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While current meeting tools are able to capture key analytics (e.g., transcript and
summarization), they do not often capture nuanced emotions (e.g., disappointment
and feeling impressed). Given the high number of meetings that were held online
during the COVID-19 pandemic, we had an unprecedented opportunity to record
extensive meeting data with a newly developed meeting companion application.
We analyzed 72 h of conversations from 85 real-world virtual meetings and
256 self-reported meeting success scores. We did so by developing a deep-learning
framework that can extract 32 nuanced emotions from meeting transcripts, and by
then testing a variety of models predicting meeting success from the extracted
emotions. We found that rare emotions (e.g., disappointment and excitement) were
generally more predictive of success than more common emotions. This
demonstrates the importance of quantifying nuanced emotions to further improve
productivity analytics, and, in the long term, employee well-being.

In the workplace, meetings are often considered as
one of the primary sources of stress and, as most
of the day-to-day communication has shifted

online, new stressors are now a reality (e.g., Zoom
fatigue). To cope with the sudden transition to online
communication, current tools provide informal channels
of communication to help participants stay connected,2

and provide data analytics through audiovisual or textual
analyses.6 However, these tools often fail to capture the
nuances of human-to-human communication. Having an
unprecedented opportunity to record and obtain meet-
ing conversations, we investigated the extent to which a
nuanced emotional classification analysis (compared to
the widely adopted sentiment analysis1,9) is predictive of
meeting’s success.

In so doing, we made the following three sets of
contributions.

1) We collected 72 h of meeting conversations from
85 real-world, virtual corporatemeetings, and 256

self-reported meeting success scores, which we
used as the ground truth in our predictivemodels.

2) We developed metrics that captured 32 nuanced
emotions expressed in those meetingsa.

3) We built a model that predicted a meeting’s suc-
cess upon these metrics, and found that rare
emotions were more predictive than more com-
mon emotions.

At the end of this article, we will discuss the poten-
tial uses of these new analytics in current and future
tools for monitoring productivity and employee well-
being in any organization.

RELATEDWORK
Meeting analytics are the key to productivity and health;7

in a sense, it provides a way to reflect and, ultimately, run
meetings more effectively, creating a mentally healthy
environment for employees. Previous research on meet-
ing analytics focused on audiovisual analyses; examples
include generating speaker-annotated meeting tran-
scripts;19 identifying dominance and monitoring
meeting participants’ interactions;3 and detecting
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action items.17 Recently, several studies focused on
tracking meeting behavior through automated emo-
tional speech classification,13 group dynamics analysis
using speech transcript,20 and group rapport
estimation.12

Despite that sentiment analysis and emotion clas-
sification have been found to be helpful in inferring
the experience (success) of a meeting,5 most of the
previously studied analytics have been based on a lim-
ited set of coarse-grained emotions, such as positive
or negative sentiment (happy or sad). Yet, as many
experienced during the COVID-19 pandemic, meeting
analytics would benefit from being able to capture
a wider range of emotions. To tackle this challenge,
our study quantified 32 emotions16 during 85 corpo-
rate meetings and correlated them with participants’
self-reported meeting success.

NUANCED EMOTION DETECTION
Using a crowdsourced dataset of conversational text
annotated with 32 emotions, we trained multiple classi-
fiers to extract nuanced emotions from any given text.

Empathetic Dialogues Dataset
To model nuanced emotions within conversations, we
leveraged the publicly available empathetic dialogues

dataset16 covering 32 nuanced emotions as opposed
to existing approaches (e.g., IEMOCAP, CMU-MOSEI,
and RECOLA), which are constrained to a limited num-
ber of (typically eight) emotions. The dataset consists
of 24,850 conversations, obtained from 810 workers
in a crowdsourcing task published on Amazon
Mechanical Turk. A pair of workers were asked to:
i) select an emotion word each, and describe a situa-
tion when they felt that way (we call this description
“speaker prompt”); and ii) have a conversation about
each of the two situations. The resulting speaker
prompts together with their emotion classes were
used (see Figure 1) for training our two emotion classi-
fiers. We did not use the entire conversations but just
the prompts because the goal of our work was
not to build emotion-aware conversational agents
(as Rashkin et al.16 aimed to do) but to simply build
emotion classifiers.

Classifying Emotions
To identify those 32 emotions in a conversation, we
used two classification frameworks: i) a traditional
ensemble classifier (AdaBoost), and ii) a deep-learning
model [long short-term memory (LSTM)].

Adaptive Boosting (AdaBoost): AdaBoost is an
ensemble learning algorithm with gradient boosting.8

FIGURE 1. Examples of speaker prompt for each of the 32 emotions in the empathetic dialogues dataset.16 Each conversation

is between two crowd-sourcing platform users and is about a specific situation associated with a specific emotion. Each row

corresponds to an emotion class and the corresponding example speaker prompt. These two elements were used for training

our emotion classifiers.
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It uses an iterative approach to learn from the misclas-
sifications of weak classifiers, and it builds a strong
classifier by combining multiple weak classifiers; fur-
thermore, it is well-suited to small datasets and makes
it easy to interpret the contribution of individual fea-
tures. To train the AdaBoost model, we extracted four
families of paragraph-level textual features. We picked
these four families because they have been success-
fully used to solve a variety of natural language proc-
essing (NLP) tasks, are intuitive, and cover several
facets of language use. Here, we summarize them
shortly and we refer the reader to the original publica-
tions11,14,15 for further details. The first family of fea-
tures captures aspects of linguistic style: the use of
part of speech and many simple syntactic markers.11

The second one relies on Linguistic Inquiry and Word
Count (LIWC),14 a widely used linguistic lexicon that
maps words into linguistic, psychological, and topical
categories. The third family of features captures the
distribution of vocabularies by counting each senten-
ce’s unigrams and bigrams. To reduce the sparsity of
the n-gram space, we considered only those that
occur 10 times or more in the training set, and we fil-
tered them using log-odd Dirichlet priors to further
narrow the set to those n-grams that are highly dis-
criminative. The fourth and final family of features rep-
resents each sentence as a 300-dimension GloVe
embedding15 and averages the embeddings of all the
words in the sentence. We performed a grid search to
tune the learning rate of AdaBoost. In a binary classifi-
cation task, AdaBoost outputs a [0,1] confidence score
that captures the likelihood of the sample belonging
to the positive class. Given the nature of our task, we
performed the multiclass classification problem by
using a one-versus-rest strategy and did so by combin-
ing multiple binary classifiers.

LSTM: LSTM18 is a type of recurrent neural network
particularly suited to process data that is structured in
temporal or logical sequences. LSTMs have demon-
strated to achieve excellent results in time series fore-
casting as well as in NLP tasks. LSTM accepts fixed-size
inputs; in our experiments, we fed one word at a time to
it (in the form of a 300-dimension GloVe vector). Each
new word updates the model’s status by producing a
new hidden-state vector. The input sequence is the
speaker prompt, and the target value is the prompt’s
emotion class. Following a standard approach, we
applied a linear transformation to reduce the last hidden
vector. We experimented with a simple LSTM model
with no attention, shortcut connections, or other
additions. The architecture had 2 LSTM layers, 256 hid-
den states, 1 linear layer, and the sigmoid activation
layer; the binary cross-entropy was used as the loss

function. We performed a grid search to tune its two
hyperparameters (i.e., the Adam optimizer’s learning
rate and the number of epochs). Standard batch normal-
ization was applied to all LSTM layers, and a dropout
rate of 0.3 to avoid overfitting was used. Similar to
AdaBoost, we deployed the one-versus-rest strategy for
combining those binary classifiers for our multiclass
classification task.

Experiments
To classify the 32 emotions, we used bothAdaBoost and
LSTM models. We performed a 10-fold cross-validation,
and report each model’s performance as the average
F -measure of the 10 validation rounds. F -measure is a
widely used performance metric as it combines both
precision and recall, showing how precise the classifier
is and, at the same time, how robust it is.

Results for Emotion Classification
The experimental results are shown in Figure 2. Not
surprisingly, the baseline model of simply picking the
majority class achieved a subpar performance with a
F -measure of merely 0.03. LSTM reached the best per-
formance, yielding top scores on most of the 32 emo-
tions: performances across emotions did vary, ranging
from 0.38 to 0.73. Upon performing the 10-fold cross-
validations, the resulting F -measure values for the
best performing LSTM classifier were: 0.51 (mean),
0.50 (median), and 0.03 (standard deviation). The per-
formance generally dropped for the AdaBoost model,
even when relying on all the available features. Among

FIGURE 2. Performance in terms of F -measure of different

emotion detection models on the empathetic dialogues data-

set (weighted average F -measure of all 32 nuanced emotions

over 10-fold cross-validation; gray: baseline, blue: AdaBoost,

green: LSTM). In addition to the F -measure (F ), its composing

Precision (P ), and Recall (R) are reported on top of each bar.
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all the AdaBoost models, the model with part-of-
speech features performed the worst, whereas the
embedding-based model performed the best. Ada-
Boost combining all the features achieved the best
performance, but only marginally outperformed the
embedding- and LIWC-based models.

Although the AdaBoost models yielded competitive
performances, they were less effective than the deep-
learning LSTM model in tackling the high lexical variety
with which certain emotions were expressed. Neverthe-
less, the nature of the AdaBoost framework allowed us
to obtain the importance of its features in predicting
emotions, thus providing a human-readable understand-
ing of which parts of the verbal exchanges tended to be
predictive. We examined two interpretable AdaBoost
models (one based on LIWC and the other based on
vocabulary features) and measured feature importance
for them. We found that, when examining both models,
naturally, sentiment-related LIWC/vocabulary catego-
ries were the most important features. These include
word categories reflecting anxiety (e.g., scared and
haunted), positive emotion (e.g., excited and awesome),
perceptual processes (hear and feel), anger, and swearing.

Generally speaking, all the LSTM-based classifiers
on the 32 emotions performed quite well. Yet, some
performed better than others. To further examine the
performance variance across different emotions, we
analyzed each emotion classifier (one versus rest),
and found that the emotions lonely, jealous, and nos-
talgic are easier to predict (with F -measure over 0.65),
whereas disappointed, angry, and ashamed are com-
paratively more difficult (with F -measure less than
0.40). We provide the confusion matrix in Figure 3
to broadly illustrate the challenges of classifying the
32 emotions. We found that certain emotions were
misclassified into their closest emotion(s), such as
angry to furious, ashamed to guilty, apprehensive to
anxious, sad to devastated, and joyful to content or
excited. For simplicity, in the rest of this article, we
present the results of the best-performing model for
classifying emotions—the LSTM framework.

PREDICTING MEETING SUCCESS
After classifying the emotions in our meetings with
that framework, we were able to design models that
predicted self-reported meeting success scores from
the classified emotions.

Meeting Dataset
Using Cisco’s WebEx companion platform,2 we collected
data from 85 virtual corporatemeetings, approved by the
HR department of the authors’ institution. In total, these

meetings lasted 4373minutes with amedian of 4 people
participating in each meeting (min: 2, max: 65, with
11 meetings participated by more than 10 people). The
dataset is comprised of a diverse range of meetings
with varying duration (min: 20.6 minutes, median:
48.3 minutes, and max: 180.2 minutes), hours of the day
(earliest and latest meeting happened at 8 AM and 6 PM,
respectively, on that day), days of the week (Mon–Fri), and
days of themonth (1–31). The companion platformallowed
participants to earmark key moments with a mobile app.
These moments were then converted into one-minute
audio chunks, which the meeting participants could play
back in retrospect to get a quick audio summary of the
meeting. Earmark moments defined salient moments of
the meetings, singling out parts of a meeting its partici-
pants considered important.2

The companion platform also allowed us to obtain
self-reported measures that referred to the partici-
pants’ meeting experience. More specifically, at the
end of each meeting, the participants were prompted
to answer two questions: one captured Qpsychological,
which is the extent to which [a participant] felt

FIGURE 3. Confusion matrix of the actual versus predicted

emotions for each of the 32 emotions. The predictions are

done by the LSTM model. The elements on the diagonal rep-

resent the fraction of posts for which the predicted and the

actual emotions were the same (correct classifications),

while those off the diagonal represent the fraction of posts

for which the “actual” emotion was incorrectly classified to

be the “predicted” emotion. Across the rows of the matrix,

the prediction performance (F -measure) for each emotion

class is shown on the left of the emotion name.
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listened or motivated to be involved, and the other
captured Qexecution, which is the extent to which [a par-
ticipant] felt that the meeting had a clear purpose and
structure. The two questions were answered on a 1–7
Likert scale, with 7 indicating a greater extent. These
two questions resulted from an extensive large-scale
crowdsourcing study.4 The goal of that study was to
identify the key predictors of a meeting’s psychological
experience: A 28-item questionnaire was administered
to 363 individuals whose answers were then statisti-
cally analyzed through principal component analysis
(PCA). As a result, the following three main predictors
of a meeting’s psychological experience were identi-
fied: the two previously mentioned (which explained
51% of the variability) plus a third capturing the level of
comfort of the physical environment (which explained
a further 11% of the variability). Since the present study
included only virtual meetings, the third predictor did
not apply, while the first two predictors did and,
as such, were captured through self-reports. We con-
sequently defined a success score as success ¼
ð0:759�QpsychologicalÞþð0:673�QexecutionÞ, whereQpsychological

is the average value for the self-reports concerning
psychological safety, Qexecution is the average value for
the self-reports referring to good execution of the
meeting, and the two weights of 0.759 and 0.673 are
their loading factors, which resulted from the PCA
analysis in Constantinides et al.’s work.4

The resulting distribution of meeting success had a
minimum of 5.5, a median of 7.8, and a maximum of
10.0. Three annotators then performed a manual
inspection of the success scores with corresponding
meeting recordings and found that the meetings with
scores in the [5.5, 7.7] range tended to be indistinguish-
able in terms of success from each other, and so were
the meetings with scores in the [8.0, 10] range. As such,
success score could not be taken at face value but
had to be binarized; yet, given the two previous ranges,
the median value of 7.8 ended up being a natural
threshold for the binarization, assigning all meetings to
the positive class or negative one (i.e., categorizing
them into “successful” and “unsuccessful”).

Each meeting in the dataset was then stored as a
set of one-minute audio chunks of the earmarked
moments plus the participant’s self-reported answers
and success score. We transcribed the earmarked
audio chunks using the state-of-the-art Google’s API
Speech-to-Text service;b each meeting’s transcript

was used in our textual analyses, as we shall see. In
total, all the 85 meetings contained 1007 earmarked
moments (a meeting on average had 11 earmarked
moments), and 256 answers to the two questions.

Predicting Success
To predict a meeting’s binarized success score, we used
the meeting’s predicted emotions (i.e., its 32-dimen-
sional emotion vector) as input, and tested various clas-
sifiers, including logistic regression, a support vector
machine, a random forest, a XGBoost, and an AdaBoost
classifier. We chose these classifiers as they represent a
wide range of well-performing linear and nonlinear clas-
sification algorithms. We measured performance using
a standard classification metric, that is, the area under
the curve (AUC) and employed a leave-one-out cross-
validation. We report the averaged AUC, which is the
mean value of the AUCs resulting from all the leave-
one-out validation rounds. The best-performing model
was AdaBoost: for brevity, we report only its results.

Given that we had a relatively small dataset and
many nuanced emotion features, we performed two
feature selection methods to reduce the dimensional-
ity and to avoid overfitting: ANOVA F -test and recur-
sive feature elimination (RFE). analysis of variance
(ANOVA) is a parametric statistical hypothesis test for
determining whether the means from two or more
samples of data come from the same distribution or
not. ANOVA uses F -tests to statistically test the
equality of means, determining the independence
between numerical features, and categorical target
classes and eliminating those. On the other hand, RFE
makes feature selection by iteratively training a set of
data with the current set of features and eliminating
the least significant feature indicated. This procedure
was performed solely on the training dataset (fold) on
AdaBoost and was repeated until a specified number
of features remained. We carried out both feature
selection methods, and, among all the five classifiers,
we found that the AdaBoost model combining the top
10 emotions selected by RFE performed the best.

For comparison’s sake, in addition to that AdaBoost
model, we evaluated models that predicted success
from the following features alternative to emotions.

1) Meeting characteristics (used as control): meet-
ing type (ad hoc, recurring, and scheduled),
meeting size (number of participants), and meet-
ing duration.

2) Sentiment (used as a baseline): both Valence
Aware Dictionary and sEntiment Reasoner, a dic-
tionary-based approach9, and Flair (based on

bSpeech-to-Text API: htt_ps://cloud.google.com/speech-to-
text. It has been found that Google has superior performance
on speech recognition compared to other platforms and
tools.10
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deep-learning)1 were applied to meeting tran-
scripts for classifying the sentiment scores.

3) Text embeddings (used as a baseline): 300-dimen-
sion GloVe embeddings were used to represent a
meeting’s transcript by averaging the embed-
dings of all the words that formed the transcript.

Results for Meeting Success Prediction
First, we inspected the distributions of those nuanced
emotions across all meetings (see Figure 4). As one

expects, some of those emotions were more fre-
quently conveyed by meeting participants, such as
trusting, embarrassed, anxious, and hopeful, while
other emotions were rarer, such as angry, sad, and
guilty. However, we can observe that the variance of
emotions expressed across meetings was relatively
high, demonstrating that different meetings were
characterized by different emotions.

By then looking at the evaluation results for differ-
ent models that leveraged meeting characteristics,
sentiment, text embeddings, and nuanced emotions
for predicting meeting success [see Figure 5(a)], we
observed that the model that only incorporated the
meeting characteristics (control) performed the worst
(AUC = 0.49), whereas the model that leveraged tradi-
tional sentiments performed only marginally better
(AUC = 0.56). The baseline model that leveraged text
embeddings performed better than other baselines
(AUC = 0.63). When incorporating all the nuanced
emotions, the performance (AUC = 0.62) increased
compared to the sentiments-based model, at par with
the performance of the text embedding classifier.
However, by only considering the top 10 emotions
based on RFE feature selection [see Figure 5(a)], the
performance was boosted further to an AUC of 0.73.
Given the relatively small size of our dataset, it comes
as no surprise that feature selection helped reduce
our model’s overfitting.

As we have seen in the distribution plots of
Figure 4, the combinations of emotions significantly
varied across meetings and, as such the classifier

FIGURE 4. Probabilities of the 32 nuanced emotions being

expressed in our meetings. Each box plot shows the mean

and variance of the probability. The emotions labeled with “*”

are uncommon, nuanced emotions with skewed frequency

distributions. For example, embarrassed and trusting are two

common emotions, while disappointed and faithful are two

rare emotions, which occurred only in a few meetings.

FIGURE 5. Evaluation of meeting success prediction using nuanced emotions: (a) Performance (AUC) of our models trained on

meeting characteristics (gray), on sentiment, on text embedding (blue), and on nuanced emotions (green). “All Emotions” refers

to the model that leveraged all the nuanced emotions as features, whereas “Sel. Emotions” refers to the model that leveraged

the 10 most predictive emotions (based on the RFE feature selection method). (b) Feature importance (absolute) of the

AdaBoost model predicting meeting success from a specific emotion. The emotions labeled with “*” had skewed frequency

distributions, highlighting that they were relatively uncommon.
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might have well captured nonlinear relationships
among these emotions, which could have then con-
tributed to the ultimate prediction accuracy. There-
fore, we inspected the feature importance of the best
performing AdaBoost model trained on specific emo-
tions [see Figure 5(b)], allowing us to identify which
emotions contributed the most to the prediction
accuracy. One interesting and surprising finding lies in
the discriminative power of the nuanced emotions: we
found that, for the best model, out of the ten most
predictive emotions, seven were rare, and only three
were common [see Figure 5(b)]. This demonstrates
that the emotions that occurred very frequently
across meetings might not have been as predictive as
the combinations of emotions that occurred less fre-
quently yet tended to make each meeting unique (see
Figure 6). For example, based on the presence of faith-
fulness and disappointment, one could easily distin-
guish a successful meeting from an unsuccessful one.
By contrast, based on the presence of more common
emotions, such as prepared or hopeful, one would find
it hard to make such a distinction.

DISCUSSION AND CONCLUSION
We showed that nuanced emotions expressed in con-
versations were associated with self-reported meeting

success. Compared to coarse-grained sentiment anal-
ysis, these emotions could potentially enrich meeting
analytics, both in real-time and postmeeting. Interest-
ingly, we found that certain rare emotions, such as dis-
appointing, were generally more predictive of meeting
success than common emotions, highlighting the
importance of quantifying even those emotions that
do not frequently occur.

Our work has several implications. First, our quan-
tification of nuanced emotions could be widely
adopted in organizational and management research.
As these emotions greatly matter in meetings, if cap-
tured, they could help teams create psychologically
safe environments. Second, our models could be
deployed and integrated with any communication tool
(e.g., Meetcues2) that provides transcripts or voice
recordings. More efficient meetings might help reduce
employees’ cognitive overload and improve their
mental health.

This work has five main limitations that call for
future research efforts. First, our dataset draws from
business meetings; thus, our findings might not gener-
alize to other types of meetings. Future work includes:
i) applying our trained model in other types of meet-
ings; and ii) building more nuanced prediction models
that move beyond dichotomized meeting success.
Second, we adopted meeting transcripts as a basis

FIGURE 6. Excerpts of examples taken from our meeting transcripts, which were automatically classified with a specific

emotion. Names appearing in the original dialogues were paraphrased, and quotes in boldface indicate language markers likely

related to the emotion.

2022 IEEE Pervasive Computing 7

MENTAL STATE, MOOD, AND EMOTION

Authorized licensed use limited to: University College London. Downloaded on February 28,2022 at 08:58:36 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

upon which to extract analytics. However, other
aspects derived from facial expressions or body lan-
guage could be informative (e.g., key turning points in a
meeting). Third, our nuanced emotions are not specific
to meetings. For example, in the specific context of
meetings, certain emotions (e.g., jealous) were likely
confused with similar emotions (e.g., disappointed).
Tailoring emotion classification to the meeting context
may well boost performance, pushing our model’s fairly
high AUC even further up. Fourth, although the meet-
ing earmarked moments enabled us to perform meet-
ing analytics in real-time, these moments captured
only specific portions of a meeting, not necessarily
being representative of the entire meeting. Finally,
given the limited dataset, we could not study whether
emotions unfolded during a meeting in predictable
ways. Based on manual inspection, we found that
highly successful meetings tended to start with excited
and to end with impressed, while unsuccessful ones
tended to end with disappointment. These anecdotal
results suggest that the study of the evolution of emo-
tions during a meeting could be a promising research
direction.

In the future, by monitoring nuanced emotions in
different communication channels within an organiza-
tion (e.g., company and university), one could track
organizational productivity and well-being, and proac-
tively deploy a suite of ameliorative interventions at
both the individual and organizational levels. However,
despite the benefits such tracking technologies may
bring, they have to be thoughtfully deployed, being
mindful of ethical considerations.
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