
Anti-gravity Underground?

Chris Smith1, Daniele Quercia2, and Licia Capra1

1 Dept. of Computer Science, University College London, Gower Street, London,
WC1E 6BT, UK {C.Smith|L.Capra}@cs.ucl.ac.uk

2 Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue,
Cambridge CB3 0FD, UK dq209@cl.cam.ac.uk

Abstract. Since its introduction in 1946, the Gravity Model has proven
to be a valuable aid in understanding and predicting forces at play in
human mobility. Historically, the model has been applied primarily at
the intercity and interstate level. In this paper we investigate whether
the scope of the model extends to the intra-urban. Using a large dataset
of trips made on the London rail network, we derive a number of proxies
for mass and distance, and using these proxies we examine the extent to
which the estimated passenger flows of the Gravity Model fit the observed
data. We find that there is a good correlation between the estimates and
observations, with a Pearson’s correlation coefficient (PCC) of 0.720. We
then extend the investigation to examine how well the model fits when
focusing on trips of differing purpose, and we also modify the model
to take into account the attractiveness of a location. We find that the
original model better fits leisure trips than commute trips, but that the
modified model closes this gap, and indeed offers an improvement overall,
increasing PCC up to 0.789. We close with a discussion of the validity of
our results and the direction of future research.

1 Introduction

The share of the world’s population living in cities has recently surpassed 50%,
and it is expected that by 2025 another 1.2 billion people will be living in urban
areas. Municipal planners will face an increasingly urbanised and polluted world,
with cities everywhere suffering an overly stressed road transportation network.
Building effective public transport systems, capable of absorbing the increasing
load, has thus become an urgent priority, both to provide a good quality of life
and a cleaner environment, and to remain economically attractive to prospective
investors and employees. To make effective large capital investments concerning
the public transport system, urban transportation analysts and planners will
need to understand and predict citizens’ flows within the city.

To understand and predict population flows, researchers have proposed var-
ious spatial interaction models over the years. The most widely used one so far
has been the Gravity Model [14]. In analogy to the gravitational interaction
between planetary bodies, the model posits that the interaction between two
places (e.g., two cities) is proportional to their mass (e.g., their population) and
inversely proportional to their distance. The model has been successfully used to



describe ‘macro-scale’ interactions (e.g., between cities, and across states), using
both road and airline networks (e.g., [6], [2]). In this paper, we are interested
in investigating whether this model can be used at ‘micro-scale’ level too, to
capture citizens’ movement within a city, travelling via mass public transport
systems.

In this work, we use anonymised data collected by Transport for London
(TfL) across the entire London rail network (Section 3), to derive a Gravity
Model of passengers’ flow that captures intra-city dynamics at station level (Sec-
tion 4). We then observe how well the model fits the observed data, both when
looking at the whole set of recorded journeys, and when analysing urban trips of
different purpose separately (Section 5). We find that, in its present formulation,
the model is accurate in capturing passengers’ flow for leisure trips, but less so
for work commutes. We then introduce a modified version of the model which
incorporates a notion of the attractiveness of a station. The modified version
offers an improvement, yet the variation in the results we observe suggests that
passenger flows respond to other socio-economic forces that we have not yet cap-
tured within the model; we thus conclude with a discussion of what information
we plan to integrate next in the model (Section 6).

2 Background and Related Work

In its simplest formulation, the Gravity Model [14] states that the interaction Ti,j
between two places i and j is proportional to the product of their populations
Pi and Pj over their distance di,j :

Ti,j = k
Pαi P

β
j

dγi,j
, (1)

where the exponents α, β, γ and the scaling factor k are adjustable parameters,
practically chosen so to fit the empirical data being modelled. Over the years,
this simple model has been expanded and refined in a variety of ways, and its
application has gone well beyond the transportation domain [6, 2]. For example,
it has been used to model inter-city phone calls [8], the spreading of infectious
diseases [1], and cargo ship movements [7]. Despite some criticism [13], partly
related to the lack of a rigorous derivation of its parameters, this highly gener-
alised spatial interaction model continues to be widely used in practice, if not
for prediction at least for understanding complex network dynamics.

An area where this model has been little investigated is the intra-city trans-
port domain. As urban cities are fast growing in number and size, understanding
the complex dynamics that govern the use of an often diverse multi-modal pub-
lic transport infrastructure is of high importance, for both transport providers
and urban planners. To date, the major hindrance to this type of investigation
has been the lack of available datasets that accurately capture citizens’ move-
ment within the city. However, as Automated Fare Collection (AFC) systems
are deployed in cities worldwide, continuous and fine-grained records of citi-
zens’ movement within the urban public transport infrastructure are becoming

2



available. These datasets have so far been investigated, for example, for demand
modelling [4], station transfer analysis [5], service reliability measurements and
average route travel time estimation [3].

In this work, we use AFC data to test whether the Gravity Model can be used
to explain and possibly predict passengers’ flows within a metropolitan city. Our
investigation expands on the studies of the Gravity Model in transport networks
conducted so far in two ways: granularity, as ‘places’ in our model are as fine-
grained as underground and train stations within the city of London, UK; and
scale, as we analyse over 500 stations (i.e., the entire TfL rail network). Next,
we describe the dataset at hand.

3 The London Public Transport Network and Dataset

The public transport system in London consists of several interconnected sub-
systems, incorporating multiple modes of transport. These include, but are not
limited to, the London Underground (known colloquially as the Tube), the Over-
ground rail system, an extensive bus network, water-borne transport and parts
of the UK National Rail network, of which many services terminate in London.
For the purpose of this study, we focused on the rail sub-networks, comprising
the Tube, the Underground and the UK National Rail stations and tracks within
the Greater London area, for a total of 588 stations.

In 2003, Transport for London (TfL) introduced an RFID-based technology,
known as Oyster card, which at the present time accounts for 84.5% of all jour-
neys made in the London public transport system, with the rest made using
traditional paper based magnetic stripe tickets1. The dataset we use consists of
a record of every journey taken on the London rail network using an Oyster card,
in the 31 days of March 2010. A record in the dataset is a tuple of the form:
〈u, (o, d), to, td〉, recording that an anonymised user id u travelled from station
o at time to, to station d at time td. In total the dataset contains 76.6 million
journeys.

Using these records as a basis to investigate the applicability of the Gravity
Model to transportation within a city has both advantages and disadvantages
with respect to approaches based on survey data (e.g, [11] based on the 2001
UK census, and [13] which uses the 2000 US census). Being expensive to process
and analyse, survey data is only collected periodically (e.g, every 10 years in the
UK); furthermore, it contains information about respondents’ travel habits at a
coarse granularity (e.g., the city where they live/work). In contrast, AFC data
provides a detailed, accurate picture of the usage of the urban public transport
system in real time. On the other hand, survey data usually contains richer
semantic information than AFC data, including home and work location of each
respondent (though changes happening within the 10-year data collection cycle
are lost), as well as purpose of travel. In the following sections, we describe
how we have mined public transit records to infer this semantic information and
construct the Gravity Model around it.

1 http://www.whatdotheyknow.com/request/oyster card usage - Retrieved 9/03/12
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(c) Prediction results

Fig. 1. (a) Average number of daily journeys between pairs of stations, (b) mean
relative distribution of station touch-ins in am-peak, and (c) Newton gravity model’s
estimated flows vs. observed flows.

4 Building an Underground Gravity Model

We derive an instance of the Gravity Model for the London rail network in three
steps: (1) first, we derive a proxy for mass (population) Pi for each station i in
the dataset; (2) second, we derive a proxy for distance di,j between each pair
of stations; (3) finally, we establish actual (empirical) interactions Ti,j against
which to test the accuracy of the model. In the remainder of this paper, we refer
to a specific instance of the Gravity Model, commonly referred to as the Newton
Model, whereby we set α = β = k = 1, and γ = 2 (as done, for example, in [6]).
The simplified model thus states:

Ti,j =
PiPj
d2i,j

. (2)

(1) Proxy for Mass Pi. In transportation networks, mass is often repre-
sented as population size (e.g., [14, 6]). Survey data is used to accurately associate
every citizen to their home location. In our case however, each station is repre-
sented by a single point and as such, population is undefined. We therefore need
to derive a proxy for population Pi at each station i. We tested two: population
density, and a second proxy derived from the transit data as follows. We process
all travel records found in our dataset on a per user u basis; we then rank depar-
ture stations o based on their popularity (i.e., how often user u has ‘touched in’
at station o). In order to distinguish genuine London residents from occasional
visitors, we apply the following restriction: we only count departures within the
morning peak period, 6:30am to 9:30am, based on the assumption that the vast
majority of journeys in this period will be commutes from u’s home to a place of
work. In so doing, we also avoid counting departures from u’s other frequented
stations, such as work place in the evening. The downside is that we may exclude
residents whose main use of the rail network is not for commuting. For every
user u we thus compute a ranking vector Ru = [r1, . . . , rN ], where N = 588 is
the total number of stations in the dataset, and rk is the number of times u
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has departed from station ok (with ok=1 being the most frequently visited origin
station). We then assign users a home station according to the following set of
rules that we apply in sequence: (a) if r1 ≤ 2 (the user’s most visited origin
station has been visited no more than twice in a whole month), the user is not
assigned a home station; (b) if r1/r2 > 0.5, assign o1 as home station; (c) if
r1/r2 ≤ 0.5 and r2/r3 > 0.5, assign both o1and o2 as home stations; (d) other-
wise, the user is not assigned a home station. Note that up to two stations can
be designated as a home station for a user, since in some parts of London there
may be more than one station within equal distance from a user’s residence, and
the choice of which one to depart from may depend on factors which vary day
to day. Finally, our second proxy for population Pi is the total number of users
assigned to station i; note that not all users contribute to station populations;
in fact, the above steps discard 76% of users whose travel records do not reveal
any preferential origin station (case (d)). Figure 1(b) shows, seperately for users
included and not included in any station’s population, the average relative num-
ber of touch-ins at their top ten stations. We see that included users touch-in
at their third most popular station just 28% of the number of times they visit
their most popular, compared to 67% for users not included.

(2) Proxy for Distance di,j. We tested the gravity model using the eu-
clidean distance between stations, as commonly done in the literature; however,
geographically near stations may be quite distant in terms of path length in the
rail network, and indeed this measurement performed poorly. To overcome this,
we defined several other proxies for distance: number of hops between stations,
with a penalty of 2 hops added for each interchange; mean transit time between
stations computed from all instances of trips from station i to station j (tj − ti)
recorded in the dataset; ranked euclidian distance; and ranked mean transit time
(ranked distance has been shown to work well in [10] and [13]).

(3) Empirical Interactions Ti,j. Lastly, in order to quantify how well the
Gravity Model estimates actual intra-city flows, we establish the ground truth
Ti,j , that is, the flow between stations i and j, simply as the average number of
daily journeys between every pair of stations, as recorded in our dataset. Figure
1(a) shows the distribution of average number of daily journeys, which follows a
power law. By then building a graph whose nodes are stations and edge weights
are average daily journeys (flow) between station pairs, we find that the graph
is highly connected, with 59% of all possible edges present.

5 Testing the Model

Based on the proxies for mass and distance described in the previous section, we
tested the accuracy of the Gravity Model (Equation 2) in estimating passenger
load on the London rail network. To quantify the overall accuracy of the model
with different values for mass and distance, we compute the Pearson’s corre-
lation coefficient between observed and estimated flows (note that we take the
logarithm of each value in order to account for the skewed distribution of flows;
for all correlation coefficients presented, the p-value is effectively 0). Results are
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presented in Table 1. The best performing combination is that of Pi = number
of home users assigned to i, and di,j = mean travel time between i and j. Figure
1(c) shows observed vs. estimated edge weights (i.e., interaction values Ti,j) for
this combination. The edges are first binned by estimated flow, then we plot the
mean estimated flow in each bin vs the mean observed flow of the edges in each
bin. The error bars show the standard deviation of the observed flows in each
bin. Using the proxies we have defined, the gravity model provides estimates
which correlate fairly well with the observed flows.

So far in our analysis, we have not differentiated between trip purposes but
rather looked at the whole dataset at once. When studying population movement
at inter-city or inter-state level, studies have often focused on single-purpose jour-
neys (typically the work commute). We thus repeat our analysis (using our best
performing proxies) focusing on two separate slices of the whole journey dataset,
which we refer to as commute trips and leisure trips. In terms of ground truth
flow distribution Ti,j , the former comprises of all journeys made on weekdays
during the 6.30-9.30am peak period; the latter comprises all journeys made on
weekends at any time. Previous research into system-wide activity levels has
shown that the am-peak period is dominated by commute trips, and weekends
lack the same acitivity profile [9], indicating that the vast majority of trips are
for leisure purposes, broadly defined. Table 1 also shows the correlations between
observed flows from each data slice and the estimated flows from the model. The
results suggest that the model better predicts passenger flows for leisure trips
than for commute trips.

When looking at different trip purposes, the directionality of the flow may
play an important role in estimating spatial interactions in a city. In order to
capture the directionality of flows, we define the attraction Aj of station j using
the same procedure described in Section 4(1) to assign users to home stations;
this time, rather than counting users’ touch-ins, we focus on users’ touch-outs
instead. In so doing, we implicitly reflect the attractiveness of a station for work
purposes in the am-peak period, for leisure purposes in the weekend period,
and any purpose for the complete data slice. We then replace Pj in Equation 2
with Aj and recalculate the estimated trip flows. The results from our modified
version of the Gravity Model, for commute, leisure and all trips are shown in
Figures 2(a), 2(b) and 2(c) respectively. The Pearson’s correlation coefficients are
higher than when using the symetrical model: 0.743 for both work and leisure

Data Slice Pi Proxy Euclidian Hops Time Ranked Eucl. Ranked Time

Complete Pop. Density 0.315 0.401 0.492 0.292 0.416
Complete Home Users 0.554 0.700 0.720 0.554 0.675
Am Peak Home Users 0.418 0.523 0.565 0.462 0.635
Weekend Home Users 0.520 0.619 0.667 0.532 0.630

Table 1. Comparison of test results using different proxies for mass and distance, and
for each data slice.
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(a) Commute Trips
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(c) All Trips

Fig. 2. Unidirectional Gravity Model estimated flows vs. observed flows for each data
slice.

trips, and 0.789 for all trips. This suggests that the Gravity Model seems to
perform better if trip directionality is taken into account, that is, when the
mass of the destination station reflects its attractiveness. This is particularly
true of commute and leisure trips, where we see the greatest improvement over
the symmetrical model. It is our plan to continue in this line of enquiry, and
investigate how socio-economic factors (e.g., crime rates, employment rates, and
income) in different areas of London can be used to better represent the distance
(deterrence) function di,j .

6 Discussion and Future Work

In this position paper, we have presented exploratory work into how AFC datasets,
capturing citizens’ movement within urban mass transport systems, can be
mined and used to examine the validity of well-established theories of spatial
interactions at an unprecedented level of granularity and scale. In particular,
we find that the Newton version of the Gravity Model, with transit time used
as proxy for distance, and with traveller’s population at origin stations used as
proxy for mass, offers a reasonable estimation of passengers’ flows, but performs
less accurately when trying to model leisure trips, and yet even worse for com-
mute trips. We then introduced a uni-directional version of the model using a
new proxy to capture the attractiveness of a station. We found that this offered
a marked improvement over the gravity model. Despite the correlation between
estimated and observed flows being overall high, the variation we observed in
the results suggests that there are other forces at play in determining urban
movement via public transport, that have yet to be accounted for in the model.

We are continuing this line of investigation, looking at which additional socio-
economic factors may be used to unveil the complex dynamics behind urban
flows, and how we can integrate them with the model as, for example, alter-
native proxies for mass and distance. The factors we are looking at come from
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two main sources: publicly-available government-maintained datasets2, offering
information such as crime rates, employment rates, income, and education levels
of different areas of London; and social-media datasets (e.g., Twitter, that can
be mined to reveal happiness of citizens in different parts of the city [12], and
Foursquare check-ins, that reveal attractiveness of an area), that offer a more
dynamic view of the pulse of the city.
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