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The presence of people in an urban area throughout the day – often called ‘urban vitality’ – is one of the
qualities world-class cities aspire to the most, yet it is one of the hardest to achieve. Back in the 1970s, Jane
Jacobs theorized urban vitality and found that there are four conditions required for the promotion of life
in cities: diversity of land use, small block sizes, the mix of economic activities, and concentration of people.
To build proxies for those four conditions and ultimately test Jane Jacobs’s theory at scale, researchers have
had to collect both private and public data from a variety of sources, and that took decades. Here we propose
the use of one single source of data, which happens to be publicly available: Sentinel-2 satellite imagery. In
particular, since the first two conditions (diversity of land use and small block sizes) are visible to the naked
eye from satellite imagery, we tested whether we could automatically extract them with a state-of-the-art
deep-learning framework and whether, in the end, the extracted features could predict vitality. In six Italian
cities for which we had call data records, we found that our framework is able to explain on average 55% of
the variance in urban vitality extracted from those records.
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1 INTRODUCTION
A livable city is a place full of life, and that life is created by city dwellers [37, 42]. In her 1961 book
“The Death and Life of Great American Cities”, writer and activist Jane Jacobs identified the four
“generators” of urban vitality (i.e., pedestrian activity throughout the day): diversity of land use, small
block sizes, a mix of economic activities, and the concentration of people. Without them, a city will
die. With them, it will thrive. Her ideas exerted a tremendous impact on the thinking of architects,
developers, urban planners, and community activists. Despite their importance and popularity,
for a long time, Jacobs’s theories could not be tested at scale. Upon collection of both private and
public data from a variety of sources, the hypothesized effectiveness of the four generators has

Authors’ addresses: Sanja Šćepanović, sanja.scepanovic@nokia-bell-labs.com; Sagar Joglekar, sagar.joglekar@nokia-bell-
labs.com, Nokia Bell Labs, Cambridge, U.K.; Stephen Law, slaw@turing.ac.uk, University College London & The Alan Turing
Institute, London, U.K.; Daniele Quercia, Nokia Bell Labs, Cambridge, U.K..

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/2-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: February 2021.

ar
X

iv
:2

10
2.

00
84

8v
1 

 [
cs

.C
V

] 
 2

8 
Ja

n 
20

21

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 Šćepanović, et al.

Fig. 1. Examples of satellite views for the areas with the highest and the lowest vitality levels in each of the
six Italian cities. Despite having comparable vitality levels, the shown areas present very different urban
forms.

been only recently tested in the city of Seoul, Korea [56], and across six Italian cities [14]. Yet, all
these studies meticulously collected data from a variety of sources, and that took years (it took a
decade in Seoul’s case), considerably limiting research advancements.

To tackle the issue of data collection, we investigated whether it is possible to estimate some of
the four generators of urban vitality (and vitality itself) from one single source: Sentinel-2 satellite
imagery [58]. Since two of the four generators—that is, diversity of land use, and small block
sizes—are visible to the naked eye, we hypothesized that they could be identified from satellite
imagery. We also studied whether vitality could be directly predicted from such imagery. For both
prediction tasks—predicting vitality generators first and then vitality indirectly from them, or
predicting vitality directly—it is not obvious that neither of them could be performed upon satellite
data. To see why, consider Figure 1: representative satellite views from the six Italian cities exhibit
remarkably different visual features (such as colors and diversity of urban and natural forms) even
if they come from areas of comparable vitality levels.
We built a processing framework that consists of three modules, each of which: i) extract

small images from satellite imagery (which we call imagelets); ii) extract visual features from
these imagelets with state-of-the-art deep learning methods; and iii) combine these features into
district-level feature vectors. In so doing, we were able to make two main contributions:
C1 We built two techniques based on a deep learning framework, which, upon publicly available

Sentinel-2 satellite imagery, extract representative feature vectors for urban districts (Section
3).

C2 We showed that, from these district feature vectors, we could predict proxies for land use
and small block size, as well as predict urban vitality directly (Section 4). In a 5-fold cross-
validation experiment, we found that satellite features explain, on average across six Italian
cities, more than 55% of the variance (in terms of the adjusted coefficient of determination,
𝑅2
𝑎𝑑 𝑗

) for urban vitality. Moreover, to ascertain how well the model generalizes, we performed
a “leave-one-city” out validation (where the model is trained on a set of cities and tested
on an unseen city). In this experiment, we found that the model can explain up to 50% of
variance for Milan and 61% in Florence, suggesting the ability of our method to generalize
to unseen cities. However, we also found that this performance drops for some cities - up
to 25% for Rome. Upon a thorough investigation, we identified the potential reasons for the
performance drop in Rome, which include the city’s specific natural, cultural, and historical
contexts. Accordingly, we discuss recommendations for future work (Section 5).

This work is at the intersection of two research areas—social computing and urban analytics.
The combination of the two makes it possible to use emerging sources of data such as satellite
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imagery to answer questions typical of the social sciences in a computational way, opening up new
opportunities for future work (Section 5).

The project webpage is available at https://goodcitylife.org/vitality.

2 RELATEDWORK
Three main lines of research are related to this study. First, social computing research on quantifying
urban activity. Second, research that tested Jane Jacob’s four generators of urban vitality at scale.
Third, research on automatically inferring subtle urban properties from satellite imagery that are
not necessarily visible to the naked eye (e.g., crime rates, property prices).

2.1 Measuring Urban Activity from Social Media Data
In the research community of social computing, researchers have worked on quantifying urban
activity from different perspectives. They have, for example, crowd-sourced people’s perceptions
of beauty, quietness, and happiness of urban locations [46], and, by then combining these crowd-
sourcing results with geo-referenced social media content (e.g., Flickr photos), they built path
recommender systems that suggest beautiful, quiet, or happy urban routes in a city [44, 46, 60].
Le Falher et al. [35] used Foursquare check-ins to classify city neighborhoods in terms of prevalent
activity types in them (e.g., dining, cultural, shopping). De Choudhury et al. [13] identified the
movements of individual tourists based on their picture uploading patterns and found that average
time spent at a location and location popularity were two useful predictors of interesting routes.

Researchers used openly available social media data to study urban dynamics. For example, Araujo
et al. [3] recently used the Facebook marketing API to demographically profile an urban area. Redi
et al. [47] predicted the ambiance of neighborhoods from the Flickr images in those neighborhoods.
To augment deprivation indexes that have traditionally been derived from census data, and have
been expensive to obtain, Venerandi et al. [61] used Foursquare and OpenStreetMap data. The
premise behind all this work is that user-generated content on location-based services translates
into rich behavioural traces [13, 19, 63]. More generally, in the social computing community, a need
to empower cities, neighborhoods, and local communities with new technologies has long been
recognized [12]. In a similar vein, our work develops a framework that uses openly available data
to quantify the key aspect of urban vitality.

2.2 Verifying Empirically Jane Jacobs’s Insights
The Household Travel Survey captures walking and driving activity in the whole city of Seoul
and is conducted once every 5 years. Sung et al. [56] used the 2010 survey to operationalize urban
vitality and showed that the four generators of urban vitality did hold across dongs, the small
administrative areas of Seoul. In a similar setup, in six Italian cities, De Nadai et al. [14] have found
that the four generators do apply to the Italian context as well. Instead of a costly multi-year survey,
the researchers used mobile phone Internet density as a proxy for urban activity. Finally, beyond
urban vitality, researchers have widely tapped into Jacobs’s idea of natural surveillance to build
predictive models for the crime: pedestrian activity acts as “natural surveillance”, and that reduces
crime rates [6, 7, 59].

2.3 Inferring Urban Variables from Satellite Imagery
Satellite images capture an overall structure of an area, which encodes different urban processes,
as recent studies on satellite images have shown. For example, Han et al. [26] developed a deep
learning architecture to map high-resolution satellite images across country districts into fixed-size
district-level feature vectors. The authors then showed that such features can be used to predict
socio-economic properties of districts, such as population density, population age distribution,
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4 Šćepanović, et al.

household count and size, and income per capita. Albert et al. [1] studied the patterns of land use
in urban neighborhoods using high-resolution satellite imagery from Google Maps. To label the
imagery, the authors resorted to the Urban Atlas, which provides land classification into 20 land use
classes across 300 European cities. For a given location, they trained ResNet [27] and VGG-16 [52],
two deep convolutional neural networks, to predict the most likely class for the 224 × 224 images.
The achieved classification accuracy was between 0.7 and 0.8. Moreover, Albert et al. showed that
the models can be trained on the imagery from one city to predict the classes in a completely
different city. Law et al. [34] studied whether satellite/aerial imagery can enhance the prediction of
housing prices. The authors obtained the high-resolution satellite/aerial imagery from Bing around
the properties of interest and showed that the standard hedonic price approach for predicting
housing prices can be improved by incorporating features extracted from the satellite imagery in a
semi-interpretable manner.
Albert et al. [2] studied the distribution of key urban macroeconomic variables – population,

luminosity (a proxy for energy access and use), and building density – from satellite data. Across
all the cities with at least 10K inhabitants around the world, the authors demonstrated the strong
link between the spatial distribution of lighting levels (which was previously shown to be a proxy
for energy access and wealth levels [29]) and concentration of population. The work by Albert et al.
[2] is similar to ours, in that, the authors studied population density and built infrastructure, both
of which are proxies for urban vitality. However, the work by Albert et al. differs from ours in two
main ways: i) there is no operationalization of the theoretical concept of urban vitality as this was
not the focus; and ii) the authors studied 25K cities at a coarse-level (with TerraSar and LandScan
data at a spatial resolution of 750𝑚 − 1𝑘𝑚/𝑝𝑥 ), while in this present work, we were able to work at
a much finer-level of urban detail (with Sentinel-2 data at a spatial resolution of 10𝑚/𝑝𝑥).
Wang et al. [62] studied whether the commercial activeness of an urban area, proxied with the

number of online reviews for places in the area, can be predicted from satellite data (and street
views). The work by Wang et al. is similar to ours, in that, a pipeline was used that extract features
from satellite images and feeds those features into a regression method. However, there are two
main differences compared to our present study: i) there is no investigation of urban vitality but
only one of its components, i.e., commercial activeness; and ii) Wang et al. work used commercial
satellite imagery, compared to the openly available Sentinel-2 imagery that we used. The commercial
nature of the data might create hurdles in terms of inclusivity in the social computing community,
especially for the developing world.

In summary, though previous work used satellite data to measure population density, commercial
activeness, and other variables that influence urban vitality, no study directly focused on vitality.
Furthermore, the majority of previous work used commercial satellite images such as those from
Bing and Google Earth, instead of openly available Sentinel images, as we did. By basing this work
on openly available satellite data, such as Sentinel, we show that we can systematically derive
insights about the built environment (such as vitality) with a performance at par with methods
based on other access controlled and expensive datasets. This is notwithstanding the differences in
spatial resolution between Sentinel and other datasets. We foresee that this could further empower
the community to perform follow-up studies, particularly around the developing parts of the world.

3 DATA AND METHODS
This section describes how each city’s district was encoded into a district feature vector, which was
then associated with the district’s urban vitality value. First, we created imagelet feature vectors
by extracting small image pieces (imagelets) from satellite imagery and parsing them using deep
learning feature extractors (Section 3.1). Second, we computed the district’s urban vitality by
combing a variety of data sources, including Urban Atlas, Open Street Map, and mobile phone data
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Fig. 2. Our framework for district feature extraction from satellite imagery. In step 1, the entire Sentinel-2
image of the city is split into imagelets (see Figure 3); in step 2, features are extracted from each imagelet
using a deep learning feature extractor (see Figures 4 and 5), which is then followed by a PCA; and, in step 3,
the imagelets 𝑖 are grouped by their corresponding districts (Figure 6) and their feature vectors (𝑣𝑖 ) processed
to finally compute the representative district feature vectors (𝑥𝑑 ).

(Section 3.2). Finally, we created the district’s feature vector by combining the imagelet feature
vectors corresponding to the imagelets composing the district, and associated the resulting district
feature vector with the previously computed district’s urban vitality value (Section 3.3).

3.1 Creating Imagelet Feature Vectors from Satellite Images
In 2014, the European Space Agency (ESA) has launched the first of the Sentinel satellites as part
of the Copernicus1 program [58], which aims at democratizing access to Earth Observation (EO)
data. Thanks to this multi-billion investment, we can today freely access accurate and timely land
satellite data from the radar (Sentinel-1, Sentinel-3), altimeter (Sentinel-3), and optical (Sentinel-2)
sensors. Other satellites from the Sentinel series provide atmospheric and oceanic data. Goals behind
programs such as Copernicus are quite ambitious: they include managing the environment, helping
mitigate the effects of climate change, monitoring agriculture, and supporting urban development
[51], to just name a few.

3.1.1 Sentinel-2 Imagery. For this study, we used Sentinel-2 optical imagery, which monitors the
land surface conditions and serves for producing land-cover and land-change detection maps [17].
The optical sensors (Multi-Spectral Instrument [9]) sense 13 spectral bands (B1-B13) ranging in
spatial resolution from 10𝑚 to 60𝑚. Out of the several processing levels in which the Sentinel-2
imagery is distributed, Level-1C and Level-2A are freely available to public. The Level-2A is the
higher processing level and it includes atmospheric correction [39] on top of Level-1C products.
Additionally, the imagery in this product is orthorectified (projected to the geodetic coordinates)
and generated with an equal spatial resolution of 10𝑚 for the three so-called True Color Image
(TCI) bands (i.e., B4, B3, B2). The TCI bands combination gives natural color representation of
Sentinel-2 data [22] and is widely used in land cover studies [54]. Given its richness and that all
these necessary pre-processing steps are already performed on it, we selected the Level-2A product
for this study. We downloaded the Sentinel-2 Level-2A products for selected six Italian cities from
2018 (i.e., the earliest available, since this product became operational in 2018). All the images
were re-projected to the WGS 84 / UTM zone 32N geodetic coordinate reference system (CRS), also
sometimes denoted as EPSG:32632. This CRS is suitable for use in between 6°E and 12°E, northern
hemisphere and between equator and 84°N – the area that includes Italy.

3.1.2 Pre-processing and Creating Imagelets. To create training data, for each city, we processed
the Sentinel-2 imagery in three steps (Figure 3):
(1) created geo-referenced raster image from the TCI bands (B4, B3, B2);

1https://www.copernicus.eu/en/about-copernicus/copernicus-brief
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Fig. 3. Process of creating training imagelets from the source Sentinel-2 imagery for the city of Milan.

(2) cropped the image based on the city boundaries (derived from an official shapefile); and
(3) split the cropped image into imagelets of size 64 × 64 pixels.

This imagelet size was selected so that the resulting imagelets are not too large compared to
a district’s size (Table 1) and not too small in terms of their final resolution, but they are also
enough large to be successfully processed by our deep learning framework (Section 3.1.3). The
pre-processing resulted in 9,115 imagelets in total across the six cities.

3.1.3 Deep Learning Feature Extractors. To extract visual features from the satellite imagelets, we
applied a pipeline consisting of a standard convolutional neural network (𝐶𝑁𝑁 ) [32] architecture
followed by a principal component analysis (𝑃𝐶𝐴). Given an image 𝑖 ∈ 𝐼 , where 𝐼 is the set
of imagelets, our goal was to retrieve a vector of uncorrelated and ordered visual components
𝑣𝑖 ∈ 𝑉 . To generate such a vector we used two techniques: the first was based on a pre-trained
feature extractor (Figure 4), and the second consisted of training an unsupervised convolutional
autoencoder (CAE) feature extractor (Figure 5).

Pre-trained CNN Feature Extractor. We adopted the 𝑉𝐺𝐺16 [53] 𝐶𝑁𝑁 architecture (Figure 4)
(weights pre-trained on ImageNet [48]): given an imagelet 𝑖 , we extracted the output of the last but
one fully connected layer (4,096 features) (𝑧𝑖 ) and summarised these features 𝑧𝑖 into a sparse set of
uncorrelated components 𝑣𝐶𝑁𝑁

𝑖 using a 𝑃𝐶𝐴.

Convolutional Autoencoder (CAE) Feature Extractor. Since 𝑉𝐺𝐺16 architectures were not trained
on “overhead view” satellite images, we chose an additional architecture which we could train on
our imagelets. This architecture uses a convolutional autoencoder (𝐶𝐴𝐸) [5, 41] (Figure 5), followed
by 𝑃𝐶𝐴 [33].𝐶𝐴𝐸 is an unsupervised approach which comprises of two parameterized functions, a
deterministic encoder 𝑓𝑤 (·), and a deterministic decoder𝐺𝑢 (·). Convolutional layers can be stacked
sequentially where the encoding layers reduce the dimension of the image 𝑖 to a latent embedding
𝑧𝑖 while the decoding layers expand the dimensions back to its reconstruction 𝑖 ′. The sequential
architecture can be seen in Figure 5. Following [41], the parameters of the encoder 𝑧𝑖 = 𝐹𝑤 (𝑖) and
the decoder 𝑖 ′ = 𝐺𝑢 (𝑧𝑖 ) are updated by minimizing the reconstruction losses between 𝑖 and the
reconstructed version 𝑖 ′ = 𝐺𝑢 (𝐹𝑤 (𝑖)):

L𝑅𝐸𝐶 =
1

𝑛𝑏𝑎𝑡𝑐ℎ

𝑗=𝑛𝑏𝑎𝑡𝑐ℎ∑︁
𝑗=0

(𝑖 𝑗 −𝐺𝑢 (𝐹𝑤 (𝑖 𝑗 )))2, (1)
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Table 1. Number of districts (𝑁𝑐 ), their average size (in km2) and population, and number of imagelets
acquired per city.

City #Districts (𝑁𝑐 ) Mean Area (in km2) Mean Population #Imagelets
Milan 85 1.72 14,551 328
Bologna 23 3.34 15,918 170
Florence 21 2.89 16,633 135
Palermo 43 2.01 15,075 193
Turin 56 2.00 15,543 252
Rome 146 3.24 17,123 1068

Table 2. 𝐶𝐴𝐸 Architecture with explicitly enumerated stack of encoder and decoder layers

LAYER RESAMPLE NORM FILTER SIZE
Image - - -
Conv MaxPool BatchNorm 5×5×16
Conv MaxPool BatchNorm 7×7×32
Conv MaxPool BatchNorm 7×7×32
Conv - BatchNorm 9×9×32
Conv - BatchNorm 9×9×32
Z 512×1
ConvTranspose Upsample - 9×9×32
ConvTranspose Upsample - 9×9×32
ConvTranspose Upsample - 7×7×32
ConvTranspose Upsample - 7×7×32
ConvTranspose Upsample - 5×5×16
Recon - - -

where 𝑛𝑏𝑎𝑡𝑐ℎ is the number of images in a batch, and L𝑅𝐸𝐶 is the reconstruction loss.
The convolutional autoencoder was trained with the satellite images using the ADAM [31]

optimiser with a learning rate of 0.001 for 500 epochs with a batch size of 128. After extensive
testing, we selected an embedding dimension of 512 since it gave us the best trade-off between
compression and a lower reconstruction loss, where the loss stabilizes at 0.01 (Table 2 reports
the implementation details of the architecture we ended up using). After training, we extracted a
lower dimension embedding from the satellite imagelets using the trained encoder, which is then
summarized into uncorrelated components 𝑣𝐶𝐴𝐸𝑖 using 𝑃𝐶𝐴.
For both, 𝑉𝐺𝐺16 and CAE, we experimented with 𝑛𝑐𝑜𝑚𝑝 = 12, ..., 64 PCA components in our

evaluation (Section 4), and found that using 𝑛𝑐𝑜𝑚𝑝 = 16 components yielded the best results when
using all the data from our six cities. In the rest of the paper, for simplicity, we denote imagelet
feature vectors with 𝑣𝑖 , while we experimented with both 𝑣𝐶𝑁𝑁

𝑖 and 𝑣𝐶𝐴𝐸𝑖 .

3.2 Computing Six Vitality Proxies and Urban Vitality for a District
We built upon previous work by De Nadai et al. [14]. The authors empirically validated Jane Jacobs
theory across six cities in Italy. They showed that the four generators of urban vitality defined by
Jacobs, i.e., land use, small blocks, diversity of economic activity, and concentration of people, indeed
predicted urban vitality.
From our satellite imagery, we can estimate neither diversity of economic activity (it is not a

property of the urban form) nor concentration of people (as our satellite images are open data but
medium-resolution). By contrast, land use and small blocks are the two vitality generators out of
the four that could be potentially visible from satellites. To test the extent to which they are so, we
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Fig. 4. Schematic of our pre-trained 𝐶𝑁𝑁 feature ex-
tractor. We extracted a set of features 𝑧 from satellite
image using a pretrained 𝑉𝐺𝐺16𝑖𝑚𝑎𝑔𝑒𝑛𝑒𝑡 [53]. We
then summarised these features into a set of compo-
nents 𝑣𝐶𝑁𝑁 with a 𝑃𝐶𝐴.

s

z
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Encoder Decoder

Fig. 5. Schematic of our Convolutional Auto Encoder
(𝐶𝐴𝐸) feature extractor. We trained a 𝐶𝐴𝐸, where the
encoder compresses the satellite image and a decoder
reconstructs it. After training, we extracted a set of
features 𝑧 from the encoder and summarise it into a
set of components 𝑣𝐶𝐴𝐸 with a 𝑃𝐶𝐴.

Table 3. The six vitality proxies plus urban vitality itself together with their distribution, mean (𝜇), and
standard deviation (𝜎).

Land Use 𝜇 𝜎 Small Blocks 𝜇 𝜎

Land use mix 0.733 0.201 Block size 9.618 0.459
Building height 0.689 0.216 Intersection density 10−4 10−4

Small parks 0.004 0.003 Anisotropicity 0.385 0.042

Vitality 𝜇 𝜎

Activity density 0.006 0.005

operationalized them with six vitality proxies (Table 3) computed for the six cities (Milan, Florence,
Bologna, Turin, Palermo, and Rome).

Before describing these six proxies, we have to define and motivate our choice for spatial unit of
analysis. We took district (or area di censimento) as the unit of analysis, as was done by previous
work [14]. Districts are census areas, which consist of neighboring blocks (i.e., sections delimited by
street segments) grouped based on socio-economic conditions. In the Italian context, districts are
comparable in terms of population (having between 13K and 18K inhabitants) and size (covering
an average area of 2.47𝑘𝑚2) (Table 1). The average population density of a district for the 6 cities in
our dataset is 10K per 𝑘𝑚2. These parameters correspond to those of the spatial areas that Jacobs
discussed in her book [28].

3.2.1 Land Use. Jacobs suggested that a mix of primary uses in a district promotes vitality [28].
Examples of primary use categories are residential buildings, office spaces, industrial, entertainment,
education, recreation, and cultural facilities. One of the most comprehensive datasets on the urban
land use categories is the Urban Atlas2 produced for most of the cities in Europe including our
test cities. It provides information on 20 land use classes (such as green urban areas, sports and
leisure facilities, and urban fabric). The Urban Atlas is built from high resolution satellite imagery
in combination with ancillary data, such as Google Earth, Open Street Map, and manually-collected
in-situ data.

Land use mix. From the Urban Atlas, we first computed land use mix in each district. According
to Manaugh and Kreider [40], land use mix can be calculated as the entropy of three main categories
2http://www.eea.europa.eu/data-and-maps/data/urban-atlas
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of urban land uses: i) residential, ii) commercial, industrial, institutional and governmental, and iii)
recreational, parks, and water. We used the formula:

land use mix𝑑 = −
𝑛𝐿𝑈𝐶∑︁
𝑗=1

𝑃𝑑,𝑗 log(𝑃𝑑,𝑗 )
log(𝑛𝐿𝑈𝐶 )

(2)

where 𝑃𝑑,𝑗 is the percentage of area with land use 𝑗 in district 𝑑 , and 𝑛𝐿𝑈𝐶 = 3 is the number of
land use categories.

Small parks. By attracting people to spend time or just walk there, small parks promote vitality
[4, 28]. For each district 𝑑 , we calculated the average distance of all its blocks from the nearest
small park (with the area < 1 km2):

small parks𝑑 = ( 1
|𝐵𝑑 |

∑︁
𝑗 ∈𝐵𝑑

dist( 𝑗, closest( 𝑗, 𝑆𝑀)))−1 (3)

where 𝐵𝑑 is the set of blocks in district 𝑑 , closest( 𝑗, 𝑌 ) is a function that finds the geographically
closest element in set 𝑌 from block 𝑗 ’s centroid, 𝑆𝑀 is the set of small parks, and dist(𝑎, 𝑏) is the
geographic distance between two elements’ centroids 𝑎 and 𝑏.

Building height. Jacobs posited that lower building height encourages the opening of restaurants,
stores, and other services, which, in turn, all promote pedestrian activity [28]. Sung et al. [56] used
the average number of floors per building in a district as a proxy for building height, which was
computed as:

building height𝑑 =

∑
ℎ𝑐 𝑏ℎ𝑐,𝑑 · 𝑓ℎ𝑐∑

ℎ𝑐 𝑏ℎ𝑐,𝑑
(4)

where 𝑏ℎ𝑐,𝑑 is the number of buildings that are in height category ℎ𝑐 in district 𝑑 , and 𝑓ℎ𝑐 is the
number of floors corresponding to height category ℎ𝑐 . To collate data on building floors, we used
the Italian National Institute for Statistics (ISTAT)3.

3.2.2 Small Blocks. Another of our six vitality proxies is small blocks, which have been found to
increase walkability and opportunities of cross-use.

Block sizes. A district’s block size variable can be defined as the average size of all the blocks 𝐵𝑑
within the district 𝑑 :

block sizes𝑑 =
1

|𝐵𝑑 |
∑︁
𝑗 ∈𝐵𝑑

area𝑗 (5)

Intersection density. Another variable in the category of small blocks contributing to urban vitality
by increasing random contacts is intersection density:

intersection density𝑑 =
|intersections𝑑 |

area𝑑
(6)

Anisotropicity. Anisotropy refers to the irregularity of a geometric shape concerning its orien-
tation and spacing. A block can be of relatively small size, but, if it exhibits an anisotropic shape
(i.e., one of its sides is considerably longer than the other), then that decreases the chance of
being in contact with one of its sides. We assigned anisotropicity to each district 𝑑 as the average
anisotropicity [36] of its blocks 𝐵𝑑 :

anisotropicity𝑑 =
1

|𝐵𝑑 |
∑︁
𝑗 ∈𝐵𝑑

Φ𝑗 (7)

3http://www.istat.it/it/archivio/104317
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where Φ𝑗 is the ratio between the area of the block 𝑗 and the area of its circumscribed circle C𝑗 :

Φ𝑗 =
area𝑗
areaC𝑗

. (8)

3.2.3 Urban Vitality. We used mobile Internet activity as a proxy for urban vitality. Unlike mobile
phone data on calls and SMS activity, this type of data senses peoples’ presence even when they are
not actively using their phones, enabling better tracking of their mobility in an area. Telecom Italia
Mobile, i.e., the largest mobile operator in Italy (34% of total mobile phone user base), provided its
data from February to October 2014.

Activity density. To estimate the number of Internet connections that fell into each district, we
represented the space with a set of Voronoi polygons [18] based on the radio stations’ positions.
To estimate the Internet activity in each district 𝑑 at time 𝑡 , we calculated the number of Internet
connections over all polygons 𝑝’s that fell into district 𝑑 :

𝑆𝑑 =
∑︁
𝑣

𝑅𝑝
𝐴𝑝∩𝑑

𝐴𝑝 −𝐴𝑝∩𝑊
(9)

where 𝑝 is a polygon, and 𝑅𝑝 is the number of Internet connections in 𝑝 throughout a typical
business day. The count of Internet connections is weighted by 𝐴𝑝∩𝑑

𝐴𝑝−𝐴𝑝∩𝑊
, which is the proportion

𝐴𝑝∩𝑑
𝐴𝑝

of 𝑝’s area that falls into district 𝑑 (𝐴𝑝∩𝑑 is 𝑝’s area that falls into district 𝑑 , and 𝐴𝑝 is 𝑝’s total
area). From 𝑝’s total area we removed sea areas denoted by𝑊 (i.e., we removed 𝐴𝑝∩𝑊 ).

3.3 Combining District Feature Vectors with Urban Vitality
Having prepared imagelet-level features and district-level labels, we combined the two datasets
as follows. First, we assigned imagelets to districts with the following procedure. If an imagelet
was overlapping with several districts, we assigned it to the district with which it has the largest
overlap. An illustration for assigning imagelets in Turin is shown in Figure 6. Out of the 9,115
original imagelets, most of them fell outside of the city’s boundaries. With this procedure, we were
able to assign a different percent of imagelets for each city, in total 2,146 imagelets (the breakdown
per city is shown in Table 1). Notice, however, that we still used all the 9K imagelets to train the
autoencoder feature extractor 𝐶𝐴𝐸 (described in Section 3.1). These imagelets constituted the basis
for our train and test set.
Second, using the imagelet features, for each city and each of its districts, we derived a rep-

resentative district feature vector in a way similar to the previous work [26]. For each district
𝑑 ∈ 1, ..., 𝑁 , we took feature vectors 𝑣𝑖1 , 𝑣𝑖2 , ...𝑣𝑖𝑛𝑑 ∈ 𝑅𝑛𝑐𝑜𝑚𝑝 (where 𝑛𝑐𝑜𝑚𝑝 is the number of PCA
components discussed in Section 3.1) of its imagelets 𝑖1, 𝑖2, .., 𝑖𝑛𝑑 , and aggregated them into a single
vector 𝑥𝑑 = ( ®𝜇𝑑 , ®𝜎𝑑 , 𝑝𝑑 , 𝑛𝑑 , ®𝑐𝑑 ), where ®𝜇𝑑 is the vector of size 𝑛𝑐𝑜𝑚𝑝 obtained by taking the mean
across the 𝑛𝑐𝑜𝑚𝑝 components of the district imagelet feature vectors, ®𝜎𝑑 is the vector also of size
𝑛𝑐𝑜𝑚𝑝 obtained in a similar way by taking the standard deviation across the components of imagelet
vectors, 𝑝𝑑 is a number obtained by taking the the average Pearson’s correlation between pairs of
imagelet vectors, 𝑛𝑑 is the total number of imagelets in 𝑑 , and ®𝑐𝑑 = (𝑐𝑙𝑜𝑛

𝑑
, 𝑐𝑙𝑎𝑡

𝑑
) is a vector of size

two representing the district centroid (i.e., the lon/lat of the centroid point). The first four groups
of elements capture and describe district satellite data by central tendency ( ®𝜇𝑑 ), dispersion ( ®𝜎𝑑 ),
association (𝑝𝑑 ), and size (𝑛𝑑 ). Compared to [26], we additionally enriched our visual feature set
with geolocation features, i.e., district centroids ( ®𝑐𝑑 ) as previous research has shown that their
inclusion encodes spatial positioning of the imagelets, and improves performance [10, 57]. Hence,
if we denote as 𝑥𝑘

𝑑
the 𝑘𝑡ℎ element of the feature vector 𝑥𝑑 , then:
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Fig. 6. Our approach of associating imagelets with districts and their vitality levels (which are computed
from mobile phone activity density and are our labels) in the city of Turin. A darker color denotes higher
values of urban vitality. The two imagelets shown on the map will be associated with different vitality levels
(i.e., the imagelet in the city center with high vitality, while the one on the outskirts with low). Examples
of imagelets associated with high versus low vitality levels are also shown. The high-vitality imagelets are
characterized by a denser urban fabric, smaller blocks, and more brown-reddish colors (likely representing
the rooftops of low-rise buildings). On the other hand, the low-vitality imagelets feature large homogeneous
areas (e.g., stadium, larger parks, and fields), a low-density urban fabric, and white colors (likely representing
industrial buildings).

The first 𝑛𝑐𝑜𝑚𝑝 elements are the average values of the 1𝑠𝑡 , 2𝑛𝑑 , . . . , 𝑛𝑐𝑜𝑚𝑝 -𝑡ℎ component (re-
spectively) of all the district’s imagelet vectors,

The elements from position (𝑛𝑐𝑜𝑚𝑝 + 1) to position (2 · 𝑛𝑐𝑜𝑚𝑝 ) are the standard deviation
values of the 1𝑠𝑡 , 2𝑛𝑑 , . . . , 𝑛𝑐𝑜𝑚𝑝 -𝑡ℎ component of all the district’s imagelet vectors,

The element at position (2𝑛𝑐𝑜𝑚𝑝 + 1) is the Pearson’s correlation of the imagelet vectors,
The element at position (2𝑛𝑐𝑜𝑚𝑝 + 2) is the count of imagelets in the district, and
The last two elements are the longitude and latitude coordinates of the district’s centroid.

Our way of defining the district feature vectors has the nice property that they are of equal length
(i.e., 𝑥𝑑 ∈ 𝑅𝑚 , where𝑚 = 2𝑛𝑐𝑜𝑚𝑝 + 1 + 1 + 2), independently of the district sizes or the number of
imagelets.
Last, for each of the collected six proxies (Table 3), we took the corresponding value 𝑦𝑑 for the

district 𝑑 and associated this value with the feature vector 𝑥𝑑 of the district. This combined dataset
constituted our training and test set.

4 EVALUATION
Having prepared the training and test data, we set up our two main evaluation experiments. The
main goals of these experiments were to test whether we could estimate two classes of quantities
from satellite imagery: 1) the six proxies in Table 3 (Section 4.4), and 2) urban vitality itself
(Section 4.5).

4.1 Setup
Using the produced district feature vectors, for each of the six proxies in Table 3, we created a
regression taskwhose dependent variable is initially each of the six vitality proxies. The distributions
of different variables, including activity density used as a proxy for urban vitality, are shown in Table
3. Since activity density and the variables in the land use category were skewed, we log-transformed
them using the natural logarithm. Additionally, since the scales of the variables varied considerably,
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we standardized and normalized them before running regression models so that we could later
compare their relative importance.

4.2 Regression methods
Given the district feature vectors 𝑥𝑑 ∈ 𝑅𝑚 (calculated as in Section 3.3) and their corresponding
labels 𝑦𝑑 ∈ 𝑅 (calculated as in Section 3.2), we aimed at predicting 𝑦𝑑 , using linear regression
models of the form

𝑦𝑑 = 𝑤0 +𝑤1𝑥
1
𝑑
+ ... +𝑤𝑚𝑥

𝑚
𝑑
, 𝑑 = 1, ..., 𝑁 , (10)

where the coefficients𝑤 𝑗 are learned by the model,𝑚 is district feature vector size, and 𝑁 is the
total number of districts.

In addition to Ordinary Least Squares regression, which minimizes | |𝑦𝑑 − 𝑋𝑑𝑤 | |22, where 𝑋𝑑

denotes the matrix of all district vectors 𝑥𝑑 ; we also experimented with ElasticNet regression,
which minimizes 1

2𝑁 | |𝑦𝑑 − 𝑋𝑑𝑤 | |22 + 𝛼𝜌 | |𝑤 | |1 + 𝛼 (1−𝜌)
2 | |𝑤 | |22, where 𝑤 is the vector of weights

𝑤 = (𝑤1, ...,𝑤𝑚), and 𝛼 and 𝜌 are the parameters that control the 𝐿1 (absolute value of coefficients
magnitude) or 𝐿2 (squared value of coefficients magnitude) penalisation. We chose ElasticNet
because it encourages sparsity, i.e., automatically eliminates insignificant variables, and in that way
deals better with the high-dimensional satellite feature vectors [38]. We performed a grid search
across the parameter space while predicting vitality, and we found these parameters to work best
𝛼 = 0.01, and 𝜌 = 0.1.

Moreover, we also experimented with Support Vector Regression (SVR) [8] method. A grid
search on the parameter space yielded RBF kernel with this set of optimal hyper parameters𝐶 = 1.0,
𝑑𝑒𝑔𝑟𝑒𝑒 = 3, 𝛾 =scale, and the constant 𝜖 = 0.0001.

Finally, we also tested an ensemble of decision trees with extreme gradient boosting [21], i.e.,
XGBoost regression. On small structured datasets, such as the one we dealt with, decision tree
based algorithms are considered to be among the best performing methods. Upon parameter grid
search, we used 350 weak learners, learning rate of 0.01, the huber loss, and the maximum tree
depth of 3.

4.3 Metrics
To assess how well each of the regression methods predicted our urban variables from satellite
features, we resorted to two of the standard metrics used in regression methods: coefficient of
determination (𝑅2), its adjusted version (𝑅2

𝑎𝑑 𝑗
), and mean absolute error (MAE). Simply, 𝑅2 measures

the proportion of the variance in the target variable (urban variables) that is predictable from the
input variables (image features), while its adjusted version 𝑅2

𝑎𝑑 𝑗
accounts for the number of input

variables and training data size, hence preventing a spurious increase in 𝑅2 that is only due to the
introduction of new input variables. MAE measures the errors between true and predicted values
(set of 𝑙 value pairs):

𝑀𝐴𝐸 =
1
𝑙

𝑙∑︁
𝑗=1

|𝑦 𝑗 − 𝑦 𝑗 |. (11)

4.4 Predicting the Six Vitality Proxies
We applied the selected regression methods to estimate each of the six proxies in Table 3, and then
used the estimated values to predict urban vitality with a two-stage regression. For each of the
methods, we conducted a 5-fold cross-validation 100 times (repeated k-folds) and averaged the
scores. This is done to obtain stable results given a high variance from our low sample size.
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(a) CAE features

(b) 𝑉𝐺𝐺16 features

Fig. 7. Regression models predicting the six vitality proxies in Table 3 from satellite-derived features: (a)
CAE-based, (b) 𝑉𝐺𝐺16-based features. This is the first stage of our two-step regression model, where we
predict the features first, before predicting vitality. Average results of 5-fold cross-validation ran 100 times
are shown: (Top) Mean absolute error (MAE) scores; (Bottom) Coefficients of determination (𝑅2). Error bars
represent standard deviation across the runs.

The results of the first stage are shown in Figure 7. The starting observation is that the different
features (𝑉𝐺𝐺16 vs CAE-based) yield comparatively similar patterns across the variables, i.e., they
both predict intersection density and block size best. However, the𝑉𝐺𝐺16 features performed better
overall for all the variables, despite the fact that the CAE was trained on satellite imagery and
𝑉𝐺𝐺16 on regular imagery. It is likely that this is due a relatively small size of our dataset (9K
imagelets, in total) and that CAE features can become competitive if a larger dataset for training
would be used. Hence, from now on, we discuss the results for 𝑉𝐺𝐺16 features. Out of the six
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Table 4. Regression results for predicting vitality from the previously inferred six vitality proxies. 5-fold
cross-validation results are shown. This is the second stage of our two-step regression model.

Method R2
LinearRegression .336 ± .063
ElasticNet .366 ± .070
SVM regressor .357 ± .064
XGBoost .228 ± .097

Table 5. ElasticNet coefficients for predicting vitality from the six proxies estimated from satellite imagery.

Variable coef
intersections density 0.497
small parks 0.124
anisotropicity 0.063
land use mix 0.019
block size -0.118
building height -0.152

proxies, anisotropicity is the hardest to predict. SVR and XGBoost are two methods that are the best
performing overall. Another variable that is challenging to predict is building height (the 𝑅2 score
of SVR is .30 and of XGBoost .24). For the four other variables, SVR was able to predict them with
𝑅2 score of .31 for land use mix, .43 for block size, .33 for small parks, and up to .65 for intersection
density. They are easier to predict not least because they can be seen in the images by the naked
eye.
In the second stage, we studied whether we can predict vitality indirectly from the previously

estimated six proxies. In particular, we considered all the selected variables, took their predicted
vectors and applied the same regression models to predict vitality. We found (results in Table 4)
that the best performing method in this setup was the form of linear regression, i.e., ElasticNet
(𝑅2 = .37 ± .07).

Finally, we studied the relative importance of the six variables in predicting vitality. By looking
at the coefficients found by ElasticNet for each of those variables (Table 5), we found that the most
predictive variable positively influencing vitality is intersection density (coefficient .497), which is
in line with the previously reported results by De Nadai et al. [14]. Also small parks is positively
influencing vitality, while block sizes negatively influences vitality. The building height, which is
defined through the average number of floors in buildings, matters as well: the higher it is, the less
chances for creating services, such as restaurants and stores at the ground floor – and, hence, the
lower the vitality.

4.5 Predicting Vitality
In our second experiment, we evaluated the predictive power of the four regression models in
estimating vitality directly from the visual features of the satellite imagery. First, for each of the
models, we conducted a 5-fold cross-validation experiment (Figure 8). In the previous set of the
experiments, SVR and XGBoost regressor were the best models and shown a similar performance.
In this experiment, SVR (𝑅2

𝑎𝑑 𝑗
= .55 ± .03, 𝑀𝐴𝐸 = .12 ± .00) slightly outperformed XGBoost

(𝑅2
𝑎𝑑 𝑗

= .54 ± .04,𝑀𝐴𝐸 = .13 ± .01).
In the final experiment, we studied the generalizability of the urban vitality prediction, i.e., we

asked whether the models can be trained on some cities to predict vitality in another (unseen)
city. For this purpose, we conducted leave-one-city-out validation experiments and used SVR, as
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Fig. 8. Regression models that predict vitality: 5-fold cross-validation results. Each plot represents a different
model evaluated in terms of: adjusted coefficient of determination (𝑅2

𝑎𝑑 𝑗
), Pearson correlation coefficient (𝑅)

(𝑝 < .001), and mean absolute error (𝑀𝐴𝐸). To aid visual interpretation, a green line representing the best
linear fit between true and predicted values is shown.

it was the best performing model in the previous experiments. Specifically, for each of the six
cities, we trained the model on the data from five cities and tested it on the remaining city. The
results are shown in Figure 9. The model’s predictive power varies: in Milan and Florence, it is
able to explain, respectively, 50% and 61% of the variance in vitality, but, in Palermo and Rome,
the explained variance is, respectively, 32%, and 25%. To illustrate the ability of satellite-derived
features in predicting vitality, in Figure 10, we show maps with true and predicted vitality for the
six cities.

4.6 Explaining Vitality and its Proxies
Our analyses up to this point suggested that satellite data can predict urban vitality, and it can
do so with varying degrees of accuracy. Our best performing method (SVR), tested across all the
cities, achieved an 𝑅2

𝑎𝑑 𝑗
of .55, and its scores on individual cities ranged from .61 for Florence

to .25 for Rome. In this section, we study the factors potentially affecting prediction accuracy
(Subsection 4.6.1), and the association between models’ inference and the presence of PoIs in the
area (Subsection 4.6.2).

4.6.1 Factors affecting vitality prediction. The city with the lowest prediction score in our experi-
ments is Rome (𝑅2

𝑎𝑑 𝑗
= .25). That could be partly because it has the smallest training set. To see why,

consider that Rome has the largest number of districts (see Table 1) and, in our leave-one-city-out
evaluation, Rome’s training set consists of areas in the remaining cities, while the test set consists
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Fig. 9. Leave-one-city-out prediction results using SVR. The model is trained on the data from 5 cities
and tested on the last city. Each plot represents the model for a different city (the one on which it was
tested) evaluated in terms of: adjusted coefficient of determination (𝑅2

𝑎𝑑 𝑗
), Pearson correlation coefficient (𝑅)

(𝑝 < .0001), and mean absolute error (𝑀𝐴𝐸). To aid visual interpretation, a green line representing the best
linear fit between true and predicted values is shown.

(a) Turin (b) Palermo (c) Florence

(d) Milan (e) Rome (f) Bologna

Fig. 10. Maps of the true (blue) and predicted (green) urban vitality levels. Across the cities, the predictions
follow an overall pattern of higher vitality in the centers, and lower vitality in the suburbs. However, inconsis-
tencies exist for specific cities. Notably, in Milan, predictions for the districts in the very center of the city
(containing two large parks) are high but not maximum. On the other hand, our model overestimates vitality
for Bologna’s East districts, which, again, happen to feature small parks and relatively small blocks.

of areas in Rome. As a result, Rome has the smallest training set compared to the other cities. So
one might speculate that the limited training data could influence the adjusted 𝑅2 score, i.e., 𝑅2

𝑎𝑑 𝑗
.

Indeed, Rome’s unadjusted 𝑅2 is .39, which is significantly higher than its 𝑅2
𝑎𝑑 𝑗

. To study whether
this is the case for the other cities, we set out to determine whether prediction performance (𝑅2

𝑎𝑑 𝑗
)
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Fig. 11. The map of Rome’s residuals and its satellite views for which our model overestimated and underesti-
mated vitality level. The map shows residuals, i.e., differences between the true and predicted vitality levels:
blue/red means that our model estimated lower/higher vitality levels compared to the ground truth. Example
imagelets reveal that our model underestimated vitality levels in areas with large parks, rivers, highways, and
stadiums, while it underestimated vitality levels in areas with high density of buildings and near the sea.

depends on the size of the training data. To obtain a city’s training data size (denoted as 𝑇𝑆), we
summed the number of districts 𝑁𝑐 from the remaining five cities (see Table 1). There was no
significant correlation between 𝑇𝑆 and 𝑅2

𝑎𝑑 𝑗
across cities, meaning that the prediction score was

generally not influenced by the size of the training data.

Prediction residuals for Rome. To look for alternative explanations, we further focused on Rome.
Figure 11 shows the map of its residuals, i.e., the differences between true and predicted vitality
levels. The areas in blue/red are those for which our model underestimated/overestimated. We
found that our model tended to underestimate in: i) areas with large parks and green spaces, rivers,
highways, and stadiums (i.e., urban features that Jane Jacobs named border vacuums); and ii) areas
with ancient landmarks in the city center. Jane defined border vacuums as “perimeters of a single
massive or stretched-out use of territory [...] that exerts an active influence on pedestrian activity”.
According to her theory, border vacuums can, indeed, depending on the context, be associated with
both high vitality (“if some visual or motion penetration is allowed through it, [...] it then becomes
a seam rather than a barrier, a line of exchange along which two areas are sewn together” ) and low
vitality (if the border vacuum cuts off activity in public spaces). Our analyses reveal that border
vacuums are associated with high vitality in central parts of Rome, and with low vitality in the
other cities (for example, Figure 6 shows border vacuums in low-vitality areas of Turin). Also, the
overall percentage of greenery in Rome is higher than that of any of the other cities4. By inspecting
the underestimated central locations on Google Maps, we also found that they included ancient
landmarks popular among tourists (e.g., Largo di Torre Argentina, Foro Romano). These landmarks
are not urban features typically found in the other cities (especially not in Turin where the size of
its Roman district is quite limited), and, based on satellite images, might appear to be similar to
ruins. That might be why the model trained on the cities other than Rome did not learn to label
those locations in Rome as being of high vitality, despite being popular among tourists.
4The percentage of greenery is 40% in Rome, compared to less than 13% in Milan. http://www.worldcitiescultureforum.com/
data/of-public-green-space-parks-and-gardens
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Fig. 12. The map of Turin’s residuals and its satellite views for which our model overestimated and underesti-
mated vitality level. The map shows residuals, i.e., differences between the true and predicted vitality levels:
blue/red means that our model estimated lower/higher vitality levels compared to the ground truth. Example
imagelets reveal that our model overestimated vitality levels in areas with large industrial buildings and close
to the natural park, while it underestimated vitality levels in areas among the three popular Turin city parts
(Porta Nuova, Parco del Valentino, and Giardini Reali Superiors).

On the other hand, we found that our model tended to overestimate vitality levels in areas with
small blocks and dense housing predominantly located in the south-west district near the sea (the
City of Fiumicino), which hosts the busiest airport in Italy. As one expects, given noise pollution,
this district does not enjoy a rich outdoor life (including the presence of retail shops) as more
central districts do, impacting one of the four Jacobs’ dimensions, that of mixed economic activities.

Prediction residuals for Turin. To extend our prediction factors analysis to a different geographical,
cultural, and economic environment compared to Rome, and also to look at a city where our models
performed better, next we inspected Turin. Turin is located at the north of the country, does not
have an access to the seaside like Rome; it has just one third of Rome’s population, but due to the
smaller size, it is three times more densely populated. Turin features a beautiful historical city
centre, and buildings, castles, public squares in architectural styles ranging from renaissance, to
rococo, and art nouveau. The city also hosts headquarters of several well-known Italian car-maker
companies, and two large football stadiums.
Figure 12 shows the map of residuals for predicted vitality levels in Turin. This time, too, the

areas in blue/red are those for which our model underestimated/overestimated vitality. We found
that in Turin, our model tended to underestimate in: i) areas in between the largest Railway Station
in the city, Porta Nuova, to the west, and a popular public park, Parco del Valentino, to the east,
and up to the elegant park with statues and kid’s play equipment, Giardini Reali Superiors, to the
north, and ii) in areas next to the smaller athletic stadium, Stadio Primo Nebiolo. In the area among
the three popular Turin city parts (Porta Nuova, Parco del Valentino, and Giardini Reali Superiors)
that are at a walking distance from each other, indeed, the pedestrian mobility is maximally high.
However, from the satellite imagery showing a mix of buildings, rivers, and relatively-large parks,
our models inferred it to be high but still not the maximum level. The area around the athletic
stadium Stadio Primo Nebiolo, interestingly, is associated with high vitality, while, for instance, the
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Juventus Stadium is found in a low-vitality area to the north-west. This, once again, confirms that
border vacuums can have different interplay with vitality, and, in this specific case, that has caused
our method to underestimate vitality around Stadio Primo Nebiolo.

On the other hand, we found that our model tended to overestimate vitality levels in the northeast
areas of Turin, close to the river Po and the nature park, Riserva Naturale del Meisino e dell’Isolone
Bertolla. To the north from the park, there are several large industrial buildings, hosting agricultural
production, warehouses, and some cooperatives. These buildings, as can be seen in the satellite
images for overestimated vitality in Figure 12, appear white, and are mixed with red buildings
likely representing residential houses nearby, and with parks. We speculate that our models, in
this case, took this diversity as a mix of old and new buildings close to small parks, overestimating
vitality for them.

4.6.2 Association between the model’s inference and PoIs presence. Our prediction pipelines consist
of deep learning methods that extract visual features. One issue is that the extracted features are
hard to interpret and explain. To understand the associations between these abstract image features
and actual points of interest on the ground, we queried the OpenStreetMap (OSM) database and
collected all the Points of Interest (PoI) across the 6 Italian cities. OSM classifies the PoIs into
6 broad categories of amenities5: sustenance, education, transportation, financial, healthcare, and
entertainment. Since vitality is a measure of human traffic in an area, we focused on the categories of
sustenance, transportation, and entertainment, which cover the majority of amenities contributing
to a city’s social life. Next, we mapped the locations of the PoIs onto the 2,146 imagelets described
in Section 3.3. With this mapping, we were able to count in each imagelet the total number of PoIs
belonging to either of the three PoI categories. For any given imagelet 𝑖 containing a total number
of 𝑛𝑠𝑢𝑠𝑡𝑒𝑛𝑎𝑛𝑐𝑒 , 𝑛𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 , and 𝑛𝑒𝑛𝑡𝑒𝑟𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 PoIs, we computed the PoI scores for each category:

𝑆𝑖𝑐𝑎𝑡 = log(1 + 𝑛𝑐𝑎𝑡 ), ∀𝑐𝑎𝑡 ∈ {𝑠𝑢𝑠𝑡𝑒𝑛𝑎𝑛𝑐𝑒, 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛, 𝑒𝑛𝑡𝑒𝑟𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡} (12)

The log operation allowed us to transform the long tailed distribution of the number of PoIs into a
normal distribution. We added 1 to avoid undefined scores for imagelets with zero PoIs of any given
category. We then used these three scores computed for all the imagelets to explain the association
between the model’s inference and the PoI categories on the ground.
We did this by splitting the imagelets into two groups, a separate split each time, for vitality

and each of its proxies, based on their ground truth values. The first group contained all those
imagelets whose ground truth values for vitality, or one if its proxies, were in the top tertile, which
we called the high class. Similarly, the other group contained imagelets with values in the bottom
tertile, which we called the low class. We then sampled 50% of the high and low groups into a
training set of imagelets and kept the remaining ones as the test set. We then trained a set of binary
classifiers to predict vitality and its proxies using the satellite-derived features on the training set.
The models’ performances were comparable to the original models’, with AUC scores in a 5-fold
cross validation setup equal to .63 ± .07 for small parks, .88 ± .06 for small blocks, and .93 ± .06 for
vitality. We then predicted the binary classes for vitality and its proxies for the test set of imagelets
using these trained models. Finally, to quantify the relationship between the predicted labels on
the imagelets and the PoIs found on the ground, we binarized the predicted class labels, i.e., class
𝑐𝑖 = 1, if imagelet 𝑖 is predicted to be in the high class, and 𝑐𝑖 = 0, if imagelet 𝑖 is predicted to be in
the low class. We also computed the category scores for any given imagelet 𝑖 using equation (12).
These scores are denoted by 𝑆𝑖𝑠𝑢𝑠𝑡𝑒𝑛𝑎𝑛𝑐𝑒 , 𝑆𝑖𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 and 𝑆𝑖𝑒𝑛𝑡𝑒𝑟𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 , and were normalized on
the [0, 1] scale. With this setup, we then fit a logistic regression that predicts the probability of an

5https://wiki.openstreetmap.org/wiki/Key:amenity
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Fig. 13. The logistic regression (LR) coefficients for each OSM Places category in imagelets with high/low
values (as output by our models based on 𝑉𝐺𝐺16-based features) for the six urban variables. The included
variables are the five vitality proxies for which prediction on our satellite data with both types of features
yielded 𝑅2 above .25 (see Figure 7) and vitality. Significant LR coefficients (𝑝-value < .05) are marked with a ∗.
The up/down arrows denote the increasing/decreasing expected association between a specific urban variable
(e.g., building height), and walkability/pedestrian presence in an area.

imagelet being in class 1, given the OSM PoI category scores.

𝑃𝑟 (𝑐𝑖 = 1) = 1

1 + 𝑒
−(𝛼+𝛽1 ·𝑆𝑖𝑒𝑛𝑡𝑒𝑟𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡

+𝛽2 ·𝑆𝑖𝑠𝑢𝑠𝑡𝑒𝑛𝑎𝑛𝑐𝑒+𝛽3 ·𝑆𝑖𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛)
(13)

Figure 13 shows the values for the logistic regression coefficients 𝛽1, 𝛽2, 𝛽3 associated with the
predictors 𝑆𝑠𝑢𝑠𝑡𝑒𝑛𝑎𝑛𝑐𝑒 , 𝑆𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 , and 𝑆𝑒𝑛𝑡𝑒𝑟𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 , respectively. One can interpret the values
of the 𝛽 coefficients in terms of odds ratios. To get an upper bound of the predictive difference
corresponding to a unit difference in each predictor, we used the ‘divide by 4’ rule [23] (p. 82).
This says that, in a logistic regression, by dividing each predictor’s coefficient by 4, one can draw
conclusions about the increase in likelihood 𝑃𝑟 (𝑐𝑖 = 1) for each unit increase in the predictor.
Simply put, we can quantify the percentage increase in the probability of the dependent variable
to be in the positive class. Indeed, the results in Figure 13 reveal that satellite features capture
meaningful insights in terms of places: all three place categories are positively predictive of vitality.
Specifically, each 1% increase in the PoI score for the sustenance category increases the likelihood
of the imagelet to belong in the high vitality class (+1.5%) and the high intersection density class
(≈ +1%). Similarly, a 1% increase in the PoIs score for the transportation category would decrease
the corresponding imagelet’s probability of belonging to the high block size class (-1%). PoIs in
the sustenance and transportation categories are both predictive of higher intersection density
and more likely presence of small parks. Also, as expected, these two categories are negatively
associated with high block size (large blocks, which do not encourage walkability), and high building
height (high-rise buildings). In summary, the results associated with PoIs from the sustenance
and transportation categories meet expectations. For the entertainment category, however, this is
only the case for vitality and for its proxy “block size” but not for the other proxies. That is partly
because the OSM entertainment category5 contains places that are typically found in dense city
centers characterized by high vitality (e.g., fountain, cinema, theater) and places that act as border
vacuums characterized by low vitality (e.g., casino, gambling, convention center).
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5 DISCUSSION AND CONCLUSION
We have proposed a deep-learning framework that extracts features from publicly available Sentinel-
2 imagery and predicts not only the six proxies for urban vitality (i.e., indirect prediction) but
also vitality itself (i.e., direct prediction). The framework turned out to work better for the direct
prediction of vitality (55% of the variance is explained) rather than its indirect prediction via six
intermediate interpretable urban proxies (36%). That can be attributed to three reasons: i) the six
proxies upon which the indirect prediction relied do not exhaustively capture vitality (e.g., mix of
economic activities and concentration of people are not captured); ii) the prediction errors suffer
from the two-step process; and iii) the direct prediction relied on raw satellite features, which may
capture aspects overlooked by the indirect prediction.

Practical Implications. The presented predictive ability might be beneficial for supporting urban
planning interventions in the developed world, and for sustainable development initiatives in the
rapidly growing developing world. Specifically, we identified four main practical implications.

Satellite Data in City Dashboards. Existing city dashboards and digital services could be
enhanced with satellite data that may well fill the gap between the high frequency nature
of mobile phone data and the low frequency nature of census data. We showed that some
structural features of the urban environment that are important for vitality can be inferred
from satellite data. Given that this data is publicly available, at a medium-level spatial
resolution (10m) and continuously updated (every 5-7 days), it can be used for monitoring
changes in the urban environment, to support urban planners/designers and policymakers in
their decisions and planning. This is particularly relevant for developing countries, which
frequently lack access to other types of urban data.

Guidelines for Urban Measurement from Satellite Data. Our results also suggest that having
highly diverse geographic data is critical when making inference on unseen cities, especially
if these new cities are sufficiently different in terms of history or culture from the cities in
the training data.

Facilitating Rapid Urbanization. Jacobs’s emphasis on diversification is particularly relevant
to today’s globalization: her theories shed light on urban inequality in Africa [43], slum
clearance in preparation for mega-events [25], as well as efficient growth, such as in Taiwan
[20]. Our approach can provide a dynamic view of neighborhood structure and help to track
issues relevant to globalization.

Digital Earth. Extending our methods to track vitality across the globe can contribute to
the interactive view of our planet that enables a shared understanding of the relationships
between the physical environment and society [11, 24].

Theoretical Implication. Replicating the experiments we did in Italy in other countries will
require to obtain mobile phone data that can serve as a proxy for vitality in those countries. We
can then learn visual features capturing vitality, which will likely uncover subtleties in how vitality
is expressed across different natural and cultural environments.

Limitations and Future Work. While the openness of the Sentinel-2 dataset is an advantage, its
limited spatial resolution is a limitation. If higher spatial resolution data would be publicly available,
our models’ performance will likely improve.
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We also relied on mobile Internet data to quantify a proxy for vitality, which could be another
limitation. However, since the market share of the provider (Telecom Italia) is 34%, which is the
largest in the country, we believe that such a proxy offers a close approximation of the actual
footfall in the specific context of our study. More generally though, in today’s highly connected
world, mobile activity is one of the best proxies for measuring presence of people [16, 45, 50, 55],
and has been successfully used to estimate urban vitality [14, 30].
Another limitation with the data has to do with the temporal lag between mobile phone data

and satellite data, which, in our case, amounts to three years. It is possible that some aspects of
urban vitality could have changed during this time period.

Moreover, since this study is only conducted in the Italian context, its generalizability could be
questioned. However, the fact that the model trained on data coming from five cities was able to
predict the remaining city’s vitality levels speaks to the generalizability of our approach, at least in
the Italian, if not European, context. Rome posed a challenge though. Being ancient, Rome’s city
centre exhibits a unique mix of the old and the new, while our proxies for vitality are grounded
on modern urban morphologies. A similar type of conflict between modern and ancient urban
forms was also found for Barcelona [15], in which nearby districts tend to enjoy a highly diverse
historical mix. For our models to better generalize to unseen cities, greater diversity in terms of
urban, historical, cultural, and natural contexts in the training set might be required.
Another limitation is that our models are primarily capturing the potential for - rather than

actual - vitality, and, in certain - albeit rare - circumstances, their predictions might not match the
actual vitality levels. For example, if we took the satellite images of Milan during the full COVID-19
epidemic lock-down (during which pedestrian activity was heavily limited), our models would
still predict levels of vitality similar to those of ordinary times. This limitation is, however, shared
with the majority of previous work, and could be partly fixed whenever higher-resolution satellite
images (in which pedestrian activity is observable) would be publicly available.

Another line of future work is to integrate multi-modal data, given that vitality is, by definition, a
multi-faceted concept. By fusing satellite data with other freely available datasets that, for example,
capture mix of commercial activities and concentration of people, one is expected to improve
prediction accuracy. Finally, to obtain explainable predictions without compromising accuracy,
explainable AI methods should be further researched [49].

REFERENCES
[1] Adrian Albert, Jasleen Kaur, and Marta C Gonzalez. 2017. Using convolutional networks and satellite imagery to

identify patterns in urban environments at a large scale. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 1357–1366.

[2] Adrian Albert, Emanuele Strano, Jasleen Kaur, and Marta Gonzalez. [n.d.]. The dark side of the Earth: benchmarking
lighting access for all cities on Earth and the CityNet dataset. In Proceedings of the Conference on Knowledge Discovery
in Databases (KDD) Workshop on Urban Computing (UrbComp). ACM.

[3] Matheus Araujo, Yelena Mejova, Michaël Aupetit, and Ingmar Weber. 2018. Visualizing geo-demographic urban data.
In Companion of the 2018 ACM Conference on Computer Supported Cooperative Work and Social Computing. 45–48.

[4] Federica Banchiero, Ivan Blečić, Valeria Saiu, and Giuseppe A Trunfio. 2020. Neighbourhood Park Vitality Potential:
from Jane Jacobs’s Theory to Evaluation Model. Sustainability 12, 15 (2020), 5881.

[5] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. 2007. Greedy Layer-Wise Training of Deep
Networks. In Advances in Neural Information Processing Systems 19, B. Schölkopf, J. C. Platt, and T. Hoffman (Eds.).
MIT Press, 153–160. http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf

[6] Andrey Bogomolov, Bruno Lepri, Jacopo Staiano, Emmanuel Letouzé, Nuria Oliver, Fabio Pianesi, and Alex Pentland.
2015. Moves on the Street: Classifying Crime Hotspots Using Aggregated Anonymized Data on People Dynamics. Big
Data 3, 3 (2015), 148–158.

[7] A. Bogomolov, B. Lepri, J. Staiano, N. Oliver, A. Pianesi, and A. Pentland. 2014. Once upon a crime: Towards crime
prediction from demographics and mobile data. In Proceedings of the 16th International Conference on Multimodal
Interaction. 427–434.

, Vol. 1, No. 1, Article . Publication date: February 2021.

http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf


Jane Jacobs in the Sky: Predicting Urban Vitality with Open Satellite Data 23

[8] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A library for support vector machines. ACM transactions on
intelligent systems and technology (TIST) 2, 3 (2011), 1–27.

[9] Vincent Chorvalli, Vincent Cazaubiel, Stefan Bursch, Mario Welsch, Heinz Sontag, Philippe Martimort, Umberto
Del Bello, Omar Sy, Paolo Laberinti, and François Spoto. 2010. Design and development of the Sentinel-2 Multi Spectral
Instrument and satellite system. In Sensors, Systems, and Next-Generation Satellites XIV, Vol. 7826. International Society
for Optics and Photonics, 78260J.

[10] Grace Chu, Brian Potetz, Weijun Wang, Andrew Howard, Yang Song, Fernando Brucher, Thomas Leung, and Hartwig
Adam. 2019. Geo-Aware Networks for Fine-Grained Recognition. 2019 IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW) (Oct 2019). https://doi.org/10.1109/iccvw.2019.00033

[11] Max Craglia, Kees de Bie, Davina Jackson, Martino Pesaresi, Gábor Remetey-Fülöpp, Changlin Wang, Alessandro
Annoni, Ling Bian, Fred Campbell, Manfred Ehlers, et al. 2012. Digital Earth 2020: towards the vision for the next
decade. International Journal of Digital Earth 5, 1 (2012), 4–21.

[12] Elizabeth Daly, Sheena Erete, Rosta Farzan, Gary Hsieh, Cliff Lampe, Claudia Lopez, Andres Monroy-Hernandez,
Daniele Quercia, Raz Schwartz, and Amy Voida. 2015. Supporting cities, neighborhoods, and local communities with
information and communication technologies. In Proceedings of the 18th ACM Conference Companion on Computer
Supported Cooperative Work & Social Computing. 277–281.

[13] Munmun De Choudhury, Moran Feldman, Sihem Amer-Yahia, Nadav Golbandi, Ronny Lempel, and Cong Yu. 2010.
Automatic construction of travel itineraries using social breadcrumbs. In Proceedings of the 21st ACM conference on
Hypertext and hypermedia. 35–44.

[14] Marco De Nadai, Jacopo Staiano, Roberto Larcher, Nicu Sebe, Daniele Quercia, and Bruno Lepri. 2016. The death and
life of great Italian cities: a mobile phone data perspective. In Proceedings of the 25th international conference on World
Wide Web. 413–423.

[15] Xavier Delclòs-Alió and Carme Miralles-Guasch. 2018. Looking at Barcelona through Jane Jacobs’s eyes: Mapping the
basic conditions for urban vitality in a Mediterranean conurbation. Land Use Policy 75 (2018), 505–517.

[16] Pierre Deville, Catherine Linard, Samuel Martin, Marius Gilbert, Forrest R Stevens, Andrea E Gaughan, Vincent D
Blondel, and Andrew J Tatem. 2014. Dynamic population mapping using mobile phone data. Proceedings of the National
Academy of Sciences 111, 45 (2014), 15888–15893.

[17] Matthias Drusch, Umberto Del Bello, Sébastien Carlier, Olivier Colin, Veronica Fernandez, Ferran Gascon, Bianca
Hoersch, Claudia Isola, Paolo Laberinti, Philippe Martimort, et al. 2012. Sentinel-2: ESA’s optical high-resolution
mission for GMES operational services. Remote sensing of Environment 120 (2012), 25–36.

[18] Qiang Du, Vance Faber, and Max Gunzburger. 1999. Centroidal Voronoi tessellations: Applications and algorithms.
SIAM review 41, 4 (1999), 637–676.

[19] Abdallah El Ali, Sicco NA Van Sas, and Frank Nack. 2013. Photographer paths: sequence alignment of geotagged
photos for exploration-based route planning. In Proceedings of the 2013 conference on Computer supported cooperative
work. 985–994.

[20] David Ellerman*. 2004. Jane Jacobs on development. Oxford Development Studies 32, 4 (2004), 507–521.
[21] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting machine. Annals of statistics (2001),

1189–1232.
[22] A Gatti and A Bertolini. 2013. Sentinel-2 products specification document. Available online (accessed February 23, 2015)

https://earth. esa. int/documents/247904/685211/Sentinel-2+ Products+ Specification+ Document (2013).
[23] A Gelman and J Hill. 2007. Analytical methods for social research.
[24] Al Gore. 1998. The digital earth: understanding our planet in the 21st century. Australian surveyor 43, 2 (1998), 89–91.
[25] Solomon J Greene. 2003. Staged cities: Mega-events, slum clearance, and global capital. Yale Hum. Rts. & Dev. LJ 6

(2003), 161.
[26] Sungwon Han, Donghyun Ahn, Hyunji Cha, Jeasurk Yang, Sungwon Park, and Meeyoung Cha. 2019. Lightweight and

Robust Representation of Economic Scales from Satellite Imagery. arXiv preprint arXiv:1912.08197 (2019).
[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.
[28] Jane Jacobs. 2016. The death and life of great American cities. Vintage.
[29] Neal Jean, Marshall Burke, Michael Xie, W Matthew Davis, David B Lobell, and Stefano Ermon. 2016. Combining

satellite imagery and machine learning to predict poverty. Science 353, 6301 (2016), 790–794.
[30] Young-Long Kim. 2018. Seoul’s Wi-Fi hotspots: Wi-Fi access points as an indicator of urban vitality. Computers,

Environment and Urban Systems 72 (2018), 13–24.
[31] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Optimization. arXiv:cs.LG/1412.6980
[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet classification with deep convolutional neural

networks. Commun. ACM 60, 6 (2017), 84–90.

, Vol. 1, No. 1, Article . Publication date: February 2021.

https://doi.org/10.1109/iccvw.2019.00033
http://arxiv.org/abs/cs.LG/1412.6980


24 Šćepanović, et al.

[33] Stephen Law and Mateo Neira. 2019. An Unsupervised Approach to Geographical Knowledge Discovery Using
Street Level and Street Network Images. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on AI for
Geographic Knowledge Discovery (Chicago, IL, USA) (GeoAI 2019). Association for Computing Machinery, New York,
NY, USA, 56–65. https://doi.org/10.1145/3356471.3365238

[34] Stephen Law, Brooks Paige, and Chris Russell. 2019. Take a look around: using street view and satellite images to
estimate house prices. ACM Transactions on Intelligent Systems and Technology (TIST) 10, 5 (2019), 1–19.

[35] Géraud Le Falher, Aristides Gionis, and Michael Mathioudakis. 2015. Where is the Soho of Rome? Measures and
algorithms for finding similar neighborhoods in cities. In Ninth International AAAI Conference on Web and Social
Media.

[36] Rémi Louf and Marc Barthelemy. 2014. A typology of street patterns. Journal of The Royal Society Interface 11, 101
(2014).

[37] Kevin Lynch. 1984. Good city form. MIT press.
[38] Adyasha Maharana and Elaine Okanyene Nsoesie. 2018. Use of deep learning to examine the association of the built

environment with prevalence of neighborhood adult obesity. JAMA network open 1, 4 (2018), e181535–e181535.
[39] Magdalena Main-Knorn, Bringfried Pflug, Jerome Louis, Vincent Debaecker, Uwe Müller-Wilm, and Ferran Gascon.

2017. Sen2Cor for sentinel-2. In Image and Signal Processing for Remote Sensing XXIII, Vol. 10427. International Society
for Optics and Photonics, 1042704.

[40] Kevin Manaugh and Tyler Kreider. 2013. What is mixed use? Presenting an interaction method for measuring land use
mix. Journal of Transport and Land Use 6, 1 (2013), 63–72.

[41] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. 2011. Stacked Convolutional Auto-encoders for
Hierarchical Feature Extraction. In Proceedings of the 21th International Conference on Artificial Neural Networks -
Volume Part I (Espoo, Finland) (ICANN’11). Springer-Verlag, Berlin, Heidelberg, 52–59. http://dl.acm.org/citation.cfm?
id=2029556.2029563

[42] John Montgomery. 1998. Making a city: Urbanity, vitality and urban design. Journal of urban design 3, 1 (1998), 93–116.
[43] Franklin Obeng-Odoom. 2015. The social, spatial, and economic roots of urban inequality in Africa: Contextualizing

Jane Jacobs and Henry George. American Journal of Economics and Sociology 74, 3 (2015), 550–586.
[44] Fernando S Peregrino, David Tomás, Paul Clough, and Fernando Llopis. 2012. Mapping routes of sentiments. In Spanish

Conference on Information Retrieval.
[45] Santi Phithakkitnukoon, Zbigniew Smoreda, and Patrick Olivier. 2012. Socio-geography of human mobility: A study

using longitudinal mobile phone data. PloS one 7, 6 (2012), e39253.
[46] Daniele Quercia, Rossano Schifanella, and Luca Maria Aiello. 2014. The shortest path to happiness: Recommending

beautiful, quiet, and happy routes in the city. In Proceedings of the 25th ACM conference on Hypertext and social media.
116–125.

[47] Miriam Redi, Luca Maria Aiello, Rossano Schifanella, and Daniele Quercia. 2018. The spirit of the city: Using social
media to capture neighborhood ambiance. Proceedings of the ACM on Human-Computer Interaction 2, CSCW (2018),
1–18.

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2014. ImageNet Large Scale Visual Recognition
Challenge. arXiv:cs.CV/1409.0575

[49] Wojciech Samek and Klaus-Robert Müller. 2019. Towards explainable artificial intelligence. In Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning. Springer, 5–22.

[50] Sanja Šćepanović, Igor Mishkovski, Pan Hui, Jukka K Nurminen, and Antti Ylä-Jääski. 2015. Mobile phone call data as
a regional socio-economic proxy indicator. PloS one 10, 4 (2015), e0124160.

[51] Randy Showstack. 2014. Sentinel satellites initiate new era in earth observation. Eos, Transactions American Geophysical
Union 95, 26 (2014), 239–240.

[52] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.
CoRR abs/1409.1556 (2014).

[53] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.
arXiv:cs.CV/1409.1556

[54] Blaž Sovdat, Miha Kadunc, Matej Batič, and Grega Milčinski. 2019. Natural color representation of Sentinel-2 data.
Remote sensing of environment 225 (2019), 392–402.

[55] John Steenbruggen, Maria Teresa Borzacchiello, Peter Nijkamp, and Henk Scholten. 2013. Mobile phone data from
GSM networks for traffic parameter and urban spatial pattern assessment: a review of applications and opportunities.
GeoJournal 78, 2 (2013), 223–243.

[56] Hyungun Sung, Sugie Lee, and SangHyun Cheon. 2015. Operationalizing jane jacobs’s urban design theory: Empirical
verification from the great city of seoul, korea. Journal of Planning Education and Research 35, 2 (2015), 117–130.

, Vol. 1, No. 1, Article . Publication date: February 2021.

https://doi.org/10.1145/3356471.3365238
http://dl.acm.org/citation.cfm?id=2029556.2029563
http://dl.acm.org/citation.cfm?id=2029556.2029563
http://arxiv.org/abs/cs.CV/1409.0575
http://arxiv.org/abs/cs.CV/1409.1556


Jane Jacobs in the Sky: Predicting Urban Vitality with Open Satellite Data 25

[57] Kevin Tang, Manohar Paluri, Li Fei-Fei, Rob Fergus, and Lubomir Bourdev. 2015. Improving Image Classification with
Location Context. 2015 IEEE International Conference on Computer Vision (ICCV) (Dec 2015). https://doi.org/10.1109/
iccv.2015.121

[58] R. Torres, P. Snoeij, D. Geudtner, D. Bibby, M. Davidson, E. Attema, P. Potin, B. Rommen, N. Floury, M. Brown,
I.N. Traver, P. Deghaye, B. Duesmann, B. Rosich, N. Miranda, C. Bruno, M. L’Abbate, R. Croci, A. Pietropaolo, M.
Huchler, and F. Rostan. 2012. GMES Sentinel-1 mission. Remote Sensing of Environment 120 (2012), 9–24. https:
//doi.org/10.1016/j.rse.2011.05.028

[59] M. Traunmueller, G. Quattrone, and L. Capra. 2014. Mining mobile phone data to investigate urban crime theories at
scale. In International Conference on Social Informatics. 396–411.

[60] Steven Van Canneyt, Steven Schockaert, Olivier Van Laere, and Bart Dhoedt. 2011. Time-dependent recommendation
of tourist attractions using Flickr. In 23rd benelux conference on artificial intelligence (bnaic 2011).

[61] Alessandro Venerandi, Giovanni Quattrone, Licia Capra, Daniele Quercia, and Diego Saez-Trumper. 2015. Measuring
urban deprivation from user generated content. In Proceedings of the 18th ACM Conference on Computer Supported
Cooperative Work & Social Computing. 254–264.

[62] Wenshan Wang, Su Yang, Zhiyuan He, Minjie Wang, Jiulong Zhang, and Weishan Zhang. 2018. Urban perception of
commercial activeness from satellite images and streetscapes. In Companion Proceedings of the The Web Conference
2018. 647–654.

[63] Hyoseok Yoon, Yu Zheng, Xing Xie, and Woontack Woo. 2012. Social itinerary recommendation from user-generated
digital trails. Personal and Ubiquitous Computing 16, 5 (2012), 469–484.

, Vol. 1, No. 1, Article . Publication date: February 2021.

https://doi.org/10.1109/iccv.2015.121
https://doi.org/10.1109/iccv.2015.121
https://doi.org/10.1016/j.rse.2011.05.028
https://doi.org/10.1016/j.rse.2011.05.028

	Abstract
	1 Introduction
	2 Related Work
	2.1 Measuring Urban Activity from Social Media Data
	2.2 Verifying Empirically Jane Jacobs's Insights
	2.3 Inferring Urban Variables from Satellite Imagery

	3 Data and methods
	3.1 Creating Imagelet Feature Vectors from Satellite Images
	3.2 Computing Six Vitality Proxies and Urban Vitality for a District
	3.3 Combining District Feature Vectors with Urban Vitality

	4 Evaluation
	4.1 Setup
	4.2 Regression methods
	4.3 Metrics
	4.4 Predicting the Six Vitality Proxies
	4.5 Predicting Vitality
	4.6 Explaining Vitality and its Proxies

	5 Discussion and Conclusion
	References

