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Empathy is the tendency to understand and share others’ thoughts and feelings. Literature in psychology has
shown through surveys potential beneficial implications of empathy. Prior psychology literature showed that
a particular type of empathy called “situational empathy”—an immediate empathic response to a triggering
situation (e.g., a distressing situation) —is reflected in the language people use in response to the situation.
However, this has not so far been properly measured at scale. In this work, we collected 4k textual reactions (and
corresponding situational empathy labels) to different stories. Driven by theoretical concepts, we developed
computational models to predict situational empathy from text and, in so doing, we built and made available a
list of empathy-related words. When applied to Reddit posts and movie transcripts, our models produced results
that matched prior theoretical findings, offering evidence of external validity and suggesting its applicability
to unstructured data. The capability of measuring proxies for empathy at scale might benefit a variety of areas
such as social media, digital healthcare, and workplace well-being.
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1 INTRODUCTION

Empathy is an important psychological process that facilitates human communication and in-
teraction. There are a variety of definitions of empathy, some reflecting more stable traits [12],
while others reflect in-the-moment responses [27]. The former is called trait empathy, which is a
person’s chronic disposition to provide empathic responses, whereas the latter is called situational
empathy, which is an immediate empathic response of a person to a triggering situation. It is
important to distinguish between these two types of empathy: trait empathy is a long-lasting
personal characteristic, and, as such, it may determine the empathic response of the person in
a given situation, i.e., his/her situational empathy. However, two persons with a similar level of
trait empathy may still have different empathic responses in a particular situation. That is where
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situational empathy comes into play. Although people with higher trait empathy are more likely to
feel compassion (situational empathy) when exposed to others in distress [36], situational empathy
is also highly influenced by the context, the emotion, and the level of arousal induced by the
situation [15]. Despite these variations, there is a general consensus that empathy consists of both
affective and cognitive aspects. The affective aspect entails sharing somebody else’s feelings or
feeling compassion for them, while the cognitve aspect includes perspective taking, which involves
trying to understand somebody else’s internal states, including thoughts and feelings.

Empathy is associated with desirable social outcomes, including an increased ability of conflict
resolution in groups [14], higher engagement and learning ability in the classroom (especially
in culturally-diverse student cohorts [44]), and higher success rates in therapy and counseling
sessions [19]. The most well-known desirable social outcome of empathy is increased prosocial
behavior, such as giving and volunteering [3]. Its potential to foster positive social interactions
makes empathy important for a range of social media applications: promoting empathy in online
conversations could reduce polarization and increase community engagement [60], and could also
help target interventions towards people in particularly vulnerable psychological conditions who
are in need of support (e.g., young teens, people affected by mental illnesses) [35].

Despite its importance, there are complexities to consider when trying to measure empathy.
This is especially true for trait empathy since it is an internal mental process that is difficult to
gauge by direct observation. In addition, self-reporting of trait empathy might be biased because of
issues of social desirability (e.g., trying to “look good”) or a potential lack of self-understanding
[32]. In contrast, proxies for situational empathy may be more easily measured, in part because
it is often expressed through language [73]. Because this type of empathy entails an immediate
empathic response elicited by a specific situation, it can be measured either by asking participants
about their experiences immediately after they were exposed to a particular situation, or by various
physiological measures such as the measurement of heart rate or skin conductance. However,
mainly due to the lack of properly labeled data, very few research projects attempted to study
situational empathy in relation to language, and have done so only in the specific setting of therapy
sessions [25, 69, 70].

In this work, we leveraged recent advances in machine learning and natural language processing
to measure situational empathy from potentially any text, from more structured to unstructured
texts. Our focus was on answering the following research question: by mining linguistic and
semantic characteristics of the language markers expressed by a person’s textual responses, can
we accurately predict that person’s level of situational empathy? In so doing, we made three main
contributions:

e We gathered a corpus of text manually-labeled by the level of situational empathy that it
expresses (§3). The data includes three experimental contexts and, overall, contains 13k
empathy assessments of about 4k textual messages, which is the largest dataset collected to
date.

e We built multiple models to predict situational empathy (§4)'. To begin with, we develop
a classifier based on features inspired by empathy principles discussed in the Psychology
literature (§4.1). Then, we separately trained empathy classifiers on the different data sources
coming from our three experimental contexts and determined which are the most discrimi-
native words common to these contexts. In so doing, we created a list containing words that
we found to be experimentally related to situational empathy (§4.2). We then tested to which
extent that list is generalizable, that is, to what extent it is useful for predicting situational
empathy across the three experimental contexts (§5).

Ihttps://social-dynamics.net/LanguageEmpathy/
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e To check for external validity, we formulated three hypotheses about how empathy unfolds
in offline and online conversations, and tested these hypotheses by running a large-scale
empathy classification of movie transcripts and Reddit posts (§6).

Our computational models and dictionaries for situational empathy can facilitate an in-depth
understanding of empathy at scale and in the wild, enabling applications for promoting empathic
communication.

2 RELATED WORK

Over the past decades, a consistent body of research on empathy has emerged, especially in
psychology [58]. Psychologists distinguish between measurements of situational empathy, where
empathy is understood through reactions in a specific situation, and measurements of trait empathy
(sometimes referred to as dispositional empathy), where empathy is understood as a person’s stable
personality trait. Previous literature has extensively explored the notion of trait empathy. Trait
empathy has been traditionally measured through questionnaires [48], either by relying on the
reports of others (particularly in case of children) or, most often (in researching empathy in adults),
by relying on the administration of various self-report questionnaires associated with specific
empathy scales. When deployed online [37], those questionnaires enabled new ways to learn
people’s predisposition to empathy from their social media footprints, including their friending
behavior, their preferences, and their linguistic style [40, 50, 57]. Trait empathy (or lack thereof) has
been linked to a number of social processes that manifest online, including burnout [1], emotional
contagion [21], and trolling [62].

On the other hand, traditionally, situational empathy was measured either by asking participants
about their experiences immediately after they were exposed to a particular situation, by studying
the “facial, gestural, and vocal indices of empathy-related responding”, or by various physiological
measures such as the measurement of heart rate or skin conductance [73]. However, the data
are difficult to collect and are often of small scale. Fewer studies have focused on situational
empathy and on computational models to detect it [71]. Most methods developed to date are based
on small-scale conversation data collected in controlled environments. By analyzing discretized
facial expressions, gaze, and speech features captured from video, Kumano et al. [38] attempted to
differentiate states of empathy, unconcern, and antipathy in four-party meetings. Xiao et al. [69, 70]
used n-grams and acoustic features (e.g., pitch, energy, jitter) to detect empathy from therapists’
conversations. Moving beyond simple n-grams, Lord et al. [41] applied LIWC (Linguistic Inquiry
and Word Count) on counseling conversations and found that 11 LIWC categories were associated
with high empathy sessions, and that the combination of those categories with n-grams further
improved the ability of predicting empathy ratings [25]. More recently, Buechel et al. [7] developed
deep-learning models for predicting both empathy and personal distress on people reacting to
reading news stories. Despite its effectiveness, the computational model was not theory-driven and
was hard to interpret, and it is not clear how the developed model generalizes to different contexts.

To sum up, most previous work has either looked at trait empathy or used simple models to
capture language cues of empathy in specific domains, mainly in therapy sessions. We expanded
on previous work by: i) focusing on expressions of situational empathy rather than on trait
empathy, as the former can more easily be captured through language; and ii) investigating a
more comprehensive set of linguistic models of empathy motivated by the existing literature in
the social sciences. Previous work looked mostly at the association between trait empathy and
restricted sets of linguistic features; no work so far has studied expressions of situational empathy
in conversations on a large-scale (e.g., on social media data). Yet, it is important to do so to gain a
better understanding of the language markers of empathy in day-to-day interactions. In this work,
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we aim at providing a computational model that uses the most generalizable language features that
can quantify situational empathy across different contexts.

3 COLLECTING TEXTUAL EXPRESSIONS OF EMPATHY

We gathered empathy annotations through three crowdsourcing studies (one via an online survey
in a class research project and two via Amazon Mechanical Turk), one was carried out in previous
work [7], and two were conducted as a part of this study. The data collection consisted of three main
steps, common to all the three studies, and resulted in the generation of three datasets containing
empathy annotations for: (a) news stories, (b) a bus bullying story, and (c) vent posts on Reddit.
These three scenarios fit the purpose of our study, given that they all reflect events that trigger
emotions. We selected these three particular scenarios as they cover different situations that people
can respond to. The bus bullying story includes one evolving situation with a visual stimulus
(video); the news stories cover various examples of human suffering, focusing mainly on pitiful
and sad events; and the vent posts on Reddit contain events with different sentiments, with not
only distressing situations (e.g., death of a relative) but also cheerful events (e.g., graduation from
college). The diverse set of scenarios enabled us to further investigate the generalizability of our
developed models (§4). We ensured that all the participants were paid at least the minimum wage
throughout the study. The three steps of our data collection unfolded as follows. First, participants
completed a short pre-study questionnaire in which they self-reported their age and gender?. The
age and gender composition for the three datasets is as follows:

News stories: 403 Amazon Mechanical Turk workers (aged 34 years on average, 48% female).
Bus bullying: 558 online survey study participants as part of a class research project, in which
undergraduate students recruited their friends and relatives via snowball sample to complete
an online survey (aged 29 years on average, 74% female).

Vent posts: 1,204 Amazon Mechanical Turk workers (aged 32 years on average, 57% female).

Second, the participants were exposed to a situation, which differed across the three studies:

News stories: 418 stories of human suffering [7], manually selected from popular news outlets®;
each participant was shown a random selection of 5 news stories.

Bus bullying: a shortened 2-minute video?, which shows a 68-year old bus monitor named
Karen Klein bullied by a group of middle schoolers.

Vent posts: 10k post-reply pairs from the r/vent subreddit °, an online forum in which users
generally voice their opinions or feelings in search of social support. We selected the most
popular vent posts by the number of upvotes. For each post, we then selected the top 4 replies
that did not contain hate speech or offensive language (detected by the HateSonar [10], a
tool for automatic detection of abusive language). We ranked the top-level replies of each

2To preserve anonymity, age and gender are the only demographic information we collected.

3 A wide range of news articles were selected based on the categories in terms of their intensity of suffering (major or minor),
cause of suffering (political, human, nature or other), recipient of suffering (humans, animals, environment, or other) and
scale of suffering (individual or collective).

4The bus bullying episode was caught on video, and received considerable attention from the media shortly after landing on
Youtube in 2012: http://www.youtube.com/watch?v=E12R9f{MMtos

Reddit is a public discussion website structured in independent communities—called subreddits—dedicated to a broad
range of topics [45]. Users can upload posts to a subreddit, write threads of replies to existing posts, and upvote or downvote
posts and replies [4]: https://www.reddit.com/r/Vent/.
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post by the number of their upvotes and selected the top 4 replies®. This procedure yielded a
set of 881 posts and 3,524 replies.

Third, participants were instructed to respond to the situation and answer a situational empathy
questionnaire, with eight numeric mood-related measures on a Likert scale from 1 (“not at all”) to
5 (“extremely”). These eight measures (“moved”, “sympathetic”, “compassionate”, “tender”, “soft-
hearted”, “caring”, “kind”, and “warm”) reflect people’s situational empathy [3]. To collect the textual
response for these situations as well, we asked participants how they felt after reading the situation,

and asked them to write their personal responses in a free-text form.

News stories. We asked: “Now that you have read this article, please write a message about
your feelings and thoughts regarding the article you just read. This could be a private message
to a friend or something you would post on social media. Please do not identify your intended
friend(s) — just write your thoughts about the article as if you were communicating with
them.”

Bus bullying: We asked: “What would you say to Karen if you could send her a note or
message? Imagine that no one would ever know that you personally sent the note, but that
she would actually read it. ”

Vent posts: Instead of querying about the participant’s mood/empathic reaction, the question
in this case was: “Which feelings were likely experienced by the replier when writing his/her
reply?”. This assessed an empathic reaction by the participant on behalf of the Vent replier. We
called it mood assessment, and we collected the eight mood-related measures similarly to how
we collected the self-reported mood for News stories and Bus bullying. For each vent post-
reply pair, we asked three crowd-sourcing participants and averaged their empathy/mood
assessments. In this case, the participants were not asked to write any textual response; we
consider the vent reply itself as the textual response.

Given this procedure, we ultimately obtained three datasets that consist of textual responses to the
situations and eight situational empathy measures associated with those responses. A Cronbach’s
alpha test on the eight empathy-related mood measures yields a score of 0.81, indicating their strong
relatedness [64]. As it is common practice in psychology when dealing with multiple survey items
measuring the same underlying construct—and as previous work suggested [3]—we averaged the
eight empathy measures and obtained an overall situational empathy score that reflects a person’s
momentary empathy level in relation to the specific situation they have been presented with.

The distributions of empathy scores follow normal distributions as assessed by the Shapiro-Wilk
test. To obtain a binary and clear-cut distinction between empathic and non-empathic responses,
we split the data from each of the crowdsourcing collections in three equally sized bins according
to empathy scores, and kept only the top and bottom tertiles to get empathic and non-empathic re-
sponses, respectively. We worked on those binarized scores in the remainder of the study. Summary
statistics of the datasets are reported in Table 1. Given how we binarized those empathy scores,
the dataset was balanced. We can also observe in Table 1 that for textual responses, the average
number of words in an empathic response did not deviate much from any response.

There are ethical considerations related to our study, especially some concerning the bus bullying
data collection: having the participants watching a video of bullying could be traumatic. This
bus bullying study received IRB approval from the university. All researchers and members of
the class received training on the ethical conduct of research and signed a confidentiality pledge.
Participants were all over the age of 18, gave their consent to be in the study, were anonymous and

SThis is selected based on the distribution analysis of number of replies per post and reply lengths.
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Data Bus Bullying News Stories Vent Posts
Situation Karen’s Video Textual News Vent Post-reply Pairs
Empathy Responses Self-reported Mood  Self-reported Mood ~ Mood Assessment
Textual Responses Participant Message Participant Message  Vent Reply

Num of Participants 558 403 1,204

Num of Situations 1 418 3,524

Num of Responses 558 1,860 10,572

Avg. # Words 63 84 58

Avg. # Words for Empathic Responses 58 86 63

Avg. # Words for Non-Empathic Responses | 67 81 54

Table 1. Statistics on our three empathy datasets.

not identifiable, were aware of the study content, and could drop out at any point without penalty.
The bullying video, although sensitive, had been shown on the news and is similar to other types
of content featured in news media.

4 PREDICTING EMPATHY FROM TEXT

By using the three datasets collected (§3), we first constructed theory-driven computational models
to predict empathy scores from textual responses (§4.1). We then generated a dictionary that
captures language markers of empathy that are predictive across domains (situations) (§4.2).

4.1 Theory-driven classifiers

To detect the presence of situational empathy in textual responses, we adopted a binary classification
approach using logistic regression. We trained the models with three families of independent
features (§4.1.1-§4.1.3), which we tested independently and in combination. We did so to predict
the dependent variable of situational empathy. Since the interpretation of regression coefficients
of those features is sensitive to the scale of the inputs, we follow [24] and divide each numeric
predictor by two times their standard deviation. The resulting coefficients are then standardized
and directly comparable: such scaling allows the coefficients of numeric predictors to be interpreted
in the same way as with binary predictors. Those binary predictors can remain unscaled because
their coefficients can already be interpreted directly. For example, a binary predictor with equal
probabilities has mean 0.5 and standard deviation 0.5. The coefficients for the binary predictors
correspond to a comparison of 0 to 1 (i.e., a 1-unit difference on this transformed scale corresponds
to a difference of 1.0 on the original predictor), or two standard deviations. We describe the models
next.

4.1.1 Demographic features (control). Some demographics attributes are associated with empathy.
Women tend to report more understanding of others’ thoughts and feelings [18, 49], and there is
a negative association between age and empathy [49, 61]. Therefore, we used age and gender as
control variables.

4.1.2  Vocabulary features (Phrases model). As most previous work used bag-of-words approaches
to model empathy [71], we considered a model that uses as features the frequencies of the 10k
most frequent uni-grams, bi-grams, and tri-grams found in the training data. These short phrases
account for the linguistic context in which empathic (or non-empathic) expressions occur.

4.1.3  Linguistic style features. Moving beyond prior literature, we aim to establish the relationship
between empathy and textual stylistic properties that previous social science studies linked to
empathy:
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o Degree of interdependent thinking. People with independent self-construals define themselves
independently of others, while people with interdependent self-construals, in contrast, define
themselves interdependently with their close relationships and social groups. Such self-views
play a mediating role in the expression of empathy [26, 42, 68]. Gardner et al. [22] opera-
tionalized such self-views through pronoun use; they found that people with independent
thinking use more first-person singular, while people with interdependent thinking use more
first-person plural pronouns (“I” Value Freedom, but “We” Value Relationships). To partially
model the degree of interdependent thinking, we simply counted the occurrences of these
two types of first-person pronouns.

Integrative Complexity. Integrative Complexity (IC) is a psychometric concept that measures
the ability of a person to recognize multiple perspectives and connect them, thus identifying
paths for conflict resolution. IC reflects perspective taking, a crucial cognitive aspect of
empathy [11]. To measure it, we used a computational model developed by Robertson et
al. ([59]), which scores the level of IC of any text on a scale from 1 to 7 based on its semantic
and syntactic structure.

e Controversy. When the process of integrating different perspectives fails, controversy arises.
Controversy often results in contrast, which reduces the likelihood of empathic responses [14],
but it can also originate ethical reflection processes that foster empathy [66]. Prior work
compiled a lexicon of controversial words from news articles [46]. To measure controversy,
we calculated the fraction of controversial words in the text.

Categorical-Dynamic Index. Categorical language reflects the analytic nature of thinking, as
opposed to dynamical language that represents personal narratives that are more conducive
of empathic responses. The Categorical-Dynamic Index (CDI) is a measure that combines
eight LIWC categories (article, preposition, personal pronoun, impersonal pronoun, auxiliary
verb, conjunction, adverb and negation) to capture these two dimensions [53].

We refer to all the above: demographics, phrases, and linguistic features as theory-driven features
for predicting empathy, given that they are linked to empathy in prior literature. Yet to our
knowledge, this is the first time that their effectiveness in predicting situational empathy has been
explored.

4.2 Empathy lexicons

The performance of classification models on data from unseen sources depends on the quality and
abundance of training data and on such data’s representativeness with respect to a more general
context. As verbal expressions of empathy might manifest in a wide variety of forms and contexts,
a drop in performance is expected when applying a prediction model on a new type of data (as
we shall detail in §5). To minimize the cost of collecting domain-specific training data and to keep
the generality of the classification high, approaches based on dictionaries or hard-coded general
rules have been proposed in the past and successfully used for text classification tasks [30, 54].
Therefore, we experimented with two strategies to create dictionary-based approaches to empathy
classification.

4.2.1 Lexicon 1: Empathy synonyms. We put together a simple lexicon that includes the word
“empathy” and all its synonyms taken from four English dictionaries: Oxford, Collins, Merriam-
Webster, and Google. This is a simple way to compile a list of concepts—curated by dictionary
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creators—that are semantically related to empathy. In total, we gathered a union of 75 words related
to empathy.”

4.2.2  Lexicon 2: Terms by interpolation. One could leverage the knowledge that a classifier learns
from datasets of a different nature as a way to bootstrap the creation of a general dictionary. In
particular, we are inspired by the approach of multi-source domain adaptation [43] whose objective
is to select a feature space in which training data in multiple domains are semantically close, while
keeping good performances on the each individual domain.

In our scenario, the logistic regression model trained on n-grams only (§4.1) learned which
n-grams are associated with empathic and non-empathic responses. Given two out of the three
datasets we collected, we trained such n-gram model on dataset D; and D, separately, and we used
a simple linear interpolation to combine the two coefficient vectors of the two logistic regression
models for different n-grams. Effectively, for the case of two vectors, this is equivalent to averaging
the coefficients from the two models:

Wwp, + Wp,

- )

where wp, refers to the coefficient vector (the vector of coefficient betas for each n-gram of the
logistic regression n-grams model) trained on a specific dataset D;. Essentially, for each n-gram, we
average its coefficient beta of logistic regression models trained on the different datasets. Given
the interpolated coefficients of all the n-grams according to Winserpolarion, We then extracted the
top 200 n-grams based on the absolute values of the coefficients, i.e., those n-grams that are most
correlated (either positively or negatively) with empathy within this interpolated model. We used
this interpolated representation as a new lexicon of terms, and we applied the interpolated logistic
regression model with this lexicon to the remaining dataset D; to test its generalizability. It might
be possible to further extend this dictionary by inferring connotations between n-grams within the
neural embedding space [20]. However, this data-driven approach requires labeling a large textual
dataset with empathy-related annotations, which is costly and beyond this work’s scope.

An overview of the dictionary generation approach and its application for empathy prediction is
shown in Figure 1.

Winterpolation =

4.2.3  Processing lexicon: Sparse vs. Dense vs. Count. Given a new lexicon, we turned it into features
for logistic regression in two ways.

e Sparse representation. We constructed an occurrence-count vector of all the lexicon terms,
which corresponds to a sparse and high-dimensional representation of the target text in the
semantic space of the lexicon.

e Dense representation (embeddings). Rather that using simple word counts, we followed the
Distributed Dictionary Representations (DDR) approach [23] and mapped the words into a
dense embedding space. Specifically, we averaged the 300-dimensional embedding vectors
for each lexicon word using GloVe embeddings [55] trained on the Common Crawl corpus®.

The above two approaches used a machine learning algorithm on top of our lexicon for the final
prediction. To further validate the effectiveness of the lexicon, without using machine learning,
we also propose another approach called lexicon count: by simply counting the occurrences of
empathic and non-empathic n-grams in the lexicon, we deem a text to be empathic if it contains a
larger number of empathic expressions than non-empathic n-grams. This lexicon count approach

"We have also experimented with the strategy of intersection of words from four dictionaries. However, this resulted in a
few words and the performance is worse than the union strategy. We adopt the union of empathy synonyms for the rest of
the paper.

8https://nlp.stanford.edu/projects/glove/
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Fig. 1. An overview of the approach for extracting and evaluating the interpolation-based dictionary of
empathy-related terms. By interpolating logistic regression models’ vocabulary feature coefficients, we
generate the lexicon based on terms by interpolation, in addition to the empathy synonyms based lexicon
curated by dictionary creators. Exploiting one lexicon, we can represent any other texts using sparse or dense
representations and utilize machine learning to predict their empathy. The lexicon facilitate the machine
learning algorithms to focus on only those empathy-related n-grams that are potentially more general, which
may alleviate the problem of over-fitting.

has been extensively adopted in prior work [63]. We apply the above three approaches for both
lexicons: empathy synonyms and terms by interpolation.

To sum up, we create two types of lexicons: empathy synonyms curated by four existing dic-
tionaries; and terms by interpolation by simple linear interpolation of trained logistic regression
models’ feature coefficients. Exploiting a given lexicon, we can utilize machine learning to quantify
empathy of a text through two ways: sparse representation by counting occurrences of lexicon
terms; and dense representation by using distributed dictionary embedding representation. Without
machine learning, we also report the lexicon count approach that simply counts the occurrences of
empathic and non-empathic phrases in the lexicon, and deem a text to be empathic if it contains
more empathic expressions.

5 EXPERIMENTAL RESULTS

First, we compared the performance of different families of features in classifying empathy from text
(§5.1). We then assessed the ability of different classification models to generalize across datasets

(§5.2).

5.1 Classification

On each dataset independently, we performed 5-fold cross validation and recorded the average
error rate across folds. Given the balance between the two classes, the error of the random baseline
is 0.5. Figure 2 shows the results for the different feature families independently and in combination
with the demographic control factors.

When the empathy scores were self-reported by the person who wrote the text (Bus Bullying and
News Stories datasets), demographic control variables alone resulted in relatively low error rates
compared to other feature sets. This is in line with the literature: demographic factors are good
proxies of trait empathy which, naturally, is a strong determinant of the situational empathy that
those people exhibited in their written responses [49]. On these two datasets, textual features did
not outperform the control variables and only the theory-driven features yielded an improvement
consistent across datasets when used in combination with the controls. It is worth noting that in
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Bus Bullying News Stories Vent Posts

Random 500 —— .500 — .500 —

Control 384 —— .396 — 457 —

Theory 425 —— .390 262

Phrases 395 —— 346 — 274 —
Theory+Control 379 — .393 = .257 +
Phrases+Control 436 —— 334 — .265 +

Error Rate

Fig. 2. Average error rates on 5-fold cross validation for empathy classification on the three datasets, and
using different combination of features.

the “Bus Bullying” dataset, adding more variables might even deteriorate the performance (as in
the case of “phrases+control”, compared to “phrases” or “control”). This can be explained mainly by
the fact that the “Bus Bullying” dataset is quite small (see the relatively large error bar in Figure 2)
and it is more likely to be overfitting (note the phrase features are sparse).

The prediction of the empathy assessments in Vent Posts produced a different trend. In this case,
the situational empathy assessed on the textual response (vent replies) has little to do with the
demographic characteristics of the person who assigns the score, which brings the error of the
controls-only predictor closer to the random guess. Text-based features performed considerably
better than in the other two datasets, with the theory-driven classifier leading the rank with an
error rate as little as 0.26. This is expected, not least because training data for “Vent Posts” is
one order of magnitude larger; in addition, for “Bus Bullying” and “New Stories”, there might be
potential discrepancy between the mood reports, i.e., the moods expressed in the textual responses
might deviate from the moods self-reported by the respondent. This makes it even more difficult
to predict self-reported mood for both “Bus Bullying” and “News Stories” datasets. However, this
is not the case for “Vent Posts”, since the mood assessments were directly applied on the textual
responses (i.e., vent replies).

To explore in-depth the weight of different features in the prediction, we inspected the logistic
regression feature coefficients for three types of models (Table 2). For the phrases model, we only
report the top 10 n-grams with positive and negative coefficients. When focusing on the control
variables only, more empathic responses were given by women and by older people. Integrative
Complexity, LIWC variables (e.g., first-person pronouns “I” and “we”, which partially reflect degrees
of independent thinking), and sentiment (either positive or negative) were the most predictive
theory-driven features. As for content features, messages that convey confidence and complexity
of thinking, while acknowledging the emotions expressed in the story, were perceived as most
empathic. In the model trained on n-grams, “warm-hearted” expressions (e.g., “sorry”, “beautiful”)
were associated with empathic messages, whereas expressions of blame and anger were associated
with non-empathic text.

5.2 Cross-domain adaptation

Strikingly, the most predictive n-grams of situational empathy have little overlap across datasets
(§5.2), which is a possible expression of the limited ability of the classifiers to adapt to unseen data
sources. To measure this limitation quantitatively, we set up a cross-domain adaptation experiment
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Feature Importance

Theory + Controls

Bus Bullying News Stories Vent Posts
IC 1.21 liwc_IWe 0.80 liwc_posemo 1.15
male -1.16 male -0.76 liwc_negemo 1.10
age 0.38 liwc_negemo 0.64 IC 0.95
liwe_IWe 0.23 CDI 0.53 CDI -0.78
sentiment -0.17 liwc_posemo 0.40 liwc_IWe 0.59
controversy 0.14 control_age  0.27 controversy  0.33
CDI -0.14 sentiment -0.25 sentiment -0.26
liwe_negemo 0.13 controversy 0.13 age -0.24
liwc_posemo 0.07 IC 0.11 male -0.24

Phrases + Controls

Bus Bullying News Stories Vent Posts
hope 0.62 family 1.02 sad 0.46
mean 0.50 sad 0.95 rest 0.41
person 0.42 dying 0.75 sorry 0.39
best 0.40 help 0.71 mom 0.37
valuable.person 0.33 especially 0.67 know 0.37
sorry 0.33 imagine 0.66 sick 0.36
treated.like 0.32 able 0.64 don.let 0.36
upset 0.30 terrible 0.62 bad 0.36
beautiful 0.30 things.like 0.59 peace 0.35
ignored 0.29 sorry 0.59 awful 0.34
great.person -0.27 stories -0.54 sure -0.27
immature -0.29 couple -0.55 god.saying -0.28
kids.treated -0.30 cost -0.57 job -0.29
wonderful -0.33 certainly -0.58 family -0.29
bus -0.33 little -0.60 means -0.29
need -0.35 opinion -0.64 money -0.30
amazing -0.36 trump -0.68 f*ck -0.35
make -0.38 comes -0.69 laugh -0.36
sure -0.43 guess -0.83 friend -0.37
male (control) -1.00 don’t -1.10 tell -0.38

Controls Only

Bus Bullying News Stories Vent Posts
age 0.40 age 0.62 age 0.07
male -1.12 male -0.40 male -0.60

Table 2. Logistic regression coefficients of the most discriminative features for empathy classification across
three models and for the three datasets considered. All the regression coefficients are standardized by
following the procedure described in [24] and are all found to be statistically significant. Positive and negative
coefficients respectively represent those predictors that contribute to empathic and non-empathic responses.
The bold phrases form part of the lexicon obtained by interpolation of the three datasets.

in which we trained a model on two data collections and tested it on the third one. We kept the
class balance both in training and testing with undersampling.

In this experiment, we compared our two dictionary-based approaches with our proposed theory-
driven model, the phrases model, and the Convolutional Neural Network (CNN) model proposed in
prior work [7]. The CNN approach utilized a publicly available FastText word embeddings as input
and adopted three layers (ReLU convolutional, average pooling and ReLU dense layer). This CNN
approach performed the best in [7]. The results are presented in Table 3.
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Test data

News Bus Bullying Vent
Theory 0.433 0.489 0.423
Phrases 0.401 0.395 0.404
CNN [7] 0.424 0.537 0.475
Empathy Synonyms (sparse) 0.475 0.485 0.478
Empathy Synonyms (dense) 0.416 0.440 0.392
Terms by interpolation (sparse)  0.383 0.401 0.349
Terms by interpolation (dense) ~ 0.385 0.389 0.343
Empathy Synonyms (count) 0.479 0.508 0.482
Terms by interpolation (count) — 0.412 0.443 0.428

Table 3. Cross-domain error classification of different models. Values refer to the error obtained when testing
on the specified data source and training on the remaining two. Top section: logistic regression classifiers
trained on theory-informed features and on n-grams (phrases), and CNN classifier based on Fast Text word
embedding features [7]. Middle section: logistic regression classifiers trained by phrases extracted from
the dictionary-based approaches. Bottom section: classifier based on simply counting empathic and non-
empathic phrases in the dictionary without using machine learning algorithms (lexicon count). Best results

are highlighted in bold.

As expected, the performance of both the theory-driven and the phrase-based models dropped
compared to the cross-validation results obtained by training and testing on a single dataset
(Figure 2). The CNN model from previous work fared worst on the Bus Bullying and Vent stories,
and performed worse than the dictionaries on the News. The simple dictionary made of empathy
synonyms achieved generally a poor performance, yet being significantly better than a random
guess (the baseline).

It is interesting to observe that the dictionary extracted from the interpolation approach yielded
the lowest error in cross-domain classification, especially when using a dense, embedding-based
representation of words. This is in line with previous studies that demonstrated the effectiveness
of semantic similarity encoded in low-dimensional embedding spaces [23]. This demonstrates the
generalizability of using terms by interpolation for empathy classification, showing that it can work
across different domains, outperforming those classifiers trained to specific domains.

Lastly, we demonstrate that although not as competitive as using embedding-based representation
on the dictionary, classifying text based on simply counting the empathic and non-empathic phrases
in our interpolation based lexicon can result in a moderate performance that is significantly better
than the baseline. Several examples of the lexicon phrases can be found in Table 2 (bold features).
For example, in Table 2, we can observe that one of the lexicon phrase “sorry” is shown to be one
of the top phrases that positively contribute to predicting empathic responses across all the three
datasets. Despite of the minor differences observed on the feature coefficients across datasets, this
example demonstrates the potential generalizability of our lexicon on classifying empathic textual
responses.

To sum up, if building an empathy classifier in a new domain is required, for which you have
labelled data and demographics, it is recommended to utilize both demographics information
(§4.1.1) and those theory-driven features (§4.1.3) to build such machine learning classifier. When
demographics information is not available, the phrases approach (§4.1.2) is the best approach to
train such classifier. However, the performances of such trained classifiers deteriorate significantly
when we try to predict in a new domain (i.e., different situations for empathy responses).
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When labelled data is unavailable or a classifier that would work well across different situations
is required, it is preferably to use our lexicon created by interpolation on a dense, embedding-based
representation (§4.2). This would provide a more generalizable empathy classifier that achieves the
competitive performance across domains.

6 EVALUATION OF EXTERNAL VALIDITY

To test the external validity of our model and to show its applicability on large scale text data from
the Web, we collected around 3.2M messages from two data sources (§6.1), formulated hypotheses
about the expected trends of empathy in such datasets, and verified them by estimating the level of
situational empathy they express (§6.2). This is the first study that measures situational empathy
on a large scale.

6.1 Data sources

6.1.1  Movie scripts. The Cornell Movie-Dialogs Corpus is one of the most comprehensive open
collections of movie scripts, containing 304,713 utterances exchanged between 10,292 pairs of
characters from 617 movies. Movies have a great influence over childrens’ behavior [33], and this is
why the plots of kids movies are often intentionally crafted to promote altruism and empathy [67].
Examples of such movies range from classics, such as“To Kill a Mockingbird”, to modern kid-friendly
favorites like “Inside Out” and “Zootopia”. We selected 23 education movies’ (for a total of 28k
lines) and as many randomly-selected movies for comparison (for a total of 17k lines).

6.1.2  Reddit. Using the Reddit API, we collected all the posts and comments made between January
2018 and June 2019, in four subreddits: r/vent, the forum we used in the evaluation; r/depression,
a community dedicated to gather support around stories of mental health; r/technology and
r/science, two communities focused on knowledge exchange. In total, we collected 15k posts and
37k comments from r/vent, 40k posts and 143k comments from r/science, and 141k posts and 1.7M
comments from r/technology.

6.2 Hypothesis validation
We set out to test three hypotheses:

H1: Movies targeted to younger audiences, especially children, tend to promote messages of
altruism and empathy [65, 67]. We therefore hypothesized that the scripts of movies for kids exhibit
a higher level of empathy compared to a random selection of movies. We focused on the content
of the messages conveyed by the characters in the movie rather than on the post-impression of
people reviewing the movie, which are biased by several confounders that are hard to control for.

H2: Witnessing people in distress triggers empathic responses, which are more likely to be verbal-
ized if the context is perceived as safe [52]. r/depression is among the most popular social support
communities in Reddit. It has been shown in prior study [13] that there is abundance of social
supports and empathy in such forum. We hypothesized that people posting in r/depression exhibit
higher level of empathy compared to discussion spaces aimed at sharing technical knowledge like
r/technology and r/science.

H3: Stories characterized by distress and sadness tend to trigger stronger and more frequent
empathic responses than joyful stories [56]. We hypothesized that stories in r/vent characterized
predominantly by distress receive more empathic comments than those conveying joy.

“https://www.commonsensemedia.org/lists/movies- that-inspire-empathy
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Fig. 3. Distribution of the likelihood pe of a text to be empathic, across different data collections and partitions:
(a) movie transcripts of kids movies vs. a random selection of movies; (b) messages from the support subreddit
r/depression vs. messages from the knowledge exchange subreddits r/science and r/technology; (c) messages
posted on r/vent characterized by joy vs. those with distress. The distributions of pairs of groups are all
statistically different according to a two-tailed t-test (p < 0.01).

We ran our each text m through our empathy classifier that were trained on theory-driven
and interpolated dictionary features, and obtained the probability p.(m) of the text containing an
expression of empathy, according to the logistic regression.

To verify H1, we calculated the distribution of p, for kids movies and for the random selection of
movies separately. Results support our hypothesis (Figure 3a): even though the overall likelihood
of empathy is rather low across all movies, movie scripts for children show significantly more
markers of empathy than other type of pictures (median p, 0.36 against 0.23, with 13% difference).

Similarly, we tested H2 by comparing the distribution of p, calculated from the posts and
comments in r/depression with that from post and comments in r/technology and r/science. Results
again met our expectation, as the typical depression-related message was roughly 25% more
empathic compared to knowledge-related posts (Figure 3b).

Last, to validate H3, we first computed the emotions of all messages from r/vent using Emolex
(joy) [47] and LIWC (anxiety and sadness) [63] to quantify joy and distress respectively. We then
partitioned the dataset into two sets of texts with events of joy and distress. We then computed
the distribution of p, in the two groups and found, as expected, that distress-related posts are 11%
more likely to be empathic than the ones with joy (Figure 3c).

Note that for all the above results shown, we conducted statistical two-tailed t-test to confirm
whether the means of the two groups are significantly different. We indeed found all the differences
observed on the three hypothesis are statistically different (p < 0.01). This further validates our
empathy classifier and demonstrates its applicability to large-scale text data on the Web.
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7 CONCLUSION

Driven by theoretical work in psychology, we developed computational models to score text
according to their situational empathy—the empathic response expressed in relation to a specific
situation. Our models capture both empathic concern in reaction to negative events, and empathy
triggered by positive stories. By looking at the commonalities between empathic expressions in
multiple domains, we created a vocabulary of empathy-related words that generalize across domains
to a good extent. To support the applicability of our method, we ran the first large-scale study of
empathy on digital data and successfully matched the results with theoretical expectations.

Our results bring forth several theoretical and practical implications, and have limitations that
future work might address.

7.1 Implications

From the theoretical standpoint, we have shown that situational empathy is expressed verbally
through distinctive textual markers characterized by a combination of expression of sentiment,
complexity of thinking, and demographic characteristics. In the future, automatic classification of
empathy could enhance the descriptive power of textual analytics like sentiment analysis. Text
characterized by positive sentiment may contain superficial exchanges that lack empathy, or deeper
and supportive messages that convey empathy. Similarly, negative sentiment text could be the
result of conflict and lack of support but, when it expresses empathy, it may actually reflect an
attempt to overcome sad or hurtful events.

From a practical perspective, we created a generalizable tool to capture empathy at scale that is
applicable to many types of text. To aid this process, we made available the empathy dictionaries
and our crowdsourced data, and we encourage researchers to experiment with it. Our user studies
and corresponding guidelines could also help researchers to collect empathy data in other situations.
This new capability opens up the way to a number of new application domains.

Empathy analytics on social media. Our classifiers could contribute to creating new text analytics
tools for large-scale social media data. In particular, we believe that the analysis of empathy
expressed in social networking sites could help to unearth pockets of social ill-being associated
with the decline of empathy [35] as well as promoting empathic content that could reduce conflict
and bridge community disconnects [60].

Supporting digital healthcare. Online applications have gained an increasingly important role
among the service offered by healthcare providers [2]. For example, when dealing with mental
health issues, counseling and psychotherapy are becoming increasingly mediated by digital tools [9].
Online interactions between patient and therapist could be augmented by automatic triggers that
foster empathic responses, which in the long run result in higher success rates of the therapy
process [41].

Fostering success of communities with a purpose. In goal-oriented communities such as a working
group or a class of students, empathy fosters positive engagement, triggers virtuous circles of
gratitude, and results into better outcomes and higher chances of collective success [6, 44]. In a
future where social interactions in bounded environments (e.g., office, schools) could be recorded
in a privacy-preserving fashion, empathy analytics could be used to act upon situations in which
lack of empathic exchanges is detected.

7.2 Limitations

Despite our effort to leverage multiple data sources to create a context-independent dictionary of
empathy-related words, our datasets suffer from a number of biases. The vast majority of messages
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we used for training and testing are written by US residents and are labeled by annotators residing
in English-speaking countries, which might generate a biased representation of the expressions that
are considered empathic. In addition, the context (e.g., public vs. private channels) in which users
were instructed to write the textual response might influence the degree of emotions they expressed.
Previous research studies found that, in social media, people shared more intense and negative
emotions in private messages than in public channels [5], whereas, in online support groups, people
revealed more negative self-disclosure in public channels [72]. The impact of audience channel
on empathy is an open research question and requires further investigation. When obtaining
annotations, we attempted to cover both private and public channels (private channels with Bus
Bullying, and with part of News stories; public channels with the other part of News stories, and
with Vent posts). Overall, the labeled data we collected is the largest to date, yet it is relatively
small when it comes to training machine learning algorithms. Therefore, larger data collections
with reduced socio-demographic and cultural biases are in order.

In our theory-driven model, we considered a number of linguistic style features that capture
concepts related to empathy. This set is not meant to be exhaustive though, and future work
could explore additional features that may further improve classification performance. Also, other
deep-learning approaches should be explored. By exploiting a pre-trained BERT model [16], and per-
forming empathy classifications (§5.1), we found that compared to theory-driven classifiers, BERT
could slightly improve the classification errors for two datasets: news stories (4% improvement)
and vent posts (7% improvement), but not on Bus bullying dataset (3% degradation). Given that
the performance improvement of using BERT was small and not consistent across datasets, it was
preferable to adopt the theory-driven models that are more interpretable without compromising
accuracy.

We focused on situational empathy and controlled for trait empathy—a person’s intrinsic pre-
disposition to provide empathic responses—only based on two demographic indicators (age and
gender). In the future, we envision a more systematic analysis of the relationship between trait
empathy and situational empathy, starting from assessing the ability of our models to predict trait
empathy from text.

All our datasets were collected through crowdsourcing rather than through traditional lab studies.
Crowdsourcing enables data collection at scale [17]. Compared to traditional lab studies, which
normally recruit dozens of students, crowdsourcing offers fast access to a relatively large and diverse
set of research participants. On the other hand, it is harder to control experimental conditions.
For example, experimental tasks that require rigorous programming (e.g., the measurement of
reaction time) are hard to do online. In addition, given the nature of the crowdsourcing experiments,
participants’ attention to the experimental task - despite being important - is hard to measure.
As a result, crowdsourcing generally requires various mechanisms to ensure that the data being
collected is of quality [28]. However, if those quality-control checks are in place, crowdsourcing
turns out to be an effective way of gathering large-scale responses [8].

Our results are not intended to amplify existing social stereotypes about gender, age, and empathy.
Previous research has indeed found that trait empathy is higher among women and older people
[51]. Yet most of the research on such differences relies on individuals’ self-reported agreement
on dispositional measures, which is subject to several issues (e.g., lack of self-knowledge, socially
desirable responding). Concerning gender, research finds that gender differences in empathy are
smaller in objective measures (e.g., empathic accuracy, emotion reading) and are more likely when
participants are aware of gender-role expectations [31, 34]. Both of these suggest that men and
women score differently in empathy as a way of fulfilling gender role expectations. Still, since
the current study relies on self-reported emotional responses, including gender in our model is
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justifiable. With respect to age, research also finds that age differences depend upon the measure
used and individuals’ motivation [29, 39].
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