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ABSTRACT
Urban crowd-sourcing has become a popular paradigm to harvest
spatial information about our evolving cities directly from citizens.
OpenStreetMap is a successful example of such paradigm, with an
accuracy of its user-generated content comparable to that of curated
databases (e.g., Ordnance Survey). Coverage is however low and
most importantly non-uniformly distributed across the city. Be-
ing able to model the spontaneous growth of digital information in
these domains is required, so to be able to plan interventions aimed
at gathering content about areas that would otherwise be neglected.
Inspired by models of physical urban growth developed by urban
planners, we build a model of digital growth of crowd-sourced spa-
tial information that is both easy to interpret and dynamic, so to
be able to determine what factors impact growth and how these
change over time. We build and test the model against five years of
OpenStreetMap data for the city of London, UK. We then run the
model against two other cities, chosen for their different physical
and digital growth’s characteristics, so to stress-test the model. We
conclude with a discussion of the implications of this work on both
developers and users of urban crowd-sourcing applications.

Categories and Subject Descriptors
[Information Systems Applications]: Spatial-temporal systems-
Geographic information systems

General Terms
Measurement
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1. INTRODUCTION
Urban crowd-sourcing has become a popular mechanism to har-

vest knowledge about our evolving cities directly from their citi-
zens. Equipped with powerful mobile devices, citizens have be-
come surveyors, with council-monitoring applications like FixMyS-
treet;1 reporters, with micro-blogging sites such as Twitter;2 and
cartographers, with geo-wikis like Cyclopath3 and OpenStreetMap.4

OpenStreetMap (OSM) is perhaps one of the most successful ex-
amples of urban crowd-sourcing, with currently over 547,270 users,
collectively building a free, openly accessible, editable map of the
world. Research has shown that accuracy of the geographic infor-
mation stored in OSM is very high and it sometimes supersedes
the most reputable centrally-maintained geographic datasets, per-
forming especially well in urban areas [19, 31]. As testimony of
this success, businesses like Foursquare5 are now switching from
proprietary datasets to OSM.6

However, relying entirely on user-generated content for urban
mapping raises concerns, not only in terms of accuracy of the col-
lected information (which, for OSM, is presently high), but also
in terms of its coverage. Recent studies of OSM have revealed
that coverage of information is non-uniformly distributed across a
city, with areas that are either further from the centre, or central but
income deprived, being particularly neglected [30]. This finding
raises concerns in terms of the long-term sustainability of urban
crowd-sourcing: is coverage going to spontaneously grow across
the city? Or are there going to be areas that will continue to be ne-
glected? Studies so far have been limited in that they quantify cov-
erage at one specific point in time, and in so doing they cannot dis-
close the factors (e.g., spatial, social, demographic) that contribute
to crowd-sourcing participation over time. Being able to build a
model that explains growth, and that accurately detects what areas
are most likely to suffer from neglect, will allow location-based ser-
vices that make use of crowd-sourced information to plan evidence-
based targeted interventions. Such interventions may include, for
example, (i) the use of a hybrid approach of crowd-sourced and
proprietary data, whereby proprietary data is used for seeding the
areas that are predicted to suffer (e.g., because far from the city cen-
ter or because located in economically-deprived neighbourhoods);
(ii) the design of incentives to call the OSM community to edit spe-

1http://www.fixmystreet.com
2http://twitter.com/
3http://cyclopath.org/
4http://www.openstreetmap.org/
5https://foursquare.com
6http://blog.foursquare.com/2012/02/29/



cific areas, for example, in the form of OSM mapping parties, that
is, social events organised by OSMers to descend on an area and
map it exhaustively.

We present a model inspired by Cellular Automata theory [11]
that accurately captures the digital growth of crowd-sourced urban
information. Cellular Automata are computational methods that
simulate the growth of complex systems by means of a set of simple
rules that afford easy interpretation. These models have been exten-
sively used by urban planners and policy makers to understand the
evolution of physical urban systems, to predict their natural growth,
and to evaluate the impact of alternative policy interventions [22].
In this work, we consider a dynamic yet easy-to-interpret version
of such models: we divide the city area into cells, we capture past
crowd-sourcing activity information for each of them, then use lin-
ear regressions to model their growth. We build and test the model
over five years of OSM data for the city of London, UK. We dis-
cover that the digital growth of crowd-sourced urban information
depends on different factors at different times: during the boot-
strapping phase of urban crowd-mapping, geodemographic factors,
such as distance from the city centre and population density, play
a key role (e.g., early adopters naturally start mapping central ar-
eas); physical proximity and social influence subsequently become
more important; finally, for areas whose digital coverage has al-
ready become high, past activity is sufficient to correctly estimate
future growth. To assess the validity of the model beyond the city
of London, UK, we then stress-test it under rather different urban
settings - New York City and Boston in the US. We find the model
to suggest that current growth in such cities is mostly explained by
geodemographic properties, indeed the same that explained growth
in London in its early days of OSM mapping.

The remainder of this paper is structured as follows: after a
brief overview of the state-of-the-art, we describe the urban crowd-
sourcing dataset at hand and the growth metric we compute on it.
The construction of our model follows, with emphasis on the prop-
erties that we have mapped onto simple cellular automata rules. We
then validate the model: using OSM data for the city of London,
UK, we first assess the suitability of the chosen rules individually
(and thus of their underlying properties), then of the model as a
whole. We then evaluate the model’s accuracy and generalisability
using it for two other cities in the US. Finally, we conclude the pa-
per by stating the implications of these findings and elaborating on
future directions of research.

2. RELATED WORK
Urban crowd-sourcing generally refers to the collective gath-

ering of user-generated content pertaining to the urban environ-
ment. The most popular example of such content is volunteered
geographic information (VGI), such as that maintained by Open-
StreetMap. For years, the research community has studied the ac-
curacy of such information [17], and compared it to traditional ge-
ographical datasets maintained by national mapping agencies, as
well as proprietary datasets maintained by commercial companies
such as Navteq.7 The findings show very high positional accuracy,
both in the UK [18, 19], as well as France, Germany and Switzer-
land [13, 29].

While accuracy is consistently high, coverage has been shown
to vary considerably. Zielstra et al. [45] found that road cov-
erage in Germany sharply decreases as we move away from city
centres and Girres et al. [13] discovered a positive correlation be-
tween the number of OSM road ‘objects’ in an area and number of
OSM contributors in that area. Shifting focus from the road net-

7http://www.navteq.com/

work to points-of-interest (POIs), Mashhadi et al. [30] found that
both socio-economic factors (e.g., income deprivation) and phys-
ical distance from the city centre are negatively correlated with
coverage in London, UK. Another well known example of urban
crowd-sourcing application is Cyclopath,8 a geo-wiki that is being
successfully used to digitally map route information for cyclists in
Minneapolis. Rather than focusing on information accuracy, the re-
searchers behind Cyclopath have investigated issues of users’ mo-
tivation that lead to contributions [38], and conducted studies in
terms of user’s participation and behavioural analysis [37, 35, 36].
An interesting finding was that manually highlighting areas in the
city which were under-covered was sufficient to trigger motivation
among cyclists to go those places and map them.

A common limitation of the above studies is that they analyse
coverage at one specific point in time. However, crowd-mapping is
a process that takes place over time, with contributors both joining
and leaving the system all the time, and with new contributions con-
tinuously being added. In order to quantify the long term success
and sustainability of an urban crowd-sourcing system, we must un-
derstand how digital crowd-sourced urban information grows over
time. Studies in this vein are limited within the area of crowd-
mapping. An exception is Neis et al. [34], who have recently mea-
sured coverage of the OSM road network in Germany over a period
of three years, and highlighted at what point the map can be consid-
ered complete with respect to commercial datasets. However, this
is a retrospective study, with no attempt to model future growth.

Shifting our attention from urban crowd-sourcing to online social
networks, we find several studies that have attempted to model their
dynamics instead. A large stream of research has developed mod-
els of the ways in which individuals join communities. Structural
properties of the users’ social networks have been found to have
a strong influence on subsequent tie formation [5]. Geographical
properties of the social network have also been linked to tie forma-
tion [21]. For example, Kleinberg [23, 24] modelled the probability
of two individuals being friends based on the intuition that friend-
ship probability increases with geographic proximity. In 2005,
Liben-Nowell et al. [28] experimentally tested this model upon a
half million profiles on the blogging site LiveJournal, on which
people reported their locations within the USA and lists of friends.
The authors incorporated population density into the initial model
and determined that 66% of LiveJournal friendships form through
geographic processes. Another stream of research has looked into
how information diffuses through these existing social networks.
Various models have been proposed based on contagion processes
(e.g., [27, 9, 15]); these models have also been expanded, to ac-
count for homophily (e.g., [2, 3]), external influences (e.g., [33]),
and the language used to describe topics (e.g., [40]).

These models share our goal of modelling ‘growth’, interpreted
in its broader sense (e.g., of ties within a social network, of nodes
reached by a topic). However, none of the above models is di-
rectly applicable to the area of urban crowd-sourcing (and Open-
StreetMap in particular), as such scenario lacks the existence of
an explicit social network, so we cannot reason about social net-
work structure to capture growth dynamics. We hypothesise that
factors reflecting engagement, influence, and geography will still
be predictors of growth in our context though. In the next section,
we present a spatio-temporal model of growth that uses properties
such as self-reinforcement, physical proximity, social influence and
geodemographic conditioning, to model digital growth for urban
crowd-sourcing scenarios.

8http://cyclopath.org/



3. RESEARCH METHODOLOGY
We have built and subsequently tested a growth model of urban

crowd-sourced information in the context of OSM. In this section,
we thus begin with a brief overview of this dataset, followed by a
definition of the growth metric we used. We then delve into a de-
tailed description of the model we built, emphasising the properties
that have informed the modelling process.

3.1 Dataset Description
OpenStreetMap is freely available to download9 and contains the

history of all edits since 2006 on all spatial objects performed by
all users. In OSM jargon, spatial objects can be one of three types:
nodes, ways, and relations. Nodes are single geospatial points, de-
fined using latitude/longitude coordinates, and they typically repre-
sent POIs (e.g., cafes, restaurants, hospitals, schools); ways consist
of ordered sequences of nodes, and mostly represent roads (as well
as streams, railway lines, and the like); finally, relations are used
for grouping other objects together, based on logical (and usually
local) relationships (e.g., administrative boundaries, bus routes).

To reduce the dataset to a manageable size, we restrict our anal-
ysis to the area of Greater London, United Kingdom, where OSM
was originally created and launched, and for which the history of
contributions is longest. Furthermore, we consider OSM nodes
only, thus focusing on POIs rather than the road network. We chose
to sample POIs instead of roads as the contribution processes dif-
fer greatly between the two categories: road mapping is typically
done by users who have high expertise in both the geography of an
area and the editing tools required to digitally represent it, while
POI mapping can be performed by any city dweller, with no spe-
cific cartographic skills required. The latter category is thus more
representative of the broad urban crowd-sourcing setting. Finally,
to consider only genuine users’ contributions, we have looked into
contributions that most likely correspond to bulk imports. Two bulk
imports were detected in the whole dataset, with tens of thousands
of edits done in a single day by a single user, spread throughout
Greater London (e.g., more than 20,000 post boxes spread across
all Greater London appeared in OSM in only one day in 2009 from
the same user). We chose to discard such data for two main rea-
sons: on one hand, we intend to model genuine ‘bottom-up’, user-
generated contributions, of which massive imports are not repre-
sentative; on the other hand, these bulk ‘donations’ of data were not
geographically concentrated in an area, but rather spread through-
out the whole of Greater London. As a result, even if we kept the
data (and our model failed to capture it), the result would be a con-
stant error added almost uniformly to all areas under predictions.
We should note that, apart from these two extreme cases, we have
identified many other peaks of edits by single users, which may or
may not be smaller imports; in these cases, we kept and modelled
all the data, to avoid falsifying results.

Figure 1 illustrates the cumulative number of editors and edits
for each year in the sampled dataset, with 96,357 edits done by a
total of 2,240 users overall. As shown, in the very first year of
OSM being launched (2006), contributors and contributions were
extremely low; to avoid our modelling being skewed by this cold-
start phase, during which the technology was being tested but not
widely available to the public, we did not try to model 2006 activity,
and in the remaining of the paper we focus on the period 2007
(year of the launch of the OSM “State of the Map” conference10)
onwards.

9http://www.geofabrik.de/data/download.html
10http://www.stateofthemap.org

Figure 1: Cumulative number of OSM editors and edits over
time

3.2 Metrics
In order to measure growth of crowd-sourced information across

an urban area over time, the first step was to choose a spatial and
temporal unit of analysis. In terms of spatial unit of analysis, pre-
vious studies have shown that factors such as population density
and deprivation are correlated with coverage of crowd-sourced ur-
ban information [30]. We have thus chosen to operate at a level of
granularity in London for which such information is available. This
is the level of wards, of which there are about 600, as defined by
London Local Authorities.11

In terms of temporal unit of analysis, we have tried different time
units, from finer (3 months) to coarser (18 months) granularity. In
the end, we chose to report the results for the smallest unit of gran-
ularity (12 months) that still afforded statistically significant results
across all areas of Greater London. In particular, although in the
very center of the city we could have chosen finer temporal gran-
ularity, doing so in the many wards falling within Greater London
would not have provided us with sufficient data to have statistically
significant results. This has forced us to consider 1 year as the unit
of measurement for the time series.

Having defined this spatio-temporal unit of analysis, we then
needed to define a metric that reflected which areas had been dig-
itally mapped and which had been neglected instead. To this pur-
pose, it is worth pointing out that not all areas naturally require
the same amount of OSM edits to be mapped. For example, areas
containing many services and attractions will require many OSM
edits to be mapped (e.g., Soho in London); however, sparse areas
like parks and industrial estates will require significantly less. To
capture this reasoning, we chose as metric OSM activity, defined as
the number of OSM edits relative to the number of physical POIs
in each ward at that time:

OSM activity =
#OSM edits

#POIs
(1)

#OSM edits is readily available from our OSM dataset. To esti-
mate #POIs, that is, the actual number of POIs present in each area,
we use Navteq, the leading global provider of maps and location
data, covering millions of POIs of varying nature, from restaurants
to hospitals and gas stations. Being a commercial service, Navteq’s
primary objective is to ensure the highest level of accuracy of its

11http://data.london.gov.uk/datastore/
package/ward-profiles-2011
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Figure 2: Cumulative OSM activity from 2007 until 2012

data (the information contained there is factually correct and up-to-
date).

Figure 2 illustrates the cumulative temporal evolution of OSM
activity (Equation 1) in London from 2007 to 2012. As shown, the
vast majority of areas have low cumulative activity (with only a
few wards slightly above 0.5); furthermore, complex dynamics are
at play, with no clear pattern emerging (e.g., no core-to-periphery
spreading). To then measure growth, in the next section we propose
a model that captures how this metric changes over time.

3.3 Modelling Growth
Modelling the physical growth of urban areas has been exten-

sively studied in the domain of urban planning [12, 1, 39]. These
models offer an analysis and extrapolation of city dynamics that
planners and policy makers use to forecast both natural growth and
the effect of policy interventions. Cellular Automata models [11]
are a well known example of such models, capable of reproduc-
ing complex spatial and temporal dynamics at a global scale, using
simple local transition rules. More precisely, the urban area under
investigation is first divided into a grid of cells (where each cell may
correspond, for example, to a ward) and assigned an initial state t0.
An iterative computational process is then started, whereby the sys-
tem moves from state t (with t ≥ t0) to state t + 1 using a set of
transition rules that are applied at each cell in the grid. Typically,
transition rules are the same for each cell and follow this general

mathematical function:

S(ci, t+ 1) = f(S(nbh1(ci), t), . . . , S(nbhn(ci), t),

S(nbh1(ci), t− 1), . . . , S(nbhn(ci), t− 1),

. . . ,

S(nbh1(ci), t0), . . . , S(nbhn(ci), t0)) (2)

where ci is the i-th cell of the grid, S(·, ·) is the state of a cell
at a given discretized time, nbh1(·), . . . , nbhn(·) are the neigh-
bourhood cells relative to the input cell whose transition is being
computed (usually including the cell itself), and f is any mathe-
matical function, receiving as input a list of states and returning the
new state of the cell under transformation. As an example, a very
simple Cellular Automata model, modelling evolution of the phys-
ical urban landscape, could comprise the following transformation
rules: if a ward is non-urban and it is surrounded by three or more
urban wards, then change it to urban; if the ward is urban, then keep
it urban. More complex rules are used in practice, but generally all
Cellular Automata models follow the basic idea that the state of
urbanization of a part of the city depends on the previous state of
urbanization of that part (or a sequence of its previous states), to-
gether with the previous states of urbanization of its neighbours.

In this work, we borrow from the theories of Cellular Automata
to model the growth of urban crowd-sourced information in the
digital domain. To this purpose, we considered each ward of Lon-
don as a cell of a Cellular Automata model, and discretized time
at one-year intervals. Finally, we defined the state of a ward wi

of London at time t as the OSM activity that occurred in that ward
during the one year preceding t. In the following, we refer to such
state as act(wi, t).

We built our model of crowd-sourced information growth based
on processes and properties that capture factors of attractiveness,
influence and geodemography.

PROPERTY 1 (SELF-REINFORCEMENT). If a ward has been
edited in the recent past, the ward will continue to be edited in the
future. 2

This property paraphrases the preferential attachment process
[44], and captures the intuition that, if a geographical area has at-
tracted many contributions from OSM editors in the past (e.g., it
contains ‘attractions’ of interest to such crowd), it will continue to
do so in the future. We distinguish between recent and full his-
tory of past, so to capture a possible saturation effect that may arise
when a ward has already been massively edited in the full past his-
tory, to an extent that there is not much else to edit. We then build
a model where the predicted outcome act(wi, t + 1) is computed
as a linear function over these two quantities:

act(wi, t+ 1) = β1 · act(wi, t) + β2 · âct(wi, t) + Ω (3)

where act(wi, t) is OSM activity measured in the last year, while
âct(wi, t) is defined as act(wi, t)+. . .+act(wi, t0) and condenses
a whole history of activity for that ward; the parameters β1 and β2

are the weights we assign to act(·, ·) and âct(·, ·) respectively (in
the next section, we will show how to determine them). In this
and the following models, we use Ω to concisely represent linear
pairwise parameter interactions.

As an OSM contributor maps an element in a ward, s/he may
also do so for a neighbouring ward s/he passes through. In other
words, a contagious process may take place, reminiscent of [20],
leading to a spatial diffusion of OSM activity. The second property
we consider is thus the following:



PROPERTY 2 (SPATIAL CORRELATION). If the cells surround-
ing a ward have been heavily edited in the past, the ward is likely
to be edited in the future. 2

To quantitatively capture this property, we first define two spa-
tial correlation scores for each ward wi at each yearly snapshot t:
the maximum spatial correlation score scM (wi, t) and the average
spatial correlation score scA(wi, t), computed as the maximum and
the average activity value of the neighbouring wards respectively:

scM (wi, t) = Maxwj∈nbh(wi)(act(wj , t))

scA(wi, t) = Avgwj∈nbh(wi)
(act(wj , t))

where nbh(wi) indicates the list of neighbouring wards of wi.
We then build a more complex model which predicts activity in

a ward wi at time t + 1, based on its own past state and that of its
adjacent wards. As before, we use a linear function of the form:

act(wi, t+ 1) = β1 · act(wi, t) + β2 · âct(wi, t) +

+β3 · scM (wi, t) +

+β4 · scA(wi, t) + Ω (4)

The previous property captures spatial contagion processes based
on geographic adjacency between wards. A complementary defini-
tion can be given based on wards that, regardless of their spatial po-
sitioning within a city, have attracted the same OSM contributors
(because they might, for example, offer related attractions/urban
functions [10]). We thus formulate the third property as:

PROPERTY 3 (EDITING CORRELATION). If a ward has been
edited by contributors who have heavily edited other wards in the
past year, the ward is likely to be edited in the future. 2

In other words, the activity of a ward depends on the past activity
of its ‘co-edited’ areas, where two areas are defined as ‘co-edited’
if they are edited by some shared editors. To capture this property
quantitatively, we define two editing correlation scores for each
ward wi at each yearly snapshot t:

ecM (wi, t) = Maxwj∈cdt(wi)(ζ(wi, wj , t) · act(wj , t))

ecA(wi, t) = Avgwj∈cdt(wi)
(ζ(wi, wj , t) · act(wj , t))

where cdt(·) returns the list of co-edited wards of the input ward
(that is, the list of wards that share at least one editor with the in-
put ward); ζ(·, ·, ·) receives as input two wards wi and wj , and a
time window t, and returns a number belonging to [0,1] indicating
how strongly wi and wj have been ‘co-edited’ in the time window
t. Specifically, ζ returns the fraction of the edits of wi which, dur-
ing year t, has been made by editors who edited both wi and wj .
Intuitively, the editing correlation score ecM of wi is high when
there exists at least one ward wj that has been heavily edited in
the last year, by contributors who have also edited wi. For the sec-
ond score ecA to be high, there must exist not just one but several
heavily edited wards, sharing contributors with wi.

The resulting model predicts the activity in a ward wi at time
t+1, based on its past state, the past state of its physically adjacent
wards, and that of its co-edited wards. Once again, we use a linear
function of the form:

act(wi, t+ 1) = β1 · act(wi, t) + β2 · âct(wi, t) +

+β3 · scM (wi, t) + β4 · scA(wi, t) +

+β5 · ecM (wi, t) + β6 · ecA(wi, t) +

+Ω (5)

All previous models rely on historical OSM activity information
about a ward to be available to compute its next state. This means

that, if a ward has not been edited at all in the past and neither have
its adjacent ones, this ward is consistently predicted to not grow.
However, Figure 2 shows this is not the case, and over time new,
previously isolated areas start to be mapped. We thus consider the
following factors that may determine the activation of a new ward:

Population. The more densely populated an area is, the more likely
one of its residents will join the crowd of OSM editors and
start to map the areas s/he knows (i.e., where they live). UK
Census data published by the National Statistics Office12 of-
fers population density information at ward level; we can
thus use this information within our model. On top of popu-
lation density (that is, population divided by ward size), we
also consider population per POIs (that is, population divided
by number of physical POIs in an area), to differentiate be-
tween areas with different POI concentration.

Deprivation. Higher population density does not directly translate
into higher number of contributors. Indeed, studies have
revealed that contributors of crowd-sourced systems are a
group of predominantly young, educated and wealthy males
[14]. It is thus more likely that areas of low deprivation will
have new OSM contributors. Furthermore, a recent study has
revealed that Londoners living in well-off areas do not tend
to visit areas that are deprived [26], thus increasing the prob-
ability that well-off wards will start to be mapped, as opposed
to deprived ones. To quantify deprivation, we use the Index
of Multiple Deprivation (IMD), a single parameter that ag-
gregates indicators including income, employment, and edu-
cation deprivation, as well as crime rates.

Distance from the Nearest Poly-centre. Social and economic activ-
ities tend to cluster around a small number of poly-centres
in metropolitan areas [8]; a recent study [41] has found that
London has 10 different polis. We expect that the further a
ward is from its nearest poly-centre, the less-likely this ward
will be activated, based on previous OSM studies that have
shown road coverage to dramatically decrease as one moves
away from the city centre [45].

Based on these considerations we formulate our final property:

PROPERTY 4 (GEODEMOGRAPHY). The geodemographic fac-
tors of a ward (e.g., its population, deprivation, and distance from
the centre) influence the probability of such ward to be mapped in
the future. 2

Our final model combines all four properties above, and predicts
the activity in a ward wi at time t+1, based on its past state, the past
state of its physically adjacent wards, that of its co-edited wards, as
well as its own geodemographic factors:

act(wi, t+ 1) = β1 · act(wi, t) + β2 · âct(wi, t) +

+β3 · scM (wi, t) + β4 · scA(wi, t) +

+β5 · ecM (wi, t) + β6 · ecA(wi, t) +

+β7 · pop_dens(wi) +

+β8 · pop_poi(wi) + β9 · imd(wi) +

+β10 · dist(wi) + Ω (6)

In the above formulation, pop_dens(·), pop_poi(·), imd(·), and
dist(·) are, respectively, the population density, population per POI,
IMD, and the Euclidean distance from the nearest poly-centre of a

12http://www.ons.gov.uk/



ward wi. We have measured population density every year, and
the changes are minimal in the five year span we consider. IMD
is computed every three years, so for this study we have used the
version released in 2010 (whose results are based on data collected
mainly in 2008). The geodemographic variables are thus not time-
dependent in the course of this study.

Table 1 summarises the models above, from its simplest (Equa-
tion 3, based on Property 1 only), to the most complex (Equation 6,
based on all four properties):

Eq. Number Properties
Eq. (3) Self-reinforcement
Eq. (4) Self-reinforcement + Spatial correlation
Eq. (5) Self-reinforcement + Spatial correlation + Editing

correlation
Eq. (6) Self-reinforcement + Spatial correlation + Editing

correlation + Geodemographic

Table 1: Summary of Growth Models

4. RESEARCH RESULTS
We structure the evaluation of the previously constructed growth

model in four parts: first, we use correlation analysis to support the
validity each of our properties separately; second, we use multi-
ple linear regression to validate the models constructed from such
properties, from the simplest to the more complete; third, we turn
the models into a classification tool and measure their accuracy in
modelling OSM activity growth; finally, we apply the models to
other cities to understand their generalisability.

4.1 Testing the Properties
The four properties put forward in the previous section assume

that the variables listed in Table 2 (e.g., OSM activity of the ward
itself in the last year, OSM activity of the ward itself in all previous
years, maximum and average OSM activity of the spatially corre-
lated wards in the last year, etc.) correlate with OSM activity at
time t+ 1.

As a first step in our analysis, we have thus computed the Pear-
son’s Correlation Coefficient r between the value of each such vari-
ables at year t and the actual value of OSM activity registered in
the following year t+1. As some variables exhibited a moderately
skewed distribution, we first computed their square root, so to ob-
tain a normal distribution. Correlation values computed on a yearly
basis are presented in Table 3.

Property 1 - Self-reinforcement. According to Property 1, OSM
activity in a ward at time t + 1 depends both on its past activity
at time t, and its cumulative past activity. Table 3 confirms this
property: the correlation between future OSM activity and its past-
year OSM activity goes from a minimum of r = 0.31 in 2007/08
to a maximum of r = 0.37 in 2009/10. Similarly, the correlation
between future OSM activity and the cumulative past OSM activity
is positive, and goes from a minimum of r = 0.11 in 2007/08 and a
maximum of r = 0.43 in 2010/11. Note that there exists a positive
correlation value between future OSM activity and cumulative past
activity in all years analysed (i.e., the more OSM activity there has
been in the aggregate past history, the more OSM activity growth
will be experienced next). This suggests that OSM in London is yet
far from experiencing a saturation effect.

Property 2 - Spatial correlation. The intuition behind Property 2
is that OSM contributors that are very active in one area are likely to
spread some of their attention to adjacent areas, thus affecting their
growth. Table 3 confirms this property, with OSM activity at time
t + 1 being positively correlated to both parameters we defined to
capture such spatial correlation (maximum spatial correlations goes

Variable Freq. Distribution Max
Self-reinforcing

Activity 0.56 (edit/POI)
Cumulative activity 0.92 (edit/POI)

Spatial correlation
Maximum 0.57 (edit/POI)
Average 0.28 (edit/POI)

Editing correlation
Maximum 0.34 (edit/POI)
Average 0.03 (edit/POI)

Geodemography
Population density 23,746.80 (ppl/ha)
Population per POI 14,310.00 (ppl/POI)
IMD 54.90
Distance 22.90 (km)

Table 2: Variables used to model OSM activity growth, to-
gether with frequency distribution (starting at zero) and maxi-
mum value

Variable 2007/08 2008/09 2009/10 2010/11 2011/12
Self-Reinforcing

Activity 0.31 0.35 0.37 0.31 0.35
Cumulative activity 0.11 0.22 0.30 0.43 0.40

Spatial Correlation
Maximum 0.34 0.29 0.29 0.27 0.28
Average 0.33 0.31 0.36 0.28 0.30

Editing Correlation
Maximum 0.22 0.21 0.17 0.18 0.20
Average 0.21 0.13 0.00 0.06 0.04

Geodemography
Population density 0.18 0.18 0.25 0.19 0.18
Population per POI 0.08 0.08 0.11 0.09 0.05
IMD -0.05 -0.09 -0.15 -0.06 -0.08
Distance -0.26 -0.34 -0.36 -0.32 -0.30

Table 3: Pearson correlation r between individual variables
and growth (in bold are those results that are statistically sig-
nificant – p-value < 0.01)

from r = 0.27 in 2010/11 to r = 0.34 in 2007/08, and average
spatial correlations goes from r = 0.28 in 2010/11 to r = 0.36 in
2009/10).

Property 3 - Editing correlation. Next we consider Property 3,
which posits that OSM activity at time t+ 1 depends on the activ-
ity occurred in the past year in co-edited wards, no matter where
physically located. We considered two variables: one that expects
growth to happen if at least one co-edited ward has seen high activ-
ity in the past (‘maximum’ editing correlation score), and a more
stringent one, that requires many co-edited wards to have exhibited
high activity for the ward to be affected (‘average’ editing correla-
tion score). The former has weak positive correlation with OSM ac-
tivity growth (from a minimum of r = 0.17 in 2009/10 to r = 0.22
in 2007/08); the latter has similar correlation in the first two years;
however, in the latter two the correlation is not statistically signifi-
cant (this is possibly because, in our data, the cases where the more
stringent condition held true were very few).

Property 4 - Geodemographic factors. Finally, we turn our at-
tention to the correlation between geodemographic factors and a
ward’s activity at time t+1. As Table 3 illustrates, distance from the
closest poly-centre is the geodemographic factor with the strongest
(negative) correlation (from a minimum of r = −0.26 in 2007/08
to r = −0.36 in 2009/10), supporting the intuition that, the further
a cell is from the centre, the less likely it will be mapped. Weaker
correlations exist for all other geodemographic factors.

4.2 Testing the Models
The previous analysis suggests that all four properties put for-

ward are grounded. We now proceed to validate the growth models



Model Whole London Top 75% Top 50% Top 25%
2007/08

Eq. (3): 0.10 0.11 0.12 0.17
Eq. (4): 0.15 (+50%) 0.19 (+73%) 0.16 (+33%) 0.20 (+18%)
Eq. (5): 0.17 (+13%) 0.23 (+21%) 0.20 (+25%) 0.25 (+25%)
Eq. (6): 0.28 (+65%) 0.41 (+78%) 0.44 (+120%) 0.54 (+116%)

2008/09
Eq. (3): 0.12 0.10 0.17 0.17
Eq. (4): 0.15 (+25%) 0.15 (+50%) 0.22 (+29%) 0.24 (+41%)
Eq. (5): 0.17 (+13%) 0.20 (+33%) 0.31 (+41%) 0.33 (+38%)
Eq. (6): 0.23 (+35%) 0.34 (+70%) 0.51 (+65%) 0.55 (+67%)

2009/10
Eq. (3): 0.15 0.25 0.30 0.34
Eq. (4): 0.18 (+20%) 0.30 (+20%) 0.35 (+17%) 0.40 (+18%)
Eq. (5): 0.21 (+17%) 0.33 (+10%) 0.37 (+6%) 0.42 (+5%)
Eq. (6): 0.29 (+38%) 0.45 (+36%) 0.52 (+41%) 0.58 (+38%)

2010/11
Eq. (3): 0.20 0.23 0.31 0.33
Eq. (4): 0.21 (+5%) 0.25 (+9%) 0.34 (+10%) 0.36 (+9%)
Eq. (5): 0.24 (+14%) 0.30 (+20%) 0.38 (+12%) 0.41 (+14%)
Eq. (6): 0.31 (+29%) 0.43 (+43%) 0.53 (+39%) 0.57 (+39%)

2011/12
Eq. (3): 0.17 0.24 0.30 0.30
Eq. (4): 0.20 (+18%) 0.25 (+4%) 0.32 (+7%) 0.32 (+7%)
Eq. (5): 0.24 (+20%) 0.28 (+12%) 0.36 (+13%) 0.38 (+19%)
Eq. (6): 0.28 (+17%) 0.41 (+46%) 0.50 (+39%) 0.54 (+42%)

Table 4: Adjusted multiple R2 of our models, together with
relative improvement w.r.t. the previous model (every model
showed in this table is statistical significant – p-value < 0.001)

we constructed based on these properties, from its simplest to its
final composite one (Table 1). To this purpose, we used multiple
linear regression to determine the unknown β parameters of Equa-
tions 3–6; furthermore, we compute the adjusted R2 of each such
model, as a way to measure its fit with respect to modelling growth.
To highlight the role that different properties play at different times
in the evolution of OSM, we break down the analysis on a per-year
basis. Furthermore, we decided to report results both for the whole
600 wards in London, as well as the 75%, 50% and 25% most dense
wards (in terms of POIs) over the whole 600 wards in London. In
so doing, we can analyse the validity of our models for areas of
different growth potential (i.e., areas that contain only a handful of
physical POIs are less amenable to growth modelling, contrary to
POI-dense areas). Table 4 shows the results.

Year-based analysis. We observe that the complete model that
combines all four properties (Equation 6) has the best fit, signifi-
cantly improving over all partial models that consider only a subset
of them. More interestingly, the gap between the adjusted R2 of the
complete model and of the partial model that leaves out the geode-
mographic parameters (Equation 5 – Self-reinforcing + Spatial +
Editing) significantly decreases as time progresses. For example,
in whole London in 2007/08, the complete model (Equation 6)
improves the adjusted R2 of 65% w.r.t. the second best model
(Equation 5), whereas in 2010/11 the improvement is 29% only.
This confirms the intuition that, in the early stages of OSM (years
2007/08 – 2008/09) all models that do not consider the geodemo-
graphic factors are not able to accurately explain OSM activity
growth, possibly because of little historical OSM data available.
In a second step, that is after 2009, geodemographic factors are not
so important anymore, in the sense that we can have a good model
of OSM activity growth even without them (possibly because the
model has now plenty of historical data to be trained on).

Density analysis. Finally, we observe that the adjusted R2 in-
creases significantly, when considering models comprising the top
75%, top 50% and top 25% POI dense wards in London. That is,
the denser the areas in terms of physical POIs, the better the models
to explain their growth.

Model TN Rate TP Rate Accuracy Senitivity
Predicted Year: 2009

Eq. (3) 0.59 (+18%) 0.56 (+12%) 0.58 (+15%) 0.58 (+15%)
Eq. (4) 0.63 (+7%) 0.61 (+9%) 0.62 (+8%) 0.62 (+8%)
Eq. (5) 0.67 (+6%) 0.65 (+7%) 0.66 (+6%) 0.66 (+7%)
Eq. (6) 0.78 (+16%) 0.75 (+15%) 0.77 (+16%) 0.77 (+17%)

Predicted Year: 2010
Eq. (3) 0.64 (+28%) 0.60 (+20%) 0.62 (+24%) 0.63 (+25%)
Eq. (4) 0.66 (+3%) 0.61 (+2%) 0.64 (+2%) 0.64 (+3%)
Eq. (5) 0.71 (+8%) 0.68 (+11%) 0.70 (+9%) 0.70 (+9%)
Eq. (6) 0.81 (+14%) 0.78 (+15%) 0.80 (+14%) 0.80 (+15%)

Predicted Year: 2011
Eq. (3) 0.66 (+32%) 0.59 (+18%) 0.63 (+25%) 0.63 (+27%)
Eq. (4) 0.70 (+6%) 0.64 (+8%) 0.67 (+7%) 0.68 (+7%)
Eq. (5) 0.75 (+7%) 0.70 (+9%) 0.73 (+8%) 0.74 (+8%)
Eq. (6) 0.82 (+9%) 0.79 (+13%) 0.81 (+11%) 0.81 (+11%)

Predicted Year: 2012
Eq. (3) 0.62 (+24%) 0.59 (+18%) 0.61 (+21%) 0.61 (+22%)
Eq. (4) 0.68 (+10%) 0.65 (+10%) 0.67 (+10%) 0.67 (+10%)
Eq. (5) 0.75 (+10%) 0.73 (+12%) 0.74 (+11%) 0.74 (+11%)
Eq. (6) 0.79 (+5%) 0.75 (+3%) 0.77 (+4%) 0.78 (+5%)

Table 5: True Negative Rate (slow growth), True Positive Rate
(fast growth), Accuracy and Sensitivity of the classification
models. Relative improvement of each model w.r.t. the pre-
ceding model is also reported in parentheses. For the baseline
model of Equation 3, the improvement is computed w.r.t. a ran-
dom classifier.

4.3 Predicting Growth
The previous regression results afforded us the ability to un-

derstand what properties affect growth of OSM activity in differ-
ent years, and to what extent. To quantify the predictive accu-
racy of our models, we have then conducted a classification ex-
periment, whereby we first determined the unknown β parameters
of Equations 3–6 using multiple linear regression, as done before;
we then used these models to classify activity for the upcoming
year. For example, we used 2007/08 to estimate the parameters,
then made predictions for 2009. In this case, we divided the out-
come of our models in two distinct categories: ‘slow future OSM
activity growth’ (when act(wi, t+ 1) < 0.3) and fast future OSM
activity growth’ (when act(wi, t + 1) ≥ 0.3), with 0.3 being the
median value of OSM activity growth for the time windows under
consideration. Finally, we considered the top 75% wards in Lon-
don only, as predicting OSM activity growth of very sparse areas
(e.g., parks) has little significance. Table 5 presents the results of
the classification. As shown, the accuracy of our models is quite
high: the simplest model based on Equation 3 already gains up to
32% for slow growth (TN rate) and up to 20% for fast growth (TP
rate) over a random classifier. In all predicted years, the full model
based on Equation 6 offers the highest accuracy, with up to 82% for
slow growth and 79% for fast growth.

4.4 Beyond London
Our modelling and evaluation has so far focused on a single city,

and this raises concerns in terms of the validity of our properties
and models elsewhere. Indeed, London is in itself quite a pecu-
liar city: from a geodemographic perspective, London is by far the
largest city in the EU (the most densely populated within city lim-
its), with a diverse range of people and cultures spread all over its
area. In terms of OSM-related characteristics, London was the city
were OSM was born, it is the one with the longest-living and largest
user base, and it is considered a prime example or organic, bottom-
up crowd-sourcing growth with the vast majority of OSM edits be-
ing genuine users’ contributions, rather than bulk imports (i.e., data
donations to the OSM foundation by third-party providers [32]).



To address this concern, we present in this section a brief study of
two cities, Boston and New York City, chosen for their very differ-
ent characteristics with respect to London. From a geodemographic
perspective, we scale both population density and area size of a fac-
tor up (for New York City) and down (for Boston) with respect to
London. From an OSM perspective, both cities are much less ‘ma-
ture’ than London: as shown in Table 6, they have a much smaller
user base, smaller number of edits, and lower level of engagement
from OSMers (edits per user), especially in New York City. This
city is also fundamentally different from London in terms of growth
pattern: while in London only 21% of OSM edits can be attributed
to bulk imports, in New York City these represent 65% of total
OSM edits. New York City thus resembles a sort of worst case sce-
nario when it comes to predicting growth using our model, as only
35% of its contributions are actually genuine users’ contributions
(i.e., those that the properties in our models aim to describe). In
repeating the previous analysis on Boston and New York City, we
have used US census data, which is available at the level of tracts
(closest US-equivalent of wards);13 as we did not have Navteq data
for the US, we have used POIs information from Yelp instead14

(to gain confidence that Yelp was indeed a reliable source to esti-
mate the number of physical POI in a certain area, we computed
the Pearson correlation between the number of POIs in Yelp and
that in Navteq for the city of London, and we found it to be above
0,9).

City Edits Users Avg(edits/user) Import ratio
London 96,357 2,240 43.0 21%
New York 12,275 543 22.6 65%
Boston 4,808 149 32.3 41%

Table 6: Comparisons between London and US Cities on OSM
usage

Table 7 shows the average adjusted R2 values for the models,
over the period 2007 to 2012. As observed in London, the com-
plete model (Equation 6) is the most accurate, with an adjusted R2

value as high as 0.61 for Boston, suggesting that the same proper-
ties we previously tested for London are now able to explain a large
portion of this city data’s variability, despite its many differences
(e.g., in terms of size, population density, import ratio). The ad-
justed R2 value for New York City is much lower (0.22); however,
what is most important to observe here is that such value is in line
with what observed for the whole of London in the year 2007/08
(see Table 4 - value 0.28). Furthermore, the gain in adjusted R2

with respect to the model that does not account for geodemographic
factors is enormous (+144% for New York City and +53% for
Boston). Based on these results, we speculate that adoption of
OSM in the US cities under examination is still in its infancy, and
as such the geodemographic properties are those that account the
most for variability in the data at this stage, as it also happened in
London back in the early days of OSM adoption.

5. DISCUSSION AND CONCLUSION
In this paper, we have presented a model inspired by Cellular

Automata theory that leverages characteristics of the urban crowd-
sourcing domain to accurately describe its digital evolution over
time. The model considers properties of self-reinforcement, spatial
and editing correlation, and geodemographic influences. We have
used correlation analysis to support each of our properties, mul-
tiple linear regression to validate the model, and classification to

13http://www.census.gov/geo/reference/gtc/
gtc_ct.html

14http://www.yelp.com/

Model New York Boston
Eq. (3): 0.07 0.23
Eq. (4): 0.07 (+0%) 0.24 (+4%)
Eq. (5): 0.09 (+29%) 0.40 (+67%)
Eq. (6): 0.22 (+144%) 0.61 (+53%)

Table 7: Adjusted multiple R2 of our models, together with rel-
ative improvement w.r.t. the previous model in New York and
Boston (every model showed in this table is statistical signifi-
cant – p-value < 0.001)

measure its accuracy. We now discuss the theoretical and practical
implications of this work.

Theoretical Implications. The study reported in this paper has
shown that digital mapping of spatial urban information is governed
by complex dynamics, with geodemographic factors being particu-
larly important to determine area seeding in the very early stages of
technology deployment; once the bootstrapping phase is over, con-
tagion and self-reinforcement processes explain most of the digital
growth instead. This two-step process for adoption is in line with
recent findings in the area of social networks, that suggest there
exist two different classes of individuals who contribute to two par-
allel adoption processes: early participants, who start contributing
and create random seeding, followed by low threshold individuals
who are responsible for the subsequent contributions’ spreading [4,
16, 7].

Practical Implications. Understanding ‘what factors are most
important when’ can be leveraged by designers of urban crowd-
sourcing applications, so to better engineer them: from choosing
who to target as early adopters of the technology, so to influence
area seeding, to embedding gamification elements, so to drive con-
tagion and self-reinforcement processes (e.g., via leader-boards,
competitions, virtual rewards). Once the urban crowd-sourcing ap-
plication is deployed, the model described in this paper can be used
to monitor its growth. Being able to predict what areas that will
not be digitally mapped gives businesses and public agencies time
to plan and execute interventions. Such interventions may span
a wide spectrum: from allocating financial resources to cover ne-
glected areas, to gamification (e.g., in the form of competitions or
mapping parties) to location-based social network features [43, 25]
so to direct the crowd towards specific mapping goals. Having an
accurate growth model at hand implies that these limited resources
(human and/or financial) can be best allocated so to maximise re-
turn on investment. For example, using influence maximization
schemes (e.g., [42]), one could decide how many resources to allo-
cate to areas predicted to be severely neglected, so to maximise ex-
pected growth in the following year(s), both as an immediate result
of investment and thanks to the contagion and self-reinforcement
processes that our model estimates to follow.

5.1 Limitations & Future Work
Our work suffers from a number of limitations. First, we studied

one specific example of urban crowd-sourcing application (OSM),
on a number of cities that, even though they exhibit different char-
acteristics, they all belong to the modern urbanised part of the
world. If we were to model OSM growth in different parts of the
world, different properties might have to be considered within the
model. For example, our model works under the assumption that
the city under examination is already urbanised and thus the physi-
cal space constraints prevents the formation of many new physical
urban elements in a short period of time. This assumption does not
hold for cities in developing countries, where the actual physical
changes are of much higher magnitude and at a faster pace. Also,
our model has been tested in a scenario where digital POI cov-



erage is far from complete (indeed, there are very few areas with
OSM cumulative activity above 50%, as shown in Figure 2). This
means there is as yet no saturation effect to be accounted for. This
is also evidenced by the fact that the positive correlation of the self-
reinforcement property (for both distant and recent past) increases
over the years – Table 4 (i.e., the more an area has been edited in the
past, the more it will be in the future). Once saturation starts to ap-
pear, segmentation analysis should be performed, so to assess our
model separately in areas under-covered and areas near-complete,
as the same factors (e.g., past growth) might yield opposite effects.

Second, the ‘pace’ at which mapping takes place in OSM is fun-
damentally different to that taking place during disaster recovery
efforts [46], and we do not know whether the processes of self-
reinforcement and contagion that our model leverages would be
able to describe growth in these settings. A direction of future work
is to study the suitability of the model presented in this paper in
different urban crowd-sourcing settings (both in terms of different
world regions, and in terms of different applications).

We presented a model of growth that focuses on ‘spatial’ factors
(e.g., distance to the centre) and processes (e.g., spatial contagion).
In so doing, we have not investigated characteristics of the adopters
of the technology themselves: their motives for taking part in digi-
tal mapping, their interests (what types of POIs they map – e.g., ser-
vices vs leisure POIs), and how they respond to incentives, such as
the frequently organised OSM mapping parties.15 Modelling these
factors and the processes behind adopters’ dynamics is a direction
of future research.
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