem-solving skills, evident in sectors such as
healthcare, where AI-driven diagnostic systems assist doctors by analyzing medical data
with high accuracy [8]. Furthermore, the integration of AI in finance has revolutionized
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risk management and trading by processing vast amounts of data to identify patterns and
forecast market trends [9]. These AI advancements not only optimize existing workflows
but also create new paradigms of work where machines and humans collaborate [6].

While previous works have mainly focused on quantifying the impact of AI on occupa-
tional tasks [1–6], yet its impact on the geographical level remains unclear. This is par-
ticularly important as AI’s adoption and benefits are often unevenly distributed across
different geographical areas, leading to disparities in economic growth and labor market
outcomes. In developed regions with advanced technological infrastructure and a skilled
workforce, AI integration tends to drive significant economic gains and job creation in
high-tech industries. Conversely, regions lacking such infrastructure may face challenges
in adopting AI technologies, potentially exacerbating existing economic inequalities. For
example, while metropolitan areas with robust digital ecosystems might experience a
surge in AI-driven innovation and productivity, rural areas could struggle to keep pace
due to limited access to necessary resources and training [10]. Therefore, in this study, we
set out to quantify AI’s impact on a geographical level, and in so doing, we made two main
contributions:

1. We extended a measure of AI impact from previous literature, and employed a deep
learning natural language processing model to automatically identify AI patents
impacting various occupational tasks (Sect. 3). Using this method, we analyzed a
dataset of 17,879 task descriptions and quantified AI’s potential impact at industry
sector and metropolitan statistical areas (MSAs within the U.S. by examining
24,758 AI patents filed with the United States Patent and Trademark Office
(USPTO) between 2015 and 2022.

2. We found that, on average, the East Coast in U.S. experiences a greater impact of AI
compared to the West Coast (Sect. 4). More broadly, the influence of AI extends to
MSAs in the U.S. that heavily rely on industries susceptible to AI changes, often
characterized by the increasing creative class employment or a lack of economic
diversification.

2 Related work
We surveyed various lines of research that our work draws upon, and grouped them into
two main areas: AI Impact on Occupational Tasks (Sect. 2.1); and Geographical Impact of
AI (Sect. 2.2).

2.1 AI impact on occupational tasks
The impact of AI on occupational tasks has been a significant focus of research, highlight-
ing both its potential to enhance productivity and the risks of job displacement. Huang
and Rust discussed how AI-driven automation can streamline repetitive tasks, leading to
increased efficiency in industries such as manufacturing and logistics [11]. Additionally,
the work of Frey and Osborne [1] has been pivotal in estimating the susceptibility of jobs
to automation, suggesting that nearly 47% of total U.S. employment is at risk due to AI
technologies. Other studies, like those by Brynjolfsson and McAfee [10], emphasized the
augmentation potential of AI, where human skills are complemented by AI, particularly
in high-skill domains such as finance and healthcare. These studies collectively highlight
the dual nature of AI’s impact, offering both opportunities for enhanced productivity and
challenges related to workforce displacement.
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2.2 Geographical impact of AI
The geographical impact of AI is shaped by various factors, including technological diffu-
sion, economic inequality, and economic diversification. Research using patents to study
technology diffusion indicates that technological advancements often cluster in specific
geographical areas [12], driven by localized interactions that facilitate the exchange and
application of knowledge. However, the ability of an area to leverage these localized in-
teractions is influenced by geographical economic conditions. For example, areas with
higher inequality often experience minimal growth and development [13]. Another po-
tential factor is what Richard Florida termed as the ‘creative class’ [14, 15]. In his stud-
ies, Florida found that areas with higher concentrations of creative and knowledge-based
occupations are more likely to attract AI investments and innovation [16]. Economic di-
versification is another key determinant of how AI impacts different geographical areas.
Studies have shown that areas with diverse economic bases are more resilient to economic
shocks and exhibit higher stability. For example, Davies [17] found that European regions
with diverse workforces recovered more swiftly from financial crisis, while Dissart [18] ob-
served that U.S. regions with a mix of industries experienced less volatility in employment
and income growth. These findings suggest that economic diversity allows geographical
areas to adapt more effectively to sector-specific disruptions, as workers can transition
between industries more easily [19]. Thus, the geographical impact of AI is not uniform;
it is deeply influenced by local economic structures, the equitable distribution of income,
and the capacity for technological innovation and adaptation.

Research gaps While a large body of literature has explored the broad implications of AI
on occupational tasks, the impact of AI at the geographical level remains unclear. Similar
to previous works that used patents to quantify AI’s impact, we build upon and extend
these studies to quantify the geographical impact of AI.

3 Methods
3.1 Datasets
Occupation dataset We obtained detailed task descriptions for a wide range of occu-
pations from the O*NET database [20], a widely used resource in occupational stud-
ies [2, 4, 5, 21, 22]. Our data set includes 759 unique occupations and 17,879 unique tasks,
as provided in the ONET 26.3 version released in May 2022. The number of tasks per
occupation varies from 4 to 286, with a median of 20 tasks per occupation (Fig. 1).

Patent dataset To compile a corpus of AI patents, we initially retrieved 74,875 patents
granted by the USPTO between 2015 and 2022, classified as AI-related according to the
PATENTSCOPE AI Index [23]. To refine this collection and exclude patents only tangen-
tially related to AI, we selected patents within the core AI applications index class. This
filtering process resulted in a final corpus of 24,758 AI patents.

Out of the 24,758 AI patents granted between 2015 and 2022, the majority included the
keyword “machine learning” (46%), followed by “neural network” (32%), “artificial intelli-
gence” (9%), and “deep learning” (6%) (Table 1).

3.2 AII impact measure
To measure the impact of AI on occupational tasks, Septiandri et al [24] defined the AI
Impact (AII) as a measure of how much AI could impact a job’s tasks by looking at how
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Figure 1 Distribution of number of tasks per occupation

Table 1 Number of patents based on keywords

Keywords Number of patents

machine learning 10,904
neural network 9364
artificial intelligence 2674
deep learning 1848
planning 1050
natural language processing 917
reinforcement learning 506
computer vision 463
speech processing 126
predictive analytics 69
robotics 64
control methods 29
knowledge representation 24

closely these tasks are associated with patents. For each task, their method finds the patent
most similar to it using a cosine similarity score. This score shows how much the task
aligns with AI-related innovations. The AI impact on a task is the highest similarity score1

between the task and any patent.
This method is based on a deep learning framework using the Sentence-T5 (ST5) ar-

chitecture [25, 26] for Natural Language Processing. This framework transforms text into
“semantic vector representations” (embeddings), capturing the text’s meaning and allow-
ing to measure similarity between texts. The authors used the Sentence-T5-XL model2

for its proven effectiveness in various language tasks, including classification and similar-
ity comparisons.

1The highest similarity was used to avoid including less relevant patents, which would dilute the AI impact measurement.
2The default model’s parameters were used, that is, an Adafactor optimizer with a starting learning rate of 0.0001, linear
decay after 10% of training steps, a batch size of 2048, and a softmax temperature of 0.01.
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3.2.1 AI impact on occupations
Septiandri et al [24] computed the AI impact xj on occupation j by computing the number
of AI-impacted tasks over the total number of j’s tasks:

xj =
∑

t∈tasks(j) 1αt>p90(α)
∑

t∈tasks(j) 1
, (1)

where p90(α) is the 90th percentile of AI impact values computed on all occupations’ tasks,
and 1αt>p90(α) is an indicator function whose value is 1, if αt > p90(α), and 0 otherwise. Es-
sentially, the AII measures the number of tasks within an occupation that are impacted
by AI, without considering the relative importance of each task, similar to the method
used in previous research [6]. The use of the 90th percentile as a threshold helps make the
AII measure more resistant to noise, as suggested in earlier studies [27]. This is crucial
because, although each task is assigned a similarity value in the initial step, the most sim-
ilar patent to a task might still be unrelated. Conversely, using a stricter 95th percentile
threshold would result in 55% of occupations having zero impacted tasks.

3.2.2 AI impact on geographical areas
We extended the AII measure to the geographical level. To determine the AII scores, we
used the Occupational Employment and Wage Statistics (OEWS) dataset published in
2022 by the U.S. Bureau of Labor Statistics. For each MSA, we calculated a weighted aver-
age of the AII scores by weighting each occupational AII score by the number of employees
in that occupation within the MSA.

Ωr =
∑

j∈occupations(r) xjwrj
∑

j∈occupations(r) wrj
, (2)

where wrj is the number of employees associated with occupation j within MSA r. Ωr is
r’s geographical AII score that accounts for the potential AI impact on occupations in
that geographical area and the workforce distribution. Occupations with more people in
an area have a larger influence on that area’s overall labor market dynamics. Weighting by
the number of employees ensures that occupations with a higher workforce representation
influences the geographical AII score proportionately. Moreover, some occupations might
have extreme AII scores (either very high or very low). A simple average could be skewed
by these outliers. By weighting sectors based on the number of employees, the measure
ensures that the geographical AII score is not disproportionately affected by these smaller
occupations. This method of weighted averaging aligns with methodologies in previous
studies [2–4].

3.3 Measuring economic diversity
To measure the economic diversity of a MSA, we collected its workforce distribution data
from the American Community Survey (ACS) dataset published in 2022 by the U.S. Cen-
sus Bureau [28]. For each MSA, the economic diversity is computed as the entropy of the
workforce distribution:

H(r) = –
∑

s∈sectors(r)

wrs

Nr
log

wrs

Nr
, (3)
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where wrs is the number of employees associated with sector s within MSA r and Nr is
the total number of employees within MSA r. Industry classifications in the ACS dataset
we used are based on the 2-digit NAICS (North American Industry Classification Sys-
tem) code, which serves as the federal standard for categorizing and analyzing business
establishments across the U.S. economy.

4 Results
4.1 Most- and least-impacted geographical areas
Just as with the occupation analysis, the AII measure can be used to study the impact of AI
on geographical-level outcomes. In fact, patents have been used to study the factors that
influence the spread of technology among geographical areas [12], as AI is permeating
urban design and planning [29]. Previous research has consistently shown that technol-
ogy spillovers tend to concentrate within specific geographical areas. This concentration
is often attributed to the effective transfer and dissemination of knowledge, a process fa-
cilitated by localized interactions involving communication, collaboration, social interac-
tions, and the presence of a local pool of human capital [30, 31].

By calculating the AII measure at the MSA level, it became evident that certain states,
and even at a more detailed MSA-level granularity (Fig. 2), experienced lower levels of
impact compared to others. The East Coast, on average, experiences a greater impact of AI
than the West Coast. However, Washington and California are exceptions to this pattern,
as they are highly impacted due to the presence of Seattle and the Bay Area.

4.2 Factors influencing geographical impact
The extent to which local interactions can yield significant technological advancements
depends on geographical capabilities that govern innovation processes. Income inequality
emerges as a factor of concern, as it has been found to have adverse effects on geographical
areas growth with total wages growing superlinearly as the cities increase in size [32].
Wilkinson and Pickett [13] argue that more equal societies, where income and wealth
are distributed more fairly among the population, tend to have better outcomes for their
citizens. We correlated the income inequality among U.S. households, calculated as the

Figure 2 Darker colors represent higher AI impact within MSAs. Grey areas indicate regions outside the
boundaries of MSAs, which generally have lower population densities and are not included in the analysis due
to limited data availability
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Figure 3 Three socio-economic indicators as a function of MSA-level AII: (a) income inequality (MSAs with
lower income inequality will be the most impacted); (b) attractiveness to the creative class (MSAs with a larger
creative class will be the most impacted); and (c) economic diversification (MSAs with the highest
diversification will be the least impacted). The binned scatterplots use 40 bins determined by the dependent
variable, with each bin representing a group of observations aggregated into a single data point using the
mean as the summary statistic

Figure 4 Frequency distribution plots of the three socio-economic indicators and the AII measure at the MSA
level

MSA’s Gini coefficient from the ACS dataset published in 2022 [33] (Fig. 4b), with the AII
MSA-level measure (Fig. 3a and Fig. 4a).

After controlling for total employment within each MSA, we found that higher poten-
tial AI impact is associated with lower income inequality. Specifically, areas with higher
AI potential exhibited lower Gini coefficients, suggesting a more equitable income dis-
tribution. While this association aligns with emerging evidence that AI may democratize
access to high-value jobs and skills, particularly in regions with investments in education
and digital infrastructure [10, 34], we caution against inferring causality. It is also possi-
ble that more productive and equitable regions are better positioned to adopt and benefit
from AI technologies. This highlights the need for future longitudinal research to exam-
ine how inequality evolves as AI adoption progresses. Our findings, while cross-sectional,
offer a complementary perspective to existing work on the socio-economic geography of
AI [35].

Another plausible explanation is that the least impacted states may not predominantly
rely on the knowledge economy. Richard Florida’s seminal work established a link between
geographical economic prosperity and the presence of the “creative class”. Florida defined
the creative class as individuals engaged in creative and knowledge-based industries such
as artists, designers, scientists, engineers, researchers, and professionals in fields reliant
on creativity and intellectual capital [14, 15]. His theory posits that cities and geographical
areas with a higher concentration of the creative class are more likely to foster innovation
and economic growth. Hoyman and Faricy [36] further supported this notion by demon-
strating that states with a higher percentage of the population aged twenty-five and over
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holding a bachelor’s degree or higher in metropolitan statistical areas tend to be more
economically successful. Additionally, investments in talent and technology have been
shown to predict the retention of the creative class, ultimately contributing to state income
growth and equality [16]. Using Florida’s creative class as a proxy for the knowledge econ-
omy, we found a weak positive correlation (Pearson’s r = 0.19) between the AII MSA-level
measure and the increase in the creative class employment in ten years (Fig. 4c). This may
suggest that geographical areas with a growing creative class are also those experiencing
greater AI-related activity. While our findings do not speak directly to the causal impact
of AI on the creative class, they indicate that regions more intensive in AI use may be
more attractive to creative professionals, or that such regions foster conditions conducive
to both AI adoption and creative class growth. Although the presence of the creative class
has previously been associated with economic prosperity, areas that overly concentrate on
knowledge-based economies will be more likely to face significant challenges in upskilling
and reskilling their workforces.

However, we acknowledge that our measure of creative class growth, defined as the log
of the absolute change (log(Δ of the creative class)) is not scale-invariant, and alternative
growth formulations may yield different patterns. Specifically, one might instead consider
relative growth, defined as the change in the log of creative class (Δ (log of creative class)).
When using this alternative specification, the correlation with AII is no longer statistically
significant, suggesting that the observed association is sensitive to the operationalization
of creative class growth. Nonetheless, our multivariate regression results based on the
original formulation (i.e., absolute change) remain statistically significant and are consis-
tent with theoretical expectations about the relationship between creative economies and
AI diffusion.

A third possible explanation could be that the least impacted states include MSAs with
relatively higher economic resilience. Some studies suggest that greater economic diversity
at the MSA-level may contribute to greater economic resilience. Davies [17] analyzed re-
gional economies across Europe and found that geographical areas with more diversity in
their workforce composition exhibited higher stability and faster recovery from the 2008-
2010 global financial crisis. Similarly, Dissart [18] found that U.S. geographical areas with
greater diversity across sectors saw lower volatility in employment and income growth,
indicating higher economic resilience. The proposed mechanism in these studies is that
diverse geographical economies allow for greater adaptability and adjustment to sector-
specific economic shocks. When a recession damages an individual sector, an area with
diverse industries can absorb the shock better as workers can shift to unaffected sectors
more easily [19]. Similarly, one can hypothesize that when a sector is affected due to au-
tomation, an area that diversifies its workforce will be more economically resilient. In con-
trast, specialized economies centered around one or a few dominant industries have been
found to be more vulnerable to sector-specific disruptions. Martin [37] found that during
recessions, regions in Europe with less complex, less diverse economies suffered greater
rises in unemployment rates due to their concentration in a small number of industries
that were severely impacted (e.g., manufacturing). This closer examination allowed us to
delve into how localized geographical capabilities correlate with the impact of AI. In so do-
ing, we correlated a measure of economic diversity (computed as the entropy of workforce
distribution by sector within an MSA, as detailed in Sect. 3.3 and shown in Fig. 4d) with
the AII MSA-level measure (Fig. 3b). Two distinct groups of MSAs of resilient economies
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Table 2 Most- and least-impacted MSAs. The MSA-level AII is calculated as the
employment-weighted average of occupation-level AII scores. For each MSA, we also report the
economic diversity (higher values indicate greater diversity)

Rank Most-impacted Economic
diversity

Least-impacted Economic
diversity

1 Dalton, GA 2.20 Daphne-Fairhope-Foley, AL 2.34
2 Columbus, IN 2.13 Coeur d’Alene, ID 2.32
3 Rochester, MN 1.95 Hinesville, GA 2.28
4 Huntsville, AL 2.21 Rapid City, SD 2.27
5 Winchester, VA-WV 2.30 Missoula, MT 2.27
6 San Jose-Sunnyvale-Santa Clara, CA 2.21 Bloomington, IL 2.20
7 Charleston, WV 2.24 St. George, UT 2.28
8 Rockford, IL 2.23 Manhattan, KS 2.20
9 Detroit-Warren-Dearborn, MI 2.23 Walla Walla, WA 2.21
10 Stockton-Lodi, CA 2.37 Hot Springs, AR 2.27
11 Kankakee, IL 2.23 Guayama, PR 2.26
12 Ann Arbor, MI 2.03 Lawrence, KS 2.17
13 Augusta-Richmond County, GA-SC 2.29 Watertown-Fort Drum, NY 2.26
14 Riverside-San Bernardino-Ontario, CA 2.33 Grants Pass, OR 2.33
15 Boulder, CO 2.17 Kingston, NY 2.27
16 Palm Bay-Melbourne-Titusville, FL 2.28 Santa Fe, NM 2.25
17 York-Hanover, PA 2.32 Barnstable Town, MA 2.25
18 Iowa City, IA 2.06 Pocatello, ID 2.18
19 Harrisburg-Carlisle, PA 2.30 Jacksonville, NC 2.30
20 Gainesville, FL 2.08 Flagstaff, AZ 2.18

emerged (Table 2). The first group comprises MSAs with diversified economies where the
workforce is engaged in a wide range of industry sectors. In fact, diversified metropoli-
tan areas tend to experience more economic growth [38]. The second group consists of
MSAs where the workforce specializes in industry sectors that are least impacted such as
education. In contrast, MSAs concentrated in sectors most vulnerable to disruption, such
as manufacturing and healthcare, bear the costs of this over-specialization. The most af-
fected U.S. metropolitan areas are those disproportionately reliant on a specific sector,
with little to no attempts at diversifying their economic base. This narrow focus leaves
them particularly exposed to the transformative and potentially destabilizing impacts of
AI. This monotonic relationship may be driven by the fact that economically less diversi-
fied MSAs tend to concentrate employment in a small number of sectors (e.g., manufactur-
ing, transportation, or administrative services) that are highly susceptible to automation.
These sectors are typically associated with routine and predictable tasks, which existing
AI systems are increasingly capable of performing. Conversely, more economically diverse
MSAs often balance across sectors with varying degrees of AI exposure or have a larger
share of employment in less automatable sectors such as education, arts, and professional
services.

To move beyond correlational analysis and verify our findings, we constructed multi-
variate regression models that controlled for total employment. These models revealed
statistically significant relationships between AII and all three previously analyzed fac-
tors: income inequality, economic diversity, and creative class growth (Table 3). The Adj.
R2 values for these models indicate varying levels of explanatory power. Specifically, the
model for income inequality has a relatively low Adj. R2 value of 0.051, suggesting that the
relationship between AII and income inequality is weakly explained by the model. In con-
trast, the model for creative class growth has a high Adj. R2 of 0.790, indicating a strong
fit and suggesting that AII explains a substantial portion of the variance in creative class
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Table 3 Multivariate regression analysis showing the relationship between AII and factors
influencing geographical impact. Adj. R2 values show differences in the explanatory power of the
models: income inequality (Adj. R2 = 0.051), economic diversity (Adj. R2 = 0.089), and creative class
growth (Adj. R2 = 0.790), indicating the strongest model fit for creative class growth. Beta coefficients
highlight significant relationships: a negative association between AII and income inequality
(beta = –0.102, p < 0.01), a negative association with economic diversity (beta = –0.576, p < 0.01), and
a strong positive association with creative class growth (beta = 1.929, p < 0.01). Total employment
and its change are included as control variables. Numbers in parentheses represent standard errors

Income inequality Economic diversity log(Δ Creative class)

Intercept 0.295∗∗∗ 1.435∗∗∗ 2.937∗∗∗
(0.044) (0.156) (0.571)

log(AII) –0.102∗∗∗ –0.576∗∗∗ 1.929∗∗∗
(0.036) (0.125) (0.504)

log(Total employment) 0.010∗∗∗ 0.039∗∗∗
(0.003) (0.009)

log(Δ Total employment) 0.751∗∗∗
(0.024)

Observations 342 302 283
R2 0.056 0.095 0.792
Adjusted R2 0.051 0.089 0.790
Residual Std. Error 0.023 (df = 339) 0.069 (df = 299) 0.284 (df = 280)
F Statistic 10.146∗∗∗ (df = 2; 339) 15.784∗∗∗ (df = 2; 299) 531.656∗∗∗ (df = 2; 280)

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

growth. The economic diversity model shows an intermediate Adj. R2 of 0.089, highlight-
ing a modest explanatory power. The negative coefficient for AII and income inequality
(beta = –0.102, p < 0.01) aligns with the earlier correlation analysis, suggesting that ar-
eas with higher AII scores tend to have lower levels of income inequality. Similarly, the
negative coefficient for economic diversity (beta = –0.576, p < 0.01) corroborates the cor-
relation analysis, indicating that MSAs with higher economic diversity will be less likely to
be impacted by AI. The strong positive coefficient for creative class growth (beta = 1.929p
< 0.01) is consistent with the observed correlation, emphasizing that MSAs with higher
creative class growth will be more likely to be impacted by AI.

5 Discussion
5.1 Main findings
By employing a deep learning natural language processing model to analyze 17,879 task
descriptions and 24,758 AI patents, we found that the impact of AI on various occupa-
tions across the U.S. varies. In particular, the influence of AI extends to MSAs in the U.S.
that heavily rely on industries susceptible to AI changes, often characterized by economic
inequality or a lack of economic diversification. Contrary to the expectation that AI would
primarily impact areas with high concentrations of tech industries, our findings show that
areas heavily dependent on industries susceptible to AI-driven changes (e.g., manufactur-
ing and healthcare) are equally affected. Additionally, the East Coast experiences a greater
overall impact of AI compared to the West Coast, with notable exceptions such as Seattle
and the Bay Area

5.2 Implications
From a theoretical standpoint, our study advances our understanding of the diffusion of AI
technology and its uneven impact across different geographical areas. Previous literature
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has largely focused on the automation potential of AI in specific industries and occupa-
tions, often highlighting the risks of job displacement and the benefits of productivity en-
hancement. For example, tasks such as programming or diagnostics, initially perceived as
prime candidates for automation, often evolve into augmented roles that require advanced
judgment and adaptive skills such as troubleshooting networks or designing AI-enhanced
workflows [1, 4]. Our study extends this body of work by incorporating a geographical per-
spective, showing that the economic and technological landscapes of areas significantly
influence how AI impacts local labor markets. This aligns with theories of technological
diffusion that suggest innovations tend to cluster in certain areas due to localized interac-
tions and knowledge spillovers [12].

Moreover, our findings highlight the role of economic inequality and industrial diversi-
fication in shaping the geographical impacts of AI [13, 19]. MSAs with higher economic
inequality tend to experience more pronounced impacts, which may exacerbate existing
disparities. Conversely, economically diverse areas will be more likely to be resilient to
the disruptive effects of AI, supporting theories that link economic diversification with
geographical stability and adaptability.

From a practical perspective, our study’s findings have implications for policymakers
and business leaders. For policymakers, the uneven geographical impact of AI suggests
the need for targeted interventions to support areas most at risk of adverse effects, such
as those heavily reliant on manufacturing or healthcare sectors. Investment in retraining
programs, infrastructure improvements, and incentives for tech adoption in less affected
areas could help mitigate these disparities. For businesses, understanding the geographi-
cal nuances of AI impact can inform strategic decisions regarding location, workforce de-
velopment, and technology investments. Companies operating in high-impact areas may
need to invest more in employee reskilling and new technologies to remain competitive.
Additionally, businesses in less affected areas might find opportunities to leverage AI to
gain a competitive edge.

5.3 Limitations and future work
This study has three limitations that should be addressed in future research. First, our anal-
ysis is based on patent data, which may not capture all forms of AI-related innovations,
particularly those that are proprietary and not patented. Moreover, our reliance on patent
data inherently captures current technological capabilities but may overlook the societal
and economic shifts that shape AI adoption. As Webb notes [3], these shifts often include
labor shortages and industry-specific adaptations that influence whether AI augments or
replaces human labor. Therefore, while our measure effectively maps present susceptibili-
ties, it has limited predictive power for future developments driven by emergent technolo-
gies and socio-economic factors. Second, the study focuses on the United States, and the
findings may not be generalizable to other countries with different economic structures
and technological adoption rates. Future research could expand the geographical scope to
include international comparisons, which would provide a more comprehensive under-
standing of the global impact of AI. Additionally, longitudinal studies could examine how
the impact of AI evolves over time, especially as new technologies emerge and existing
ones mature. Finally, incorporating qualitative data, such as interviews with industry ex-
perts and policymakers, could enrich our understanding of the nuanced ways in which AI
influences regional economies.
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6 Conclusion
The impact of AI on U.S. occupations extends beyond knowledge-centric areas, signifi-
cantly affecting those reliant on specific industry sectors. The East Coast generally expe-
riences a higher impact than the West Coast, except for tech hubs like Seattle and the Bay
Area. These findings highlight the importance of geographical economic structures, with
economically diverse areas showing greater resilience to AI-driven changes. Policymakers
should consider specific strategies to support areas most at risk, while companies should
prioritize through strategic decisions their locations and workforce development.
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