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Abstract

Mapping the functional use of city areas (e.g., map-
ping clusters of hotels or of electronic shops) enables
a variety of applications (e.g., innovative way-finding
tools). To do that mapping, researchers have recently
processed geo-referenced data with spatial clustering al-
gorithms. These algorithms usually perform two con-
secutive steps: they cluster nearby points on the map,
and then assign labels (e.g., ‘electronics’) to the result-
ing clusters. When applied in the city context, these al-
gorithms do not fully work, not least because they con-
sider the two steps of clustering and labeling as sepa-
rate. Since there is no reason to keep those two steps
separate, we propose a framework that clusters points
based not only on their density but also on their se-
mantic relatedness. We evaluate this framework upon
Foursquare data in the cities of Barcelona, Milan, and
London. We find that it is more effective than the base-
line method of DBSCAN in discovering functional ar-
eas. We complement that quantitative evaluation with a
user study involving 111 participants in the three cities.
Finally, to illustrate the generalizability of our frame-
work, we process temporal data with it and successfully
discover seasonal uses of the city.

1 Introduction
Cities consist of functional areas, areas dedicated to spe-
cific functions (food, entertainment, residence). A quick un-
derstanding of a complex city might be provided by new
ways of discovering functional areas. These might benefit
a variety of stakeholders: tourists who look for historical
sites; locals who are after niche shopping; walkers who pre-
fer specific types of urban smells (Quercia, Schifanella, and
Aiello 2015) and sounds (Quercia, Schifanella, and Aiello
2016); and retail analysts who have to recommend where
new brick-and-mortar shops are best placed (Karamshuk et
al. 2013).

Automatically discovering functional areas is still “a very
challenging problem in traditional urban planning” (Yuan,
Zheng, and Xie 2012). To partly fix that, we propose a
framework for discovering functional areas and, in so doing,
make three main contributions:
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• We frame the area discovery problem in terms of maxi-
mization of a simple objective function to be integrated
into any clustering algorithm (Section 3). This function
aims at finding and labeling the largest possible areas with
the most specific labels (e.g., the label ‘clothing stores’ is
preferable to ‘shops’).

• We evaluate the framework with a hierarchical clustering
algorithm upon Foursquare data in the cities of Barcelona,
Milan, and London (Section 4). We find that it is more
effective than DBSCAN in discovering functional areas
in those three cities.

• We complement our quantitative evaluation with a qual-
itative one (Section 5). We ask 111 participants to sug-
gest areas where to carry out specific tasks (e.g., where
to best place a new tech startup, where to go shopping).
We then compare the areas they suggested with those au-
tomatically returned by our framework.

We conclude by discussing desirable properties of the
framework, including its flexibility in working upon any
type of data, including temporal one (Section 6).

2 Related Work
The simplest way of finding functional areas is to use a spa-
tial clustering technique. One of the most common tech-
niques is the Density-based Spatial Clustering of Applica-
tions with Noise (DBScan) (Ester et al. 1996). It finds a
number of clusters starting from the estimated density dis-
tribution of points. A few years ago, for example, it was run
on Foursquare data in the three cities of New York, Lon-
don, and Paris (Bawa-Cavia 2011). To test the hypothesis
that a modern city functions as a ‘social archipelago’ (i.e.,
“a fragmented set of islands characterized by high-density
social activity”), the author modeled Foursquare venues as
geo-located points and found that Paris is less spatially frag-
mented than London; by contrast, New York is the most
fragmented, twice as much as Paris.

Most of the latest research effort has gone into finding
functional areas in the city. Researchers have done so in
three main ways. The first way has relied on grouping to-
gether semantically-annotated points of interests. Cao et al.
identified popular signatures (e.g., frequency distribution of
different types of buildings) to find urban patches that fre-
quently occur in different parts of the city. For example, the
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Figure 1: Cells in Barcelona, each of which is labeled using: (a) the category with the highest TF-IDF score; (b) the most
frequent venue category.

signature of residential areas might well be the high presence
of single houses and garages (Cao et al. 2013). Noulas et
al. exploited semantic annotations of Foursquare venues for
grouping geographic areas in New York and London (Noulas
et al. 2011), and saw how those changed from day to night.

The second way of finding functional areas has relied
on human mobility. Mobility is derived from mobile phone
traces (Quercia et al. 2010) or Foursquare check-ins (Long,
Jin, and Joshi 2012; Zhang, Amy X. and Noulas, Anasta-
sios and Scellato, Salvatore and Mascolo, Cecilia 2013).
The premise of those approaches is that people’s movements
signal the potential and intrinsic relations among locations.
In this vein, by tracking where Foursquare users check-in,
Cranshaw et al. were able to move beyond the politically-
defined boundaries of neighborhoods and discovered areas
that effectively reflected the character and life of a few US
cities (Cranshaw et al. 2012).

The third (and latest) way of finding functional areas is to
combine semantic annotations with human mobility. Yuan
et al. inferred the functions of each area using a topic-based
inference model: areas are modeled as documents, functions
as topics, categories as metadata, and human mobility pat-
terns as words (Yuan, Zheng, and Xie 2012). They found that
this way of discovering functional areas is far more effective
than if one were to apply TF-IDF or LDA on their datasets.
Indeed, if one were to gather all the foursquare venues in
the city of Barcelona, divide the city map into 100x100m
walkable cells, and color each cell with either the most fre-
quent venue category or the category with the highest TF-
IDF score, then the resulting map would be either too ho-
mogeneous (most of the cells in Figure 1(a) are labeled as
‘food’) or too fragmented (cells in Figure 1(b) are labeled
with a variety of categories).

All the previous approaches find areas and, only after that,
manually describe their functions. Understanding what an
area really means requires, however, considerable human ef-
fort. Here we propose an approach in which the two steps
of clustering and labeling incrementally unfold at the same
time.

3 Proposal
3.1 Problem Statement
Imagine the entire city map divided into n equally sized grid
cells: A = {a1, a2, · · · , an} (cell size is an input param-

eter). Within each cell, there are points that are labeled. As
such, cell a contains different fractions of points having label
l (cov(l, a)). Our goal is to find clusters of cells such that the
points inside the clusters are geographically closer and more
semantically related than what points outside those clusters
are.

More formally, the map can be represented as a graph
G = (A,E) with vertex set A and edge weights
{wi,j}ai,aj∈A. Vertices are our map cells, and edge weights
reflect how related two adjacent cells are. For our purposes,

we define wa,b =
1

ka
, if a and b are adjacent, and 0 oth-

erwise. The value ki is the number of neighbors of a. We
use the ‘rook case’ notion of adjacency, in which the four
surrounding cells (above, below, left, right) are considered
adjacent1. There are also a taxonomy arranged in a tree
T = (V,E) whose leaves are in the set L ⊆ V , and an
initial labeling function ` : A→ L that assigns a leaf of the
tree to each cell. These assignments should be considered
initial ones that the algorithm might well then change. Our
goal is to find a labeling `∗ : A→ V of the cells such that:

• The labeling `∗ generalizes the initial labeling; that is, the
new label `∗(a) of each cell a ∈ A should be an ancestor
of `(a) in T ;

• The labeling `∗ gives adjacent cells the same or very sim-
ilar labels;

• The labeling `∗ prefer specific labels over general ones;
that is, the closer the labels to the leaves of T , the better.

There is a natural tradeoff between those objectives. Con-
sider the extreme case in which all the cells are labeled with
the root of the tree: on the one hand, we would have per-
fect homogeneity of labeling; on the other hand, however,
we would have over-generalized. At the other extreme, set-
ting `∗ = ` would result in no generalization, but adjacent
cells would have overly diverse labels.

We formalize those competing objectives next. Let adv :
V × A → R denote a function representing the advantage
of assigning a label to a cell. Given a user-defined parameter
λ ∈ [0, 1], we want to find the labeling `∗ : A → V that

1One could also assume that the graph G is undirected. In that
case, the weights of two adjacent cells (a, b) are the same (wa,b =
wb,a) and measure to which extent a and b are semantically related.
By contrast, the weights of two non-adjacent cells are zero.



maximizes the sum
∑

a∈A of:(
λ
∑
b∈A

wa,b 1[`
∗(a) = `∗(b)] + (1− λ)adv(`∗(a), a)

)
(1)

The first term measures to which extent the proposed la-
beling `∗(a) for a’s neighborhood is homogeneous (the in-
dicator function 1 is one, if the two proposed labels are the
same; zero otherwise). The second term quantifies the ad-
vantage of cell a’s proposed labeling and is defined as:

adv(l, a) = cov(l, a)− cov(l, A)

The higher label l’s coverage for the points inside cell a
(cov(l, a)) and the lower its coverage for the points across
the whole map A (cov(l, a)), the higher label l’s advan-
tage. The cell coverage cov(l, ai) is the fraction of points
with label l or with labels that are under l in T . More for-
mally, we are given ` : L × A → [0, 1] such that ∀a ∈
A,
∑

l∈L `(l, a) = 1. For a node l ∈ V of the taxonomy, let
L(l) ⊆ L denote the set of leaves contained in the subtree
rooted at l. Label l’s coverage for cell a then measures the
presence of l inside a:

cov(l, a) =
∑

l∈L(v)

`(l, a)

In a similar way, the entire map coverage is:

cov(l, A) =
log10 (10 +

∑n
i=1 cov (l, ai))

log10(10 + n)

This adds all the values of cov(l, a) across the map and di-
vides that sum by the number of cells. Both numerator and
denominator are log-transformed to account for the skew-
ness of the labels: it is likely that a few labels are present in
many cells, while most labels are present in only a few cells.
If this were not to be the case in a specific domain, then one
could simply divide the overall coverage by the number of
cells:

∑n
i=1 cov(l,ai)

n .

3.2 Our proposal
To find the areas and labeling for the map that maximize the
objective function, we would need to test all possible labels
assigned to all possible areas and select the configuration for
which the function is maximum. Since that would be com-
putationally prohibitive, we need to find an efficient way of
finding a satisfactory partitioning and labeling of areas. To
this end, we modify the hierarchical clustering algorithm.
This allows us to merge candidate cluster pairs in incremen-
tal ways: by incremental, we mean that each potential merge
is independently evaluated and it takes place only if the ob-
jective function increases as a result.

We start with the initial labeling ` in which each cell is
assigned the most popular label inside it. Next, we apply the
hierarchical clustering that works as follows (Algorithm 1).
Each cell in the map is initially assigned to a new cluster
(line 3), resulting in as many clusters as cells. For each clus-
ter Ck, since we can select any of the candidate labels: the

Algorithm 1 Hierarchical clustering - pseudocode
1: procedure HAC(T,A, λ, contr())
2: for each cell ai in A do
3: Assign ai to a newly created cluster Ck

4: Assign label l to Ck: contr(Ck, `
∗(Ck)) is max

5: end for
6: for each pair of adjacent clusters Ck, Ch do
7: checkEnqueuePair(Ck, Ch, λ, T )
8: end for
9: while (priorityqueue is not empty) do

10: Get next tuple
(Mkh, lij , contr(Mkh, `

∗(Mkh)))
11: mergePair(Ck, Ch, lij , contr(Mkh, `

∗(Mkh))
12: Replace references to Ck and Ch with Mkh

13: Update contr() for each neighbor of Mkh

14: end while
15: end procedure

labels present in it and their ancestors in T , we need to com-
pute the contribution to the objective function for each of
those labels and select the one that results in the maximum
(line 4):

contr(Ck, `
∗(Ch))

To start merging those clusters, we augment the original
algorithm (not tailored to spatial applications) with a simple
spatial notion: only adjacent clusters can be merged 2. By
testing which clusters are adjacent and which are not, we
have a set of cluster pairs that could be potentially merged
(line 6).

In the checkEnqueuePair procedure (line 7), we test
whether we are better off with the merge of Ck and Ch or
not. For each candidate pair, we compute the first cluster’s
contribution to the objective function, and the second clus-
ter’s contribution. The two contributions are computed con-
sidering the two clusters’ current labels. The contribution of
the first cluster Ck is computed with the previous formula
over all Ck’s cells, and the contribution of the second cluster
is computed summing over all cells in Ch. Having those two
individual contributions, we are now able to decide whether
to merge the two clusters or not. We merge them only if
that merging operation contributes to the objective function
equally or more than the sum of the two individual contribu-
tions; otherwise, the two clusters are best left separate. The
contribution of the newly merged cluster Mkh is computed
with the previous formula: the only difference is that the sum
is done over all the cells in both clusters. That contribution
contr(Mkh, `

∗(Mkh)) changes depending on the label as-
signed to the newly merged cluster. Since we can assign any
of the candidate labels (i.e. the intersection of Ck and Ch’s
candidate labels), we need to compute the contribution for
each of those labels and select the ones that result in a non-

2One desirable by-product of this restriction is that the algo-
rithm’s search space is greatly reduced.



negative merging benefit: (
contr(Mkh, `

∗(Mkh))−
(contr(Ck, `

∗(Ck)) + contr(Ch, `
∗(Cj))

)
≥ 0

In selecting Ck and Ch, we generate a priority queue in
which cluster pairs are ordered by their merging benefits.

After putting all cluster pairs with non-negative merging
benefits in the queue, we visit the queue by performing or-
dered merging operations starting with those with highest
benefits (line 10). At each merging operation (line 11), the
queue is updated (line 12): after combining, say, Ck and Ch,
we refresh the queue by replacing all references to either Ck

or Ch withMkh and updating the contributions to the objec-
tive function of Mkh’s neighbors. The merging operations
end when the queue is empty.

4 Evaluation
The goal of our algorithm is to cluster points in a map in
a way that the points in the same cluster are geographically
close and semantically related. To ascertain whether our pro-
posal meets this goal, we ought to answer two main ques-
tions:
(Area Distinctiveness) To which extent is our proposal able

to group points that are related to each other in the same
areas?

(Labeling Accuracy) Does the label assigned to each area
well describe the area’s points?

Baseline. To answer those questions in a comparative fash-
ion, we need to resort to a baseline algorithm. DBScan is
widely used for spatially clustering points but it does not re-
turn any label for its clusters. We thus augment it by labeling
DBScan’s clusters with the most popular label in each clus-
ter as that is what practitioners tend to do. The algorithm
works by iteratively aggregating spatial points into clusters
based on a threshold distance ε and a minimum cluster size
cmin. We try ε = 400m and cmin = {3, 4, 5}, as they
are commonly used values (Bawa-Cavia 2011). Points that
cannot be assigned to any cluster are marked as ‘noise’.

Foursquare dataset. We use the Foursquare REST Public
API and crawl 22K, 60K and 37K venues located within
the bounding box of the three cities of Barcelona, London
and Milan. We then consider only the venues with at least
10 check-ins, leaving us with 14K, 30K, 18K venues. Each
venue comes with its unique identifier, name, latitude, lon-
gitude and category. Those three cities have been chosen for
their very different characteristics. From a geo-demographic
perspective, with such a choice of cities, we explore differ-
ent population sizes (3,2M for Barcelona, 8,3M for London,
and 1,3M for Milan) and population densities (5,060 inhab-
itants per square kilometer in Barcelona, 4,542 in London,
and 7,536 in Milan). From a Foursquare (or, more generally,
social media) perspective, both Barcelona and Milan are
less ‘mature’ than London, having a smaller user base and
smaller number of check-ins. For our experiments, we crawl
the entire tree of categories used by Foursquare to categorize

venues and divide the bounding box of each city into walk-
able cells, each of which is initially labeled with its most
frequent category and is roughly 100x100 meters in size.
Previous research has established that 200m tends to be the
threshold of walkable distance in urban areas (O’Sullivan
and Morrall 1996; C.L. and TfL 2006) (in dense parts, this is
equivalent to 2.5-minute walk), making our choice of 100m
sufficiently conservative.

4.1 Distinctiveness
To measure the quality of the clustering, we consider the
correlation-clustering problem. The values of the correlation
clustering CC are experimentally affected by the number of
clusters less than other clustering measures (e.g., normalized
cut):

CC =
∑

pi∈Ck
pj∈Ck

(1− dist(pi, pj)) +
∑

pi∈Ck

pj /∈Ck

dist(pi, pj)

Since points in the same area should ideally be closer to
each other than points in different areas, this measure reflects
the quality of the clustering as it increases with the points’
closeness (1−dist(pi, pj)), if the two points are in the same
area; and with the distance dist(pi, pj), if the two points are
in different areas. To define the notion of semantic distance
in a taxonomy, we resort to Jiang and Conrath (Jiang and
Conrath 1997)’s definition:

dist(pi, pj) = 2 log(Pr(lca(`∗(pi), `
∗(pj))))−

(log(Pr(`∗(pi))) + log(Pr(`∗(pj))))

where Pr(`∗(pi)) is the occurrence probability of the la-
bel assigned to pi in the city map (i.e., number of points
labeled with `∗(pi) over the total number of points), and
lca(`∗(pi), `

∗(pj)) is the lowest common ancestor of the
two labels assigned to pi and pj .

We compare the semantic correlation clustering values in
the three cities of Barcelona, London, and Milan (Figure 2).
In all cities, we observe the same two main results. First, our
proposal performs consistently better than the best DBScan
results (obtained with cmin = 3). The values of the corre-
lation clustering for our framework are all above 0.90. Sec-
ond, as λ increases, the semantic correlation clustering stays
flat for DBScan (as it does not depend on λ) and slightly
decreases for our proposal. In Barcelona, that decrease be-
come noticeable only for λ > 0.6: yet, after that value, the
correlation clustering is still above the best DBScan’s values.
This suggests that enforcing homogeneity with high values
of λ does not impact the distinctiveness of the resulting func-
tional areas in both Milan and London but, to a limited ex-
tent, impacts that in Barcelona. By inspecting the data, we
know that the values of the semantic correlation clustering
decrease after λ > 0.6 because labels in Barcelona tend to
be more diverse than those in the two other cities.

4.2 Labeling Accuracy
After testing the distinctiveness of the functional areas, we
need to test whether the areas are properly labeled. To as-
sess whether a label assigned to each area well describe
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Figure 2: Semantic correlation clustering values for DBSscan and for our proposal as a function of λ in: (a) Barcelona; (b)
London; and (c) Milan. The parameters of DBScan are minpts = {3, 4, 5} and ε = 100 meters.
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Figure 3: Labeling error (RMSE) for DBScan and for our proposal as a function of λ in: (a) Barcelona; (b) London; and (c)
Milan.

the points inside it, we use the Root Mean Squared Error
(RMSE) and refer to it as labeling error:

RMSE(A, `∗(A)) =
√∑

Ck∈A
1
|C|
∑

pi∈Ck

1
|Ck|dist(`

∗(pi), `∗(Ck))2

In words, over all clusters (areas) Ck in the map, and over
all points in each area, we measure the semantic distance
between the label `∗(pi) assigned to the point and the la-
bel `∗(Ck) assigned to the corresponding area. The higher
the map’s RMSE, the lower the accuracy of the labels (i.e.,
the higher the mismatch between the labels of the individual
points and those of the corresponding areas).

We compare the labeling error values in the three cities
of Barcelona, London, and Milan (Figure 3). By choosing
the most popular label in each DBScan’s cluster, the error
is above 0.75 in the three cities. For our proposal, the error
is always below 0.5. As λ increases, the error decreases (as
high values for lambda enforce labeling homogeneity), and
for λ > 0.7, the error is minimum.

By combining the two sets of results presented so far, we
conclude that values of λ in the range [0.35, 0.55] strike the
right balance between area distinctiveness and labeling ac-
curacy.

5 User Study
To complement our quantitative results and evaluate whether
the found functional areas and their labels actually align with
what residents perceive about their city, we conduct a mixed
method user study.

5.1 Experimental setup and execution

We recruit 111 study participants in the three cities through
university mailing lists and advertising on Facebook. Each
participant is presented with a map of the city containing 5
(Milan) or 6 (Barcelona and London) functional areas that
are highlighted and sequentially numbered (e.g., the bottom
panel of Figure 4). Those functional areas have been gener-
ated setting λ = 0.4. Milan has 5 areas instead of 6 because
it has no specific area where to buy electronics as opposed
to Barcelona and London.

We start our study by asking each of our participants to
read a consent form and optionally provide age, gender,
years living in the city, and email address. We recruit 40
(Barcelona), 40 (London), 31 (Milan) participants. Among
them, the percentage of female-male is 75%-25% for Lon-
don, 53%-47% for Barcelona, and 58%-42% for Milan. The
most common age band is that of 30-35 (London) and 24-29
(Barcelona and Milan), and all our participants have lived in
their city for more than four years, allowing us to go beyond
a typical student demographic.

We then provide brief instructions about the study and
present six different tasks, one at a time. The tasks are cho-
sen based on the area labels returned by our framework, and
each task corresponds to one label. Of course, the area labels
are unknown to the participants. A participant has to imag-
ine the following six tasks and rate the extent to which each
of the areas is suitable for each of the tasks. The ratings are
expressed on a Likert scale (i.e., strongly disagree, disagree,
neither agree nor disagree, agree and strongly agree).
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Figure 4: Barcelona areas our framework identified to be
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Task-Office. A young entrepreneur is looking for a location
where to base his new tech startup. You would recom-
mend . . .

Task-Electronics. A newly arrived student needs to buy
electronics. You would recommend . . .

Task-Hotels. A guy working in the hotel service industry
has to visit as many hotels as possible in a short time. You
would recommend . . .

Task-Clothing. A friend of yours wants to visit as many
clothing stores as possible. You would take her to . . .

Task-University. A newly arrived foreign student wishes to
experience university life. You would take her to . . .

Task-Monuments. A friend of yours is visiting the city for
the first time and wishes to see historic places and monu-
ments. You would take her to . . .

After providing answers for each task, the participant is
asked to motivate his/her answers in free-text form and even-
tually indicate the name of the area that (s)he would have
recommended for that task (it could but does not have to be
one of the six areas).

5.2 Quantitative and Qualitative results
In Barcelona, the functions proposed by our framework (un-
known to our respondents) match those suggested by our
respondents for the office, electronics, clothing, and his-
toric tasks (top panel of Figure 4): the area labeled with a
given category (e.g., electronics) is associated with the cor-
responding category’s task (e.g., ‘task-electronics’) with a
‘strongly agree’ assessment (i.e., with a median score of 5).
These results are also reflected in our respondents’ com-
ments. For example, the majority of our respondents cor-
rectly consider area 5 to be best for the ‘startup-task’ and
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Figure 5: London areas our framework identified to be best
for each hypothetical task (bottom panel), and the extent to
which our respondents suggested the very same areas (top
panel).

identify it to be the “22@ area”, which is known, as one re-
spondent puts it, “as the innovation & entrepreneurship area
in Barcelona”. By contrast, for the two remaining tasks (i.e.,
hotels and university), the variability of the answers is high.
For the ‘hotels-task’, our framework has identified area 4
to be best. Some respondents agree with that, while others
add that areas 2 and 6, being located in the central part of
town, have many hotels too. For the ‘university-task’, our
respondents suggested area 3 because most students live in
that area, while there are just university buildings in area 1,
which was the area identified by our framework.

As for London, the functions proposed by our framework
match those suggested by our respondents for the office,
electronics, clothing, university and historic tasks (top panel
of Figure 5): for those tasks, the median scores are all 5.
Once again, for the ‘hotels-task’, our respondents identified
multiple areas (mainly central ones) to be best (not only the
one identified by our framework).

Finally, in Milan, the functions proposed by our frame-
work match those suggested by our respondents for the
clothing and university tasks (top panel of Figure 5), and,
to a certain extent, for the hospital task (the answer vari-
ability is lowest for the area identified by our framework).
Again, for the ‘hotels-task’, a central area in addition to the
one proposed by our framework is often mentioned. For the
remaining ‘startup-task’, our respondents offer a variety of
answers: some suggest the area labeled by our framework,
while others suggest the area near the main technical univer-
sity (Politecnico). They motivate this latter answer by say-
ing that, if placed near Politecnico, the startup could benefit
from technology transfer and could avoid the problems of
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Figure 6: Milan areas our framework identified to be best
for each hypothetical task (bottom panel), and the extent to
which our respondents suggested the very same areas (top
panel).

more central areas of the city, which “are not specialized in
technology and are simply crowded and expensive”.

Taken together, the user study’s quantitative and qualita-
tive results both suggest that our framework is able to iden-
tify areas in the three cities and effectively label them with
their functions.

6 Discussion
We now dwell on some of our framework’s desirable prop-
erties and discuss some open questions.

6.1 Flexible framework
Previous approaches for discovering functional areas have
modeled contextual factors such as time. For example, Yuan
et al. not only derived Beijing’s functional areas but also
their evolution from 2010 to 2011 (Yuan, Zheng, and Xie
2012). Next, we briefly show that considering a temporal
taxonomy allows for studying how the city fabric changes
during different seasons.

To this end, we gather a random sample of more than
1M geo-referenced pictures within the bounding box of
Barcelona from the Flickr public API, 400K of which are
generated by distinct users in distinct locations. For each
picture, we gather its unique identifier, latitude, longitude,
the owner’s identifier, the date of creation and the date of up-
load. We then consider the temporal taxonomy in Figure 7(a)
and accordingly label each picture with one of the taxonomy
categories depending on the picture’s date of creation. We

1

2

3

4

5

Winter Spring Summer Fall

holiday

Dec Jan Feb March Apr May June Jul Aug Sep Oct Nov

weekday

Year

weekend

(a)

(b)

winter

spring

fall

fall october
summer

Figure 7: Temporal analysis of Flickr pictures in Barcelona.
The areas reported in (b) are determined by our framework
using the temporal taxonomy in (a) with λ = 0.4.

then run our framework with, again, λ = 0.4 and obtain the
areas in Figure 7(b), which we number from 1 to 5:

Area 1. The framework categorizes this area with the ‘fall’
label. The area mainly covers a road called ‘Avinguda
de la Reina Maria Cristina’, which is close to Plaza
d’Espana. By looking at the actual pictures, we find that
most of them depict the Magic Fountain (pictured at the
bottom of Figure 7) during ‘La Merce’ festival. This cele-
brates the ‘La Virgen de La Merce’, patron of Barcelona,
towards the end of September, and it is one of the most
important festivities for the residents of Barcelona.

Area 2. This area is marked with ‘fall’ and is related with
the Merce festival too. It mainly includes the road of
‘Via Laietana’, in which, during the festival, the world-
renowned ‘castellets’ (towers of individuals on top of
each other) are built. They are world-renowned since they
receive coverage from major international news outlets.

Area 3. This area is marked with the very specific label of
‘fall-october’. This label comes as a surprise as the area
includes beaches popular during the summer. By looking
at the pictures, we find out that they are about the ‘Festa
al cel’, which we now learn is the greatest air showcase in
the country. The label fall-october is not the most frequent
among the pictures in that area but understandably is the
most discriminative compared to nearby areas, which hap-
pen to be beaches.

Areas 4 and 5. They contain the most famous beaches and
central squares (e.g., Placa de Catalunya) popular among
summer tourists. As one expects, the areas are categorized
as ‘summer’.
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Figure 8: Areas in Barcelona identified by our framework from Foursquare venues with: (a) λ = 0.1; (b) λ = 0.4; and (c)
λ = 0.9.

Those results suggest that, with a temporal taxonomy, one
is able to identify key events in specific seasons. More im-
portantly, those results speak to our framework’s flexibility:
different definitions of taxonomy result into very distinct no-
tions of functional areas. Take a demographic taxonomy,
which segments users into different socio-demographic
classes according to age, gender, and profession. With it, our
framework could potentially discover areas that serve simi-
lar or distinct functions for a variety of lifestyles (Yuan et al.
2013). Another example is a weather taxonomy. By using
such a taxonomy, our framework could discover areas that
are visited preferentially when, say, it is sunny or raining.

In practice, our framework’s flexibility enables key ap-
plications. For example, a number of mobile personalized
services are trying to figure out how to make geofencing a
reality. The term geofencing refers to the use of geofences
in combination with mobile services. The idea is that noti-
fications are sent to mobile users whenever they cross a ge-
ofence (a geographic boundary). Many common geofencing
scenarios are based on a simple radius around a point of in-
terest, like a shop. One of the most important challenges is
that geospatial calculations are complex and, since they re-
quire the use of GPS chips, they tend to drain the battery in
a few hours. Our proposal partly fixes that as it offers a scal-
able solution: one could imagine to download the shape files
of different functional areas on the phone and cheaply sup-
port background mobile applications that send tourist infor-
mation or personalized shopping offers. To see how, imagine
a user saving books and electronics on her electronic wishlist
while at work. When traveling back home, her phone could
generate alerts with the list of functional areas in which she
could stop by and acquire some of the items on the list.

6.2 Usable framework
The proposed framework aims at being not only flexible but
also usable. We believe it is so for two main reasons: i) it
requires to fine tune a single parameter; and ii) it supports
current visualization paradigms.

Single parameter. To discover functional areas, only one
parameter has to be set. This parameter is intuitive and goes
from 0 to 1: 0 corresponds to the finest-grained division of
functional areas, while 1 corresponds to the most homoge-
neous division. The value of this parameter depends on what
the algorithm’s user is after. The difference between retail
analysts’ needs and tourists’ is a case in point. Retail ana-

lysts might wish to emphasize areas that do not have a sin-
gle function but have compound functions, so they would
set a low value for the parameter (Figure 8(a) reports the
Barcelona map for λ = 0.1). By contrast, tourists might be
after a quick and digestible snapshot of the city fabric and,
a such, would set a high value for it (Figure 8(c) reports the
Barcelona map for λ = 0.9).

Supporting current visualization paradigms. The labels
with which we annotate areas are not only human inter-
pretable but also part of a taxonomy. That makes it possible
to show such annotations simply as a list of categories next
to a map, which is what people nowadays are used to and, as
such, avoids pushing them outside their comfort zone. Hav-
ing the map of a city and, next to it, the list of categories
in our taxonomy, a user could click on a category and see
the areas annotated with that category highlighted on the
map. This was not readily possible with the most popular
approaches of discovering functional areas (i.e., topic-based
inference models, segmentation techniques). That is because
those approaches express area annotations as category dis-
tributions, which are not easily translatable in a drop-down
menu or, for that matter, in any visualization paradigm indi-
viduals are used to.

7 Conclusion

We have proposed a taxonomy-driven framework for dis-
covering functional areas and have extensively tested it in
three cities. By changing the type of taxonomy under study,
we have shown that our framework offers flexibility on
the types of areas that could be potentially discovered: for
example, we have shown that it discovers not only func-
tional areas but also seasonal ones. Based on those pos-
itive results, our framework promises to partly overcome
a wide range of challenges, including: recent industry ef-
forts in the area of mobile and personalization like geo-
fencing; spatio-temporal studies of how the city is effec-
tively used by social media users; and urban socio-cultural
investigations such as that of how, given a language tax-
onomy, ethnic groups geographically sort themselves. To
collectively meet those challenges, in the near future, we
will make the framework’s code publicly available at
researchswinger.org/tbscan.
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