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ABSTRACT
Social-networking sites have started to offer tools that suggest
“guests” who should be invited to user-defined social events (e.g.,
birthday parties, networking events). The problem of how to rec-
ommend people to events is similar to the more traditional (recom-
mender system) problem of how to recommend events (items) to
people (users). Yet, upon Foursquare data of “who visits what” in
the city of London, we show that a state-of-the-art recommender
system does not perform well - mainly because of data sparsity. To
fix this problem, we add domain knowledge to the recommendation
process. From the complex system literature in human mobility,
we learn two insights: 1) there are special individuals (often called
power users) who visit many places; and 2) individuals go to a
venue not only because they like it but also because they are close-
by. We model these insights into two simple models and learn that:
1) simply recommending power users works better than random but
is far from producing the best recommendations; 2) an item-based
recommender system produces accurate recommendations; and 3)
recommending places that are closest to a user’s geographic center
of interest produces recommendations that are as accurate as, if not
more accurate than, item-based recommender’s. This last result has
practical implications as it offers guidelines for designing location-
based recommender systems and for partly addressing cold-start
situations.
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1. INTRODUCTION
Social media sites have been recently testing features that return

lists of people (“guests”) users might want to consider inviting to
their events (e.g., law firm parties, birthday parties, PR’s club in-
vitations) [5]. Guests are selected based on relevance to the event
and to the other fellow guests.

The problem of predicting relevant “guests” for venues or events
has thus started to receive attention on the Web but has not been
fully explored on mobile-social media platforms such as Foursquare,
as discussed in Section 6 on “Related Work”. One way of recom-
mending venues to people is to use existing Web-based collabora-
tive filtering algorithms. In Section 2, we show that such algorithms
are not effective, mainly because of data sparsity: a venue is visited,
on average, by very few users. Therefore, we propose two simple
techniques for “recommending guests” that are reasonably accurate
and scalable, and whose recommendations are easy to explain. In
so doing, we make two main contributions:

• We put forward two proposals - a Bayesian model and a lin-
ear regression - that incorporate domain knowledge from the
literature of human mobility and that cope with data sparsity
(Section 3).

• We evaluate how the models perform against Foursquare data
for the whole city of London (Section 4). We find that the
simplest model - linear regression - returns the most accurate
recommendations for all types of venues.

Before placing this work in the context of relevant literature (Sec-
tion 6) and concluding (Section 7), we discuss some open questions
(Section 5), including that of when our models do not work (and,
consequently, where future work should go).

2. COLLABORATIVE TARGETING: UNFIT
To begin with, we state our research problem.

Problem Statement: Given a venue (e.g., Italian restaurant),
select individuals who are likely to visit it.

This simple problem, if solved, might enable a variety of ap-
plications, which include target advertising, commercial property
evaluation, and social marketing (as we shall discuss in Section 5).

The problem might be formulated in simple “recommender sys-
tem” terms - that is, it is the problem of how to recommend venues
(items) to people (users). One way of solving it is to run a state-
of-the-art matrix factorization algorithm on the inverted venue-by-
people matrix (whose value mij is 1, if user j checked-in in venue
i; 0 otherwise) and obtain, for each venue, a list of people who



Category #Venues #Users
food 1,293 1,566

nightlife 1,075 1,207
travel 850 1,744

home/work/etc. 411 1,037
shops 362 878

arts&entertainment 348 841
parks&outdoors 184 363

education 49 117
Total 4,572 3,110

Table 1: London Foursquare Data. Number of users and
venues across venue categories.

Category Precision@10 Recall@10
food 0.013 0.012

nightlife 0.019 0.018
travel 0.004 0.005
shops 0.003 0.003

home/work/etc. 0.001 0.001
arts&entertainment 0.000 0.000

parks&outdoors 0.000 0.000
education 0.000 0.000

Table 2: Implicit SVD’s Precision and Recall across Categories.

might like to visit it. We do just that: we use the state-of-the art
Implicit SVD method introduced by Hu, Koren and Volinsky [10]
and implemented within the Mahout framework. To evaluate its
effectiveness, we measure its precision and recall on the following
dataset.

Dataset. Foursquare is a mobile social-networking application that
allows registered users to share their presence in a venue (e.g., share
their “check-in” in a restaurant) with their social contacts. Users
can share their check-ins not only on Foursquare but also on Twit-
ter and Facebook. Each venue is associated with a category (e.g.,
“nightlife”, “food”) and a sub-category (e.g., “bar”, “club”, “Italian
restaurant”). In 2011, Cheng et al. collected 22 million check-ins
of 225,098 users [3]. We take the 228,625 check-ins in Greater
London, which are generated by 29,044 users across 7,205 venues.
To this data in the form (user,venue) pairs, with further crawling,
we add each venue’s category and subcategory. After consider-
ing venues and users that disjointly appear at least twice in our
(user,venue) pairs, we end up with 3,110 users and 4,572 venues
in the city of London. Table 1 breaks statistics about users and
venues down into the different categories. One can, for example,
see that food venues are numerous and attract many users, while
educational venues are rare but proportionally attract more users.

Implicit SVD Performance. We arrange this data in a venue-by-
user matrix and measure the Implicit SVD’s precision and recall.
For each venue, precision is the probability that a recommended
user is relevant ( relevant∩recommended

recommended
), while recall is the proba-

bility that a relevant user will be recommended
( relevant∩recommended

relevant
). By relevant, we mean users who visited

the venue. Also, we consider that the recommendation list for each
venue contains the top-10 recommended users. The results reported
in Table 2 shows that precision and recall are extremely low - for
some categories, they are even zero. These appalling results have
a clear explanation - the data is sparse. There are too few people

(a) Visitors per Venue (b) User Activity

Figure 1: (a) Number of Visitors per Venue; (b) Frequency Dis-
tribution of User Activity: this is a user’s fraction of visited
locations over the total ones.

going to the same venue; indeed, the number visitors per venue is
power law (Figure 1(a)).

It thus seems that an alternative mechanism for recommending
people is needed. But what sort of mechanism should we use? The
widely-used classification algorithm of SVM does not work in the
presence of data sparsity [18]. Therefore, we need a solution that:
1) is robust to sparsity; and 2) integrates domain knowledge (after
all, our goal is to model how people “move” as much as is to model
their preferences).

3. DOMAIN-AWARE RECOMMENDATION
We take these two requirements and translate them into a solu-

tion that unfolds in three steps:

1. Incorporate domain knowledge from the complex system lit-
erature in human mobility (Section 3.1);

2. Deal with data sparsity by using item-based collaborative fil-
tering to model user preferences (Section 3.2);

3. Integrate the previous two steps into a Bayesian model and a
linear regression (Section 3.3).

3.1 (Individual) Closeness
For starters, one might go to a venue not only because one likes

it but also because one is nearby. Thus, leaving out the users’ taste
from a moment, one can model the probability of an individual
visiting a venue as p(go|close) - i.e., the probability of going to a
venue given that it is close - and can do so using Bayes’ Law:

p(go|close) ∝ pclose · pgo (1)

where pclose is the probability of the user being close (being at a
certain (log) distance), and pgo is the probability of a user going to
any venue:

pgo =
#venues visited by user u

total #venues
(2)

This latter probability reflects the general activity of a given user,
which is a skewed distribution (Figure 1(b)), as one would expect:
the vast majority of users visit few places, while a tiny fraction of
(power) users (0.3%) visited roughly 20% of the London venues
(within a category).

Literature: How people move. Scientists have long wondered
how to measure something as ephemeral as movement. Early stud-
ies suggested that humans wander in a random fashion, similar to
a so-called “Levy flight” pattern displayed by foraging animals. In
2006, to track human movements, researchers used more than half



a million US one-dollar bills as a proxy measure and analyzed their
movements as they were passed around over five years [2]. They
found many short movements and occasional longer ones. Similar
patterns were found by Gonzalez et al. who studied the trajectories
of 100,000 mobile phone users tracked for six months [7]. These
researchers found that people are regular, in that, the vast majority
of them move around over a very short distance (from 5 to 10km)
and make regular trips to the same few destinations such as work
and home on a daily basis (70 percent of the time they were found
in their two most frequently visited locations); people occasionally
make longer trips when they, for example, go on vacation. More
recently, Cheng et al. analyzed the movement of Foursquare users
across venues and found similar patterns: a mixture of short, ran-
dom movements with occasional long jumps. As such, the vast
majority of users had a small radius of gyration - typically less than
10 miles [3].

Considering Geographic Closeness. To sum up, upon different
types of movement (derived from dollar bills, mobile phones, and
mobile social-networking applications), researchers in different dis-
ciplines have independently concluded that people rarely stray from
familiar areas - they travel to a limited number of nearby locations
and, consequently, short-range movements are more frequent than
long-range ones (i.e., the frequency distribution of distance is ex-
ponentially distributed). This is also the case in our London data:
Figure 2 plots the probability of one’s traveling a certain distance
for different venue categories. The distributions (for different cate-
gories) are very skewed and all fit the same distribution:

pclose = k1
1

dαui
(3)

where dui is the distance between the user’s (u’s) center of geo-
graphic interest - which is center of mass or barycenter computed
considering the locations where the user has previously checked-
in - and the venue i. Interestingly, different venue categories are
associated with different α, and the higher α, the less distance mat-
ters in one’s choice when visiting a venue. Table 3 reports the α’s
for the different categories. The highest α (2.22) is associated with
venues in the category “travel”: those include train stations and
bus stations, and it makes sense that people travel farther when go-
ing to places of limited supply (e.g., not all neighborhoods have a
train station). The lowest α’s are registered for venues in the cat-
egories “nightlife” and “home/work/etc.”. That is, one’s center of
geographic interest revolves around home and work locations, and
when going to bars, one goes to nearby ones.

Considering Power Users. Another conclusion from the literature
is that not all mobile users are equally mobile. Individuals display
significant regularity, yet, when compared to each other, there are
few users who travel a lot, while the vast majority have limited
travel activity. By framing the problem probabilistically, expres-
sion (1) is able to account for those special (power) users. It does
so with pgo in expression (2), which reflects the extent to which
one is a power user or not.

3.2 Likes
The model in expression (1) has only considered whether one

user is close or not and whether is a power user or not; but the
model has not taken into account personal preferences. To fix that,
we need to compute p(like|go) - we need to compute the extent
to which a user visits venues that are predictable from his/her past
visits/likes. However, to do so, we need a way to measures a user’s
likes. Since our data is sparse (Section 2), we measure likes not

Figure 2: Probability of one’s traveling a certain distance
across different types of venues (best seen in color).

Category α

food 1.64
nightlife 1.61

travel 2.22
home/work/etc. 1.62

shops 1.64
arts&entertainment 1.64

parks&outdoors 1.68
education 1.93

Table 3: Why People Visit Different Types of Venues. The
higher α, the more one travels farther than usual to reach the
venue in that category.

based on similarity among users but among venues. That is, we use
an item-based collaborative filtering [21], which has been found
to work well in such situations: “Unlike traditional collaborative
filtering, the algorithm also performs well with limited user data,
producing high-quality recommendations based on as few as two
or three items.” [15]. Rather than matching the user to other sim-
ilar users, item-to-item collaborative filtering matches each of the
user’s venues with similar venues. A common way of computing
the similarity between two venues is to compute the cosine similar-
ity between two binary vectors: each vector reflects a venue, and a
vector’s ith position reflects whether the ith user visited the venue
or not. Upon a so-constructed venue similarity table, the algorithm
finds, for each user, the venues similar to the ones previously vis-
ited by the user.

We apply the item-based collaborative filtering algorithm on the
user-by-venue matrix and obtain a rating lui for each user u and
venue i. Figure 3 shows the distribution of the predicted ratings.
Upon these ratings, we compute p(like = lui|go), which is the
fraction of venues i visited by u that have predicted ratings lui:

p(like = lui|go) =
#venues visited by user u with rating lui

total #venues visited by user u
(4)

3.3 Putting All Together
Having users’ whereabouts and preferences at hand, we now



Figure 3: Distribution of Predicted Ratings.

need to predict which users are likely to be at a certain venue. We
do so using a Naive Bayesian model, a Bayesian model, and a linear
regression.

Naive Bayesian modeling. One simple way of modeling all the
three factors together is to compute p(go|like, close) using Bayes’
Law:

p (go|like, close) ∝
∝ plike · pclose · pgo

∝ plike · pgo · k1
1

dαui

For each pair (user, venue), we compute pclose with expression (3)
and plike with (4); and for each user, we compute pgo with (2). The
importance of venue i for user u is then proportional to the above
p(go|like, close), and we call it ranku,i.

Bayesian modeling. The previous model assumes that whereabouts
and preferences are independent. This might well be not the case:
those addicted to luxury goods will often be found near Bond Street
(a major shopping street in the West End of London with many high
price fashion shops). Here preference and whereabout go hand in
hand. To go beyond independence, we could model jointly the two
attributes:

p(go|like, close) =
plike|go,close · pgo|close

plike|close

where:

plike|go,close =
#venues visited by user u at distance duiwith rating lui

#venues visited by user u at distance dui

pgo|close =
#venues at distance dui visited by user u

#venues at distance dui

plike|close =
#venues at distance duiwith rating lui

#venues at distance dui

Linear Regression. Another approach for combining preferences
and whereabouts is to run a linear regression:

ranku,i = α+ β1Ilike + β2Iclose + β3Iclose · Ilike
where I’s are normalized values of whereabouts and preferences:

Iclose is 1
log(dui)

(the logarithm because the frequency distribu-

tion of distance is very skewed), and Ilike is lui. The product
Iclose · Ilike controls for interaction effects between whereabouts
and preferences.

4. EVALUATION
The goal of this work is to predict which users are more likely

to visit a given venue. To ascertain the effectiveness of our pro-
posed techniques at meeting this goal, we need to select a desirable
metric, measure it, and interpret those measurements. We execute
these three steps next.

Metric. We need to find a measure that reflects the extent to which
the predicted users for a venue are those who actually visited the
venue. One such measure is called percentile-ranking [10]. The
percentile-ranking ranku,i of user u for venue i ranges from 0%
to 100%: it is 0%, if user u is first in venue i’s recommendation list;
it is 100%, if the user is last. Percentile-ranks have the advantage
over absolute ranks of being independent of the number of users.
Our quality measure is then the total average percentile-ranking:

rank =

∑
u,i goneu,i · ranku,i∑

u,i goneu,i
(5)

where goneu,i is a flag that reflects whether user u was in venue
i: it is 0, if u was not there; otherwise, it is 1. The lower rank
for a list, the better the list’s quality. For random predictions, the
expected value for ranku,j is 50% (averaging infinite placements
of users for a venue returns the middle position of the list). There-
fore, rank < 50% indicates an algorithm better than random. To
ease illustration, we covert percentile ranking into ranking accu-
racy, which is 1, if the percentile ranking is 0% (best); and it is 0,
if the percentile ranking is 50% (random):

accuracy =
50%− rank

50%
(6)

Accuracy would be 0 for a random predictor (baseline), and would
be 1 for an ideal (oracle) predictor.

Execution. To measure the ranking accuracy, we run a 10-fold
cross validation. That is, we divide the dataset into 10 segments,
we take one segment s at a time, consider it to be the testing set,
and go through the following steps:

1. For each venue in the training set (the venues in all segments
other than s), associate it with the users who visited that venue.

2. Train the model using the venues (and corresponding visitors)
in the training set.

3. Use the trained model to then infer a rank list of users who are
likely to go to each venue in the testing set (the venues in s).

We finally compare the users predicted for each venue to those
who actually visited it (those who are in the ground truth).

Results. Figure 4 reports the ranking precisions for the individ-
ual components of the Bayesian models (first three bars in each
venue category) and for the overall models (Naive in the fourth bar,
Bayesian in the fifth, and Linear Regression in the sixth). Starting
from the first bar in each category (pgo), one sees that recommend-
ing power users works better than random (accuracy is always well
above zero): the more so for shops (.38) than for arts&entertainment
venues (.24). Considering only nearby places (second bar in each
set) returns more accurate rankings - again, more for shops (.60)
than for arts&entertainment venues (.38). However, if one con-
sider only past user preferences (third bar plike), then accuracy is
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Figure 4: Rank Precision. The rank goes from 0 (random baseline predictions) to 1 (relevant user always ranked first in the recom-
mendation list).

comparable to that of recommendations based on proximity (sec-
ond and third bars do not differ much). This suggests that the
simple concept of geographic distance is as important as that of
the user’s taste in all venue categories. It also suggests that, by
only knowing where a user usually hangs out (without any infor-
mation on the user’s taste), one can produce reasonable recommen-
dations (ideal for cold start situations). If we then combine these
previous elements in a Naive Bayesian model, results do not im-
prove; on the contrary, they are worse than those offered by sim-
ple geographic proximity for venues in the categories “food” and
“arts&entertainment”. That might be because the model treats its
components as though they were completely independent. How-
ever, on average, the Pearson correlation coefficients ρ between
each pairs of components are small: ρ(pgo, plike) = .13,
ρ(pgo, pclose) = .05, and ρ(plike, pclose) = .21. Yet, looking at
the fifth bar in each set, one registers improvements with the tradi-
tional Bayesian model (in which dependencies are model). Another
common reason for which Naive Bayesian does not work well in
certain situations is that the addition of redundant components and
arbitrary discretization of the random variables skew the learning
process, and that seems to be the case here. Indeed, the linear re-
gression (last bar) - which just models taste, whereabouts, and in-
teractions between the two - works best in all categories. As one
would expect, for categories characterized by less data sparsity and
periodic patterns (e.g., education buildings), the models perform
extremely well (accuracy above .90): the performance tend to be
comparable to, if not better than, those registered in Web applica-
tions.

5. DISCUSSION

Putting Results into Context. For the case of recommending
shows on set top boxes, Hu et al. had 17K of unique programs
(roughly 2× our number of venues) and 32M non-zero ratings (140×
ours). In that context of less sparsity, they managed to achieve a
ranking accuracy as good as .80 (upon learning from 200 distinct

factors). Thus our results with the linear regression (always above
.50 and above .60 for categories such as ‘shops’ and ‘parks’ and
‘travel’) are comparable to those reported in the literature in far
more favorable contexts (140× less sparsity). Also, the percentile
rankings are expected to slightly improve in more ‘realistic’ situa-
tions. To see why, consider that our data has been collected within
a limited time window; by contrast, if one were to crawl the entire
Foursquare history, then the resulting data would be still sparse but
less so, and, as such, the prediction results would improve, as we
have already registered with the category “educational” venues for
which the accuracy was above .90.

When It Does not Work. When putting forward new predictive
models, one often tends to focus on favorable situations in which
predictions are best. Next, we briefly focus on the opposite case -
we focus on situations in which prediction are worst. The idea be-
hind this exercise is to find out which aspects future models should
consider to increase accuracy. To this end, we run a qualitative
study. For each venue i, we compute four predictability and unpre-
dictability measures upon the following quantities: goneui, which
reflects whether user u visited venue i; the geographic decay con-
stant α taken from Table 3; the predicted rating lui for user u and
venue i; and the distance dui between u’s geographic center of in-
terest and venue i. More specifically, upon these quantities, for
each venue i, we compute:

Geo Predictability. The higher it is, the more the venue’s visitors
are predictable based on distance. It is higher for venues
(e.g., bakery shops) whose visitors travel nearby:

P igeo =

∑
u

1
log(dαui)

· goneui∑
u goneui

It is the average inverse (log) distance for the venue’s visitors.

Geo Unpredictability. The higher it is, the less its visitors are
predictable based on distance. It is higher for venues (e.g.,



(a) Illustration (b) All Categories (c) Category ‘Building’

Figure 5: Four-quadrant Predictability Box. Quadrants are defined by the venue’s unpredictability and predictability measures,
which are based on visitors’ geographic closeness (rows) and likes (columns).

airports, high-end restaurants) whose visitors travel farther:

U igeo =

∑
u log(dui) · goneui∑

u goneui

It is the average (log) distance for the venue’s visitors.

Like Predictability. The higher it is, the more its visitors are pre-
dictable based on past preferences (past likes). It is higher
for venues whose visitors have common preferences:

P ilike =

∑
u lui · goneui∑
u goneui

It is the average predicted ratings for the venue’s visitors.

Like Unpredictability. The higher it is, the less its visitors are
predictable based on past preferences. It is higher for venues
whose visitors have diverse preferences:

U ilike =

∑
u

1
lui
· goneui∑

u goneui

It is the average inverse predicted ratings for the venue’s vis-
itors.

We create four tables that contain the top-10 venues ranked by
each of those four measures and ask three coders (three London-
ers with diverse background - architect, barrister, and medical doc-
tor) to build predictability boxes of the kind in Figure 5(a). For
them, that translated into ordering venue categories that are pre-
dicted (hard to predict) by geographic distance based on the table
ranked by P igeo (by U igeo), and categories that are predicted (hard
to predict) by user preferences based on the table ranked by P ilike
(by U ilike). We consider only the answers for which two out of
three coders or all three have independently agreed. In Figures 5(b)
and 5(c), word size is proportional to the coders’ agreement. For
all venue categories (Figure 5(b)), the unpredictable venues (pre-
dicted neither by closeness nor by taste) are train stations. That is
because train stations are often far from where one hangs out and
do not reflect a specific taste in, say, music, bars, clubs, or food.
By contrast, local parks and outdoor activities are predictable ei-
ther by closeness or by taste, suggesting that people prefer their
local parks over bigger parks (they stay close), and that residents of
the same area tend to be like-minded (a tendency often called “ge-
ographic sorting” [1]). Closeness is more informative for predict-
ing visits to coffee shops (one tends to go to local coffee shops);

while user taste is more informative for cinemas in central Lon-
don areas, where diversified choice of movies motivates visitors to
travel farther than usual. For the specific category “buildings” (Fig-
ure 5(c)), the unpredictable venues (predicted neither by closeness
nor by taste) are companies such as IBM, Procter&Gamble, Sam-
sung whose headquarters are in suburban areas where people with
diverse background work but do not hangout, not least because of
limited supply of amenities. By contrast, the behavior of employees
(mostly interaction designers) of Sony, eBay, Telehouse working
in central areas like Soho is predictable either by closeness or by
taste. Finally, closeness is more informative for predicting visits to
mosques and churches (one tends to go to local religious venues);
while user taste is more informative for visitors of university (e.g.,
UCL’s, Birkbeck’s) facilities in central areas. From these qualita-
tive results, one can extrapolate two key insights:

1. Predictable situations are those in which people: a) stay close
because they have what they need at hand; or b) congregate
in places where other like-minded people tend to be (e.g.,
local parks and cinemas).

2. By contrast, unpredictable situations are those in which peo-
ple: a) travel because they do not have what they want at
hand; or b) go to places that attract individuals of very di-
verse backgrounds (e.g., coffee shops, train stations).

Future work should go into models that are able to simultaneously
account for these (at times) conflicting situations.

Applications. The practical implications of this work go beyond
traditional applications of recommender systems:

Target Advertising. The first step when promoting new nightclubs,
bars and restaurants is often to identify the target market.
Thus, knowing the kind of people who are willing to go to,
say, certain restaurants or bars (which is what this work is
about) translates into low-cost marketing strategies for bars
and restaurants that are willing to attract new crowds.

Commercial Property Evaluation. This is the process of identify-
ing and quantifying the value of commercial properties and
is generally carried out by experts who analyze properties
similar to the one being valued. A primary factor that af-
fects this assessment is location, yet this factor is generally
quantified based on the valuer’s expert knowledge of a local-
ity. More recently, well-informed ways of valuing properties



have been proposed, and they rely on the creation and main-
tenance of GIS-based property valuation databases. These
databases (especially those for commercial properties) might
well be enriched by this work - in particular, by knowing how
close a venue is to its target audience (the higher the number
of potential users who like a type of venue in a neighborhood,
the higher the venue’s value).

Social Marketing. Social marketing can be defined as a research-
driven approach to promote voluntary behavior change in a
priority population. A case in point is “Stop the Sores”, a so-
cial marketing campaign designed to increase syphilis testing
in Los Angeles County [17]. Social marketing has its foun-
dation in consumer marketing and consists of three key ele-
ments: market research [24], audience segmentation [8], and
branding [12]. The second element of segmentation is related
to this work and is essential for developing campaign mes-
sages that resonate with the target population and helps in
identifying the largest or highest-risk subgroup (e.g., swingers,
men having sex with men) at minimal cost.

Scalability. The two main parts of this work - which model where-
abouts and preferences - are highly scalable:

Whereabout Part. This requires to know a geographic point for
each user (where an individual usually hangs out) and one
single decay constant α (which is universal in that it equally
applies to all users). Learning a point per user and a constant
for all is extremely scalable. In addition to being scalable,
the models are likely to be generalizable, not least because
they have been built upon previous general rules of people’s
wanderings [2, 3, 7], and, being general, they are also likely
to work for any instance of mobility (not only for Foursquare
users).

Preference Part. This translates into item-based collaborative fil-
tering. The (computationally) expensive part of this algo-
rithm (venue similarity table) can be computed offline, while
what needs to be computed online - matching the user’s venues
with similar ones - scales independently of the total number
of venues and total number of users, in that, it only depends
on the number of venues each single user has visited (which
is generally extremely low).

6. RELATED WORK: WEB DOCET
The problem of recommending events has been initially tackled

on the Web. In this context, researchers have mainly worked on de-
tecting and tracking events [11, 13]. They initially considered how
textual content evolves over time and left out network effects. Zhu
and Sasha then started to model social interactions and topic evolu-
tions by treating these two elements separately [26]. More recently,
Lin et al. built a model that considers these two elements simulta-
neously and showed that it worked upon two very different types of
data - Twitter and DBLP [14]. After detecting events, one can then
recommend them. That is what Daly and Geyer et al. did: they
built a system that recommends events in an internal event man-
agement service and proposed a new way of recommending events
to new users [4]. Before that, Minkov et al. had run large user
studies in which they evaluated the effectiveness of different strate-
gies for recommending academic talks [16]. They found that, in a
situation of limited data sparsity, collaborative filtering approaches
work better than content-based ones. The recommendation process
generally relies on user ratings but has also been enriched by social

networks at times. A case in point is Golbeck et al. who built a
recommender system that integrates social networks to offer well-
informed movie recommendations [6].

Hence past work on recommending events has mostly gone into
Web platforms, while mobile ones have been investigated only re-
cently. Takeuchi and Sugimoto proposed a system that recom-
mends shops based on past visited locations, and found item-based
collaborative filtering to work reasonably well [23]. Ricci and Nguyen
proposed a system that recommend nearby restaurants using a critique-
based model [20]. More recently, for major mobile social-networking
services, Scellato et al. studied their geographic properties at scale
and suggested that these properties could well inform venue rec-
ommendation in large cities [22]. Upon mobile phone data in the
metropolitan area of Boston, Quercia et al. studied strategies for
recommending large-scale events (e.g., concerts, baseball matches)
and showed how different types of events require different recom-
mendation strategies [19].

Shifting attention from recommending events to recommending
people, one sees that most of the work has again gone into Web
platforms. Within an enterprise social network, Guy et al. pro-
posed ways to recommend people a user is not likely to know but
might be interested in [9]. Few months ago, Facebook launched
a new feature called “suggested guests” [5]: this returns a list of
people (three at the time) a user might want to consider inviting
to their event, and the list is compiled based on relevance to the
event and to the people who are attending. Since work on recom-
mending people for events has just started on the Web, it comes
as no surprise that little work about it has gone into mobile social-
networking platforms.

7. CONCLUSION
We have studied different strategies for recommending “guests”

for real-world venues and, not surprisingly, found that results are
best not only for venues with considerable historical data (e.g., ed-
ucational institutions) but also for venues that are visited regularly
(e.g., work locations). For other types of venues such as restaurants
and bars, geographic closeness plays a very important role. Com-
bining user preferences and geographic closeness has the expected
result of offering more accurate recommendations, and that result
can be achieved by using very simple models - Bayesian or linear
regression. Being simple, these models not only are scalable and
cost efficient but also produce recommendations that are easy to ex-
plain. The main criticism for the new Facebook “suggested guests”
feature has been that it “does not offer. . . any sort of context” [5].
Our recommendations - which depend on whether one has visited
similar locations or whether one often hangs out in certain neigh-
borhoods - are likely to be easier to explain than those produced by
black-box approaches. In the future, we will work in this direction:
on how to recommend “guests” in ways that are easy to explain and
that increase serendipitous encounters [25].
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