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Abstract

To choose restaurants and coffee shops, people are increas-
ingly relying on social-networking sites. In a popular site
such as Foursquare or Yelp, a place comes with descriptions
and reviews, and with profile pictures of people who frequent
them. Descriptions and reviews have been widely explored
in the research area of data mining. By contrast, profile pic-
tures have received little attention. Previous work showed that
people are able to partly guess a place’s ambiance, clientele,
and activities not only by observing the place itself but also
by observing the profile pictures of its visitors. Here we fur-
ther that work by determining which visual cues people may
have relied upon to make their guesses; showing that a state-
of-the-art algorithm could make predictions more accurately
than humans at times; and demonstrating that the visual cues
people relied upon partly differ from those of the algorithm.

1 Introduction

The Internet is going local. Location-based sites like
Foursquare are becoming local search engines, in that, they
recommend places based on where users (and their friends)
have been in the past. State-of-the-art data mining tools
produce those recommendations by automatically analyzing
ratings and reviews (Vasconcelos et al. 2014).

As we shall see in Section 2, those tools are well-
established and make numbers (ratings) and pieces of text
(reviews) relatively easy to mine. By contrast, mining pic-
tures has been proven somewhat harder. Most of the com-
puter vision research has been active in making algorithms
more accurate. One of its subareas is called computational
aesthetics and, interestingly, is concerned with proposing
new ways of automatically extracting visual features that are
good proxies for abstract concepts such as beauty and cre-
ativity (Redi et al. 2014). It comes as no surprise that, being
only at their early stages, computation aesthetics algorithms
have not been widely used on social-networking sites.

Here we set out to study whether social-networking sites
such as Foursquare might benefit from analyzing pictures
with computation aesthetics techniques. To determine ‘for
what’ pictures might be useful, consider the work done
by (Graham and Gosling 2011). The two researchers showed
that people are able to guess place ambiance (e.g., whether
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a restaurant is romantic, whether a coffee shop is friendly)
by looking at the profile pictures of visitors. They did so
by comparing two types of scores: ambiance ratings given
by survey respondents who looked only at profile pictures
of visitors; and ambiance ratings given by study participants
who actually visited the places. That work showed that peo-
ple are partly able to determine the ambiance of a place only
by looking at the profile pictures of its visitors. It did not
show, however, which visual cues the respondents may have
relied upon to make their guesses.

Our goal is to determine whether state-of-the-art vision
techniques could automatically infer place ambiance. In so
doing, we make six main contributions by:

• Analyzing the sets of ambiance ratings collected by (Gra-
ham and Gosling 2011) (Section 3). We find that, by
considering the pairwise correlations between the 72 am-
biance dimensions, one can group those dimensions into
18 fairly orthogonal ones.

• Implementing a variety of state-of-the-art computer vi-
sion tools (Section 4). These tools extract the visual cues
that the literature of computational aesthetics has found
to correlate most strongly with subjective qualities of pic-
tures (e.g., beauty, creativity, and emotions).

• Determining which facial cues people appear1 to be using
to make their guesses about place ambiance (Section 5).
To this end, we carry out a correlation analysis between
the presence of our visual features and ambiance ratings.
We find that colors play an important role (e.g., posh
and pretentious places are associated with the presence
of pink, strange and creative places with that of yellow),
and that computational aesthetics features such as unique-
ness effectively capture the associations people make with
creative places.

• Showing that our algorithms make accurate predictions
(Section 6). We find that they show a precision error at
most of 0.1 on a scale [0,1].

• Determining which visual cues our algorithms extract
from profile pictures to make their predictions about place
ambiance (Section 7). We find that they tend to mostly
rely on image quality, face position, and face pose.

1We say ‘appear to be using’ simply because we measure cor-
relations and, as such, we do not know what people actually use.





The resulting dataset is limited in size because of two
main reasons. First, the number of locations with at least 25
profile pictures is limited. Second, it takes time to have two
groups of 5 raters each (research assistants above drinking
age) at every location at two different times of the day/week.
Despite that drawback, for the first time, this dataset thor-
oughly quantifies the multidimensional ambiance dimen-
sions of real-world locations.

For analytical purposes, it was useful to reduce the 72
ambiance dimensions into a smaller group of dimensions.
To this end, we used a semi-automated technique and man-
aged to reduce those ambiance dimensions into 18 orthog-
onal ones. We did so upon the dataset of face-driven am-
biance ratings (similar results were obtained with the on-the-
spot ratings). Each place was expressed with a 72-element
vector. We clustered those vectors using k-means, set k to
one value in k = {5, 10, 15, 20, 25, 30} at the time, and ob-
tained different clusters for different values of k. To select
the best cluster arrangement, we computed the average clus-
ter silhouette (Rousseeuw 1987), and found k = 25 to return
the best silhouette. By visual inspection, we determined that
k = 25 indeed returned the best grouping yet this group-
ing showed some minor inconsistencies (e.g., “trendy” and
“stylish” were assigned to different clusters despite being
quite strongly related). To fix that, we run a small user study
with 10 participants. We prepared a sheet containing 25 clus-
ters, each of which was described with ambiance terms (in
total, we had 72 terms). A participant had to label every clus-
ter based on its associated terms. If the labeling turned out
to be difficult because of spurious terms, the participant was
free to move those terms across clusters. Also, the partici-
pant had to underline the most representative term for each
cluster (which we call “target ambiance”). The implicit goal
of this task was to improve both intra-cluster consistency and
inter-cluster diversity. After analyzing the survey responses,
we were left with 18 semantically-consistent ambiance clus-
ters (Table 1) whose target ambiance scores are correlated in
expected ways (Figure 1). Face-driven and on-the-spot rat-
ings show very similar correlations.

4 Predictors
Our goal is to predict a place’s ambiance from the pro-
file pictures of its visitors. Therefore, next, we need to ex-
tract some predictors out of each picture. We cannot use
traditional computer vision features as predictors because
these are mostly used to semantically analyze an image,
i.e., to understand which objects are present in the im-
age (Sivic and Zisserman 2003). That is not the task at
hand simply because, for face-driven ambiance ratings, the
main object of the image is known (it is a face). By con-
trast, stylistic characteristics appear more promising. These
capture, for example, how a face is photographed, its aes-
thetic value, its dominant colors and textures, its affective
content, and the self-presentation choices it entails. Stylis-
tic features have been used previously to automatically as-
sess images’ and videos’ aesthetic value(Datta et al. 2006;
Birkhoff 1933), expressed emotions (Lu et al. 2012; Macha-
jdik and Hanbury 2010), creativity (Redi et al. 2014), and in-
terestingness (Gygli et al. 2013). In a similar way, we collect

definition target other ambiances

middle-class trendy stylish, modern, white-collar, impress

relaxing relax cozy, simple, clean, comfortable, pleasant,
relaxed, homey

posh formal luxurious, upscale, sophisticated

friendly cheerful funny, friendly

social drink /eat meet new people, watch people, hangout

romantic dating cheesy, romantic

pickup pickup meat market

creative artsy quirk, imaginative, art, eclectic, edgy,
unique, hipster, bohemian

party music energetic, loud, dancing, camp

attractive attractive

open-minded open open-minded, adventurous, extraverted

blue-collar blue-collar

traditional bland conservative, old-fashion, sterile, stuffy,
traditional, politically conservative

strange off path strange

cramp cramp dark, dingy, creep

calm agreeable emotionally stable, concencious

reading read study, work, web

pretentious douchy pretentious, self centered

Table 1: Ambiance clusters and corresponding target am-
biance.

here a set of image features (predictors) that reflect portrait-
specific stylistic aspects of the image, of the face, and of its
visual landmarks (eyes, nose, and mouth).

To infer face demographics, position and landmarks from
our profile pictures, we use Face++, a face analysis software
based on deep learning (Inc. 2013). Face++ has been found
to be extremely accurate in both face recognition (Inc. 2013)
and face landmark detection (Zhou et al. 2013). The infor-
mation of whether a face is detected or not is encoded in a
binary feature. If a face is not detected (that happened for
47% of the images), that feature is zero and all face-related
features are set to be missing values. Next, we introduce our
visual features used as predictors and, to ease illustration,
we group them into five main types.

1) Aesthetics. An image style is partly captured by its beauty
and quality. Psychologists have shown that, if the photo of
a portrait is of quality, then the portrait is memorable, gives
a feeling of familiarity, and better discloses the mood of the
subject (Kennedy, Hope, and Raz 2009). Photo quality has
also been related to its level of creativity (Redi et al. 2014),
and of beauty and interestingness (Gygli et al. 2013). We
implement computational aesthetics algorithms from (Datta
et al. 2006; Birkhoff 1933) and score our profile pictures in
terms of beauty and quality. More specifically, we compute:

Photographic Quality. The overall visual photographic
quality reflects the extent to which an image is correct
according to standard rules of good photography. To do
capture this dimension, we compute the camera shake
amount (Redi et al. 2014) (the quantity of blur generated
by the accidental camera movements), the face landmarks
sharpness, and face focus (which has been found to be
correlated with beauty (Redi et al. 2015)). To see how
those three dimensions translate in practice, consider Fig-
ure 2. This can be considered a good quality picture: there
is no camera shake, the face is in focus compared to the
background, and the facial landmarks (e.g., eyes, mouth)



Figure 2: Running example of a profile picture.

are extremely sharp.

Brightness, Saturation, Contrast. The three aspects respec-
tively correspond to the colors’ lightness, colorfulness and
discriminability in an entire image. They have all been
found to be associated with picture aesthetic (Datta et al.
2006; Redi et al. 2015) and its affective value (Valdez and
Mehrabian 1994). Darker colors evoke emotions such as
anger, hostility and aggression, while increasing bright-
ness evokes feelings of relaxation and is associated with
creativity (Redi et al. 2014). For each of our pictures,
we compute brightness, lightning, and saturation of the
eyes, nose, mouth and the entire face oval. To do that, we
add an overall contrast metric (Redi et al. 2015). To stick
with our running example, Figure 2 has very bright colors:
without being over-saturated (too colorful), the contrast is
high enough to make bits of the face quite distinguishable.

Image Order. According to Birkhoff, the aesthetic value
of a piece of (visual) information can be computed by
the ratio between its order (number of regularities) and
its complexity (number of regions in which it can be de-
composed) (Birkhoff 1933). Order and complexity have
been found to be associated with beauty, and to affect
how fast humans process visual information (Snodgrass
and Vanderwart 1980). We thus compute the image order
and its complexity using a few information theory met-
rics (Redi et al. 2014), its level of detail (i.e., number
of regions resulting after segmentation) (Machajdik and
Hanbury 2010), and its overall symmetry. The picture in
Figure 2 can be considered quite conventional: lines are
symmetric, and regularities are introduced by the unifor-
mity of its background and the smoothness of its textures.

Circles. The literature on affective image analysis suggests
that the presence of circular shapes is registered when
certain emotions (e.g., anger, sadness) are expressed (Lu
et al. 2012). Therefore, we add the presence of circular

shapes to our list of predictors. We compute them by us-
ing Hough’s transform (Redi et al. 2015). The face in Fig-
ure 2 has perfect round shapes in the eyes area only: 2 for
the iris, and 2 for the eye pupils.

2) Colors. They have the power to drive our emotions, and
are associated with certain abstract concepts (Mahnke 1996;
Hemphill 1996; James and Domingos 1953): red is related
to excitement (Wexner 1954); yellow is associated to cheer-
fulness (Wexner 1954); blue with comfort, wealth, trust, and
security (Wexner 1954); and green is seen as cool, fresh,
clear, and pleasing (Mahnke 1996). To capture colors from
our pictures, we compute the color name features (Macha-
jdik and Hanbury 2010) and facial landmark colors accord-
ing to their hue values (Redi et al. 2015). In Figure 2, the
dominant colors are white, red, and pinkish.

3) Emotions. Facial expressions give information not
only about the personality of the subjects (Biel, Teijeiro-
Mosquera, and Gatica-Perez 2012), but also about the com-
municative intent of an image (Joo et al. 2014). Faint
changes in facial expressions are easily judged by people
who often infer reliable social information from them (Ia-
coboni et al. 2001). That is also because specific areas of the
brain are dedicated to the processing of emotional expres-
sions in faces (Goldman and Sripada 2005). We therefore
compute the probability that a face subject assumes one of
these emotions: anger, disgust, happy, neutral, sad. We do
so by resorting to Tanveer et al. (Tanveer et al. 2012)’s work
based on eigenfaces (Turk and Pentland 1991). We also de-
termine whether a face is smiling or not using the Face++
smile detector.

4) Demographics. The distribution of age and gender
among visitors is expected to greatly impact the ambiance of
the place. It is well-known that people geographically sort
themselves (in terms of where they choose to live, which
places they like) depending on their socio-demographic
characteristics and end up clustering with others who are
like-minded (Bishop 2009). We take race (caucasian, black,
asian), age, and sex as our demographic features.

5) Self-presentation. The way people present themselves
might also be related to what they like (Mehdizadeh 2010).
To partly capture self-presentation characteristics, we
determine whether sunglasses or reading glasses are used,
whether a picture actually shows a face or not, and, if
so, we determine three main facial characteristics: face
centrality, whether there is a tilted face, and whether it
is a close-up. Figure 2, for example, shows a close-up of
a non-tilted and centered face. Our last self-presentation
feature reflects whether the image composition is unique
and memorable (we call it “ uniqueness”). It indicates the
extent to which the image is novel compared to the average
profile picture (Redi and Merialdo 2012).

To sum up, for each profile picture, we have a total num-
ber of 64 features. To combine the features of a venue’s faces
together, we characterize each place with the average and



the standard deviation of the features across the 25 pictures.
The diversity analysis arising from the standard deviation
statistics is needed because “it seems likely that observers
do more than simply averaging the individual impressions
of the targets. If targets are too diverse, then the group is
seen as diverse . . . ” (Graham and Gosling 2011). For each
place, we therefore have a 128-dimensional feature vector,
to which we add a value corresponding to the total number
of faces present in the group of 25 pictures. Hence, we rep-
resent a place with a final feature vector of 129 elements.

5 People Associations

To determine which visual cues the respondents in our
dataset may have relied upon to make their guesses, we
study the extent to which a person’s visual features im-
pacted respondents’ guesses. We resort to the face-driven
ambiance ratings introduced in Section 3. For each place,
we compute the pairwise correlations between each of the
129 visual features and each the 18 ambiance ratings. Of
course, face-specific features are defined only for images
that contain faces. To compute those 2,322 correlations,
we use the Spearman Correlation as most of the visual
features reflect the presence or absence of visual elements
(e.g., glasses) and, as such, they are best interpreted in a
comparative fashion rather than using raw numbers. To
ease illustration, next, we will group the correlation results
(Figure 3) by type of features.

Aesthetics Features. The most relevant aesthetic feature is
brightness. Respondents associate eye brightness, mouth
brightness, and nose brightness with people who like
friendly, open-minded, romantic, and party places (with
all correlations above r = 0.4). By contrast, dark pic-
tures - in terms of face brightness (r = −0.28) and nose
brightness (r = −0.37) - are associated with those who
like cramp places.

Colors. The presence of pink in profile pictures is asso-
ciated with those who like posh and calm places, while
its absence is associated with those who like reading and
creative places. The presence of yellow is associated with
strange and creative people, and its absence with those
who like traditional and posh places.

Emotions. The most important emotion feature is smil-
ing. Profile pictures with smiling faces are associated with
those who like posh, attractive, and friendly places (smil-
ing faces are associated with friendly places with a cor-
relation as high as r = 0.57), while strange people are
thought not to smile.

Demographics. Old people are associated with reading
places but, of course, not with pickup places. Race is also
associated with ambiance: Asian are associated with so-
cial places, while Caucasian with romantic places. The
presence of female among a place’s visitors results into
considering the place to be good for pickup, to be middle-
class, open-minded, romantic, and catered to attractive
people.

Self-Presentation. Those who wear glasses are associated
with relaxing and reading places, while those who do not
with pretentious places. Those who use profile pictures
that deviate from the conventional one (i.e., they tend to
be unique) are associated with middle-class and creative
places, while those who are conventional are associated
with posh places.

6 Algorithmic Predictions

We have just seen that survey respondents made systematic
associations between place ambiance and visual features.
Now one might wonder whether an algorithm could make
associations as well to automatically predict place ambiance
ratings.

To address that question, we use the on-the-spot ratings
(Section 3). Hence, for each place, we have 72 ambiance
ratings (which might well differ from the face-induced ana-
lyzed in the previous section). Again, those ambiance ratings
are summarized into 18.

Having this data at hand, we could train a regression
framework on part of the 49 places (each of which is rep-
resented by the usual 129 features), and we could then test
the extent to which the framework is able to predict the 18
ambiance dimensions on the remaining places. The problem
is that we have too few observations. To avoid overfitting,
the standard rule for regression is to have at least 10 obser-
vations per variable (Peduzzi et al. 1996). Unfortunately, in
our case, we have 49 places (observations) and 129 features
(variables).

To fix this problem, we train the regression framework
not on all the 129 features but on the 5 most correlated
ones. Since our dataset consists of only 49 observations,
we need to carefully maximize the number of training sam-
ples. Even a 90 %-10% train-test partition might be restric-
tive as it might remove important outliers from the train-
ing data. To tackle this issue, we resort to the widely-used
leave-one-out validation (Salakhutdinov, Tenenbaum, and
Torralba 2013). At each iteration, we leave one sample out
as test, and train the framework on the remaining samples;
the job of the framework is to predict the test sample. The
difference between the predicted value and the actual one
(that was left out) is the error, which we summarize as the
percentage Mean Squared Error (MSE).

Figure 4 shows that our framework accurately predicts all
the ambiance dimensions (the error is always below 10%)
despite having only five visual features as input. The two
ambiance dimensions of friendly and social are particularly
easy to predict (the error is close to 0). That is because the
pictures in those places tend to be distinctive: they are sim-
ilar to each other but differ from the pictures of other am-
biance dimensions. Party places tend to be associated with
relatively more diverse pictures, yet the error is quite reason-
able (12%).

7 Algorithmic Associations

So the framework makes accurate predictions of place am-
biance, suggesting that visual features are not only likely im-
pact people’s perceptions (as one would expect from the lit-





people do so.

Demographics. Old people do not go to party and blue-
collar places, but they are found in cramped, calm,
middle-class, and relaxing places. Men seem to avoid
pretentious places, while a balanced woman-man ratio
tends to be enjoyed by places where attractive people are
thought to go.

Self-Presentation. Interestingly, the self-presentation fea-
tures that matter the most boil down to only two: the use
of glasses and face position. Those who wear glasses go
to relaxing places, while those who do not wear them go
to party, pickup, and open-minded places. People wear-
ing sunglasses go to friendly places. As for face position,
those going to blue-collar and party places tend to have
their faces in a similar position, while a variety of posi-
tions is experimented by those going to relaxing, strange,
creative and posh places. Those going to friendly places
tilt their heads. By contrast, those going to traditional
places do not do so: their faces are centered, and they
avoid close-ups. Instead, those going to creative and pre-
tentious places indulge in close-ups. In addition to not
smiling, strange people seems to have a tendency to not al-
ways show their faces. Finally, the uniqueness feature also
matters: those who use profile pictures that deviate from
the conventional one go to reading places, while those
who have conventional pictures go to traditional places.

8 People vs. Algorithmic Associations

We have seen that both the algorithmic framework and the
group of people are able to estimate the ambiance of a place
given the profile pictures of its visitors. One might now won-
der who is more accurate: the algorithms or the group of peo-
ple? The answer is ‘depends’. To see why, consider Table 7.
A row in it refers to a specific ambiance dimension and re-
ports the predictive accuracy (Spearman correlation) for our
group of respondents (2nd column) and that for our algorith-
mic framework (3rd column). The highest accuracy between
the two is marked in bold. The remaining three columns re-
port the top5 features (if available) that turn out to be most
important for people, for the algorithm, and for both. The
features are placed in two rows depending on whether they
are correlated positively (↑ row) or negatively (↓ row).

The algorithm performs better in half of the cases. It
generally does so for ambiance dimensions that are well-
defined (e.g., posh, friendly, social, romantic). For more
multi-dimensional and complex dimensions (e.g., creative,
open-minded), the group of people outperforms, but not to a
great extent (the predictive accuracies are quite comparable).

Algorithm wins. As opposed to the algorithm, people find
it difficult to correctly guess these five ambiance dimensions
from profile pictures (the correlations are below 0.20):

Posh places. People appear to rely on the presence of pink-
ish and yellow, and that of smile; the algorithm, instead,
relies on the presence of black and of circular shapes, and
on the face position;

Friendly places. People are likely to rely on smiles, while

the algorithm relies on sunglasses (and achieves higher
accuracy in so doing).

Social places. People seems to engage in race profiling,
while the algorithm goes more for picture brightness and
presence of the white color.

Romantic places. People look at the presence of women
and of bright pictures, while the algorithm look for red
elements and for warmer colors in the face landmark.

Blue-collar places. People unsuccessfully go for the ab-
sence of purple, while the algorithm successfully goes for
the absence of blue.

People win. As opposed to people, the algorithm finds it dif-
ficult to correctly guess one ambiance dimension from pro-
file pictures: that of open-minded places. The algorithm re-
lies on the presence of circular shapes and on the absence
of reading glasses. Instead, people correctly infer that very
bright pictures are typical for open-minded places.

They both agree. More interestingly, from the last column
of Table 7, we see that the algorithm partly relies on people’s
stereotyping: both agree that the profile pictures for middle-
class places suffer from the lack of details (as opposed to
those for traditional places); those for relaxing and read-
ing places portray elderly people with reading glasses; those
for places catered to attractive people have smiling faces;
those for cramped places show darker lightning; and those
for strange places show high variability in the use of yellow.

9 Discussion

We have shown that a state-of-the-art algorithmic framework
is able to predict the ambiance of a place based only on 25
profile pictures of the place’s visitors. By then looking at the
ambiance-visuals associations that the framework has made,
we have tested to which extent those associations reflect peo-
ple’s stereotyping.

Limitations and Generalizability. Some of our results re-
flect what one expects to find (e.g., the color green is asso-
ciated with calm places), and that speaks to the validity of
those results (concurrent validity). However, one of the lim-
itations of this work is still that we cannot establish how our
insights generalize beyond restaurants and cafes in Austin. It
is well-known that ambiance and people perceptions change
across countries. To conduct such a study, new sets of data
need to be collected, perhaps by combining the use of Me-
chanical Turk (to get the face-driven ratings) and that of
TaskRabbit (to get the on-the-spot ratings). Also, researchers
in the area of social networks might complement our study
and analyze the relationship between activity features (e.g.,
reviews, ratings) and ambiance.

Theoretical Implications. We have also contributed to the
literature of computational aesthetics. Some of our visual
features have been indeed used in previous studies that au-
tomatically scored pictures for beauty and emotions (Datta
et al. 2006; Machajdik and Hanbury 2010). We have now





Ambiance People Algorithm
Top-5 Features

People Algorithm Both

middle class 0.26 0.45**
↑ uniqueness, female old
↓ male detail, photo quality

relaxing 0.45** 0.45**
↑ old glasses, glasses (variability)
↓ show face variable position

posh 0.15 0.30*
↑ smile, pinkish variable position
↓ yellow, quality, unique black (variability), centered face, number of circles

friendly -0.02 0.42**
↑ smile, brightness (mouth,eyes) sunglasses, sunglasses (variability)
↓ photo quality (variability) brightness (mouth, nose) (variability)

social 0.15 0.30*
↑ asian, asian (variability), caucasian (variability) white, white(std), sad (std), brightness (face) (variabil-

ity)
↓

romantic 0.15 0.29*
↑ brightness (nose, mouth, eyes), female, caucasian color (nose, eye), color (nose, eye) (variability), red
↓

pickup 0.43** 0.34*
↑ female, photo quality
↓ male, old glasses, glasses (variability), photo quality

creative 0.60*** 0.45**
↑ uniqueness (variability), uniqueness, yellow, white (variability) close-up
↓ pinkish centered face, detail

party 0.58*** 0.44**
↑ female
↓ glasses, old photo quality (variability),

glasses (variability)

attractive 0.39*** 0.57***
↑ female, brightness (mouth, face) closeup, white, white (variability), gender diversity smile
↓ male photo quality

open-minded 0.50*** 0.18
↑ brightness (mouth, face, eyes) presence of circles
↓ male glasses, photo quality

bluecollar 0.10 0.41**
↑ presence of circles
↓ sad, sad (variability), photo quality, purple old, blue, face position (variability)

traditional 0.59*** 0.46***
↑ centered face detail
↓ yellow, red, yellow (variability), uniqueness (variability)

strange 0.41** 0.56***
↑ yellow (variability), centered face, close-up (variability) black (variability), presence of circles yellow
↓ shows face, centered face smile

cramp 0.31* 0.46***
↑ disgusted (variability) white, white (variability), purple, purple (variability)
↓ brightness (nose, eyes)

calm 0.41** 0.24
↑ centered face, green, green (variability) old
↓ centered face (variability)

reading 0.78*** 0.59***
↑ glasses (variability), photo quality, photo quality (variability) yellow glasses, old
↓ pinkish

pretentious 0.33* 0.28
↑ pinkish presence of circles
↓ glasses (variability), glasses photo quality(variability), male

Table 2: Predictive accuracy of the ambiance dimensions for the group of people vs. the algorithm. (Note: *** = p < .01; ** =
p < .01; *= p<.05)
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