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C O N N E C T E D  Y O U T H

A dolescent depression is a typical 
response to the normal matura-
tion process, but just because 
it’s common doesn’t mean it 
won’t adversely affect a young 

person’s school performance or impair family 
relationships. One of the most effective ways of 
countering depression is strong social support 
from friends,1 and with today’s technology, 
it’s easier than ever before to maintain contact 
with this support network. Adolescents no lon-
ger have to sit in front of their PCs to talk to 
friends—rather, they constantly communicate 
with each other via mobile social networking 
applications. 

Some sociologists initially 
equated a permanent online 
presence with social isolation, 
believing that young people 
who spent all their time trans-
!xed by mobile phone screens 
weren’t making connections 
with the outside world. In the 
early 2000s, however, other 
sociologists started question-
ing this viewpoint, conduct-

ing small-scale studies and showing that people 
who go online regularly often have higher lev-
els of face-to-face interactions as well.2 A recent 
large-scale sociological study found that mobile 
phone owners and social networking website 
users are more likely to belong to a local vol-
untary group, such as a neighborhood associa-
tion, sports league, youth group, church, or so-
cial club.3 

To help adolescents effectively grow and 
nurture their social relations, we engineered a 
new technology for mobile phones that silently 

keeps track of users’ collocations, as well as the 
frequency of voice calls and text messages. Two 
new algorithmic frameworks then process this 
data, with the following goals: 

• To effectively !nd social contacts based on 
encounters. We present a framework that 
reveals friends’ relationships based on col-
location data. The framework runs either 
on a social-networking site or on the mobile 
phone itself. The latter choice is appealing 
to privacy-conscious users. Simulation stud-
ies conducted on real data demonstrate the 
ability of a set of algorithms to reveal friends’ 
relationships. 

• To nurture online and of"ine contacts. We 
also present a framework that detects pat-
terns in both physical encounters (colloca-
tions) and social activity (phone calls and 
text messages), as well as deviations from 
such patterns. If a user suddenly becomes 
less sociable, the engine sends an alert 
through a numeric code or avatar. We’re 
also studying the degree to which this infer-
ence engine can predict user mood simply 
based on activity. 

We’ve implemented and deployed both 
frameworks on BlackBerry mobile phones with 
negligible computational and communication 
overhead, thus con!rming how this technology 
can run silently on modern mobile phones. 

Finding Social Contacts: 
FriendSensing 
FriendSensing is a framework that lets new 
members of social networking websites dis-
cover their friends automatically.4 It also helps 
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existing members elicit new social re-
lationships. Essentially, FriendSens-
ing automatically creates personalized 
recommendations of the other people 
the user might know in two steps: 

• Logging encounters. Using short-
range radio technologies readily 
available on almost all modern 
mobile phones (such as Bluetooth), 
each device transparently records 

encounters with collocated peo-
ple. More precisely, each phone A 
keeps track of how many times it 
has met phone B and how much 
time it’s spent being collocated with 

V arious approaches exist that aim to automatically discover 
social relations. They mainly differ in the information they 

process: social networking pro!les, e-mails, or data from por-
table devices. 

Social Networking Pro!les
Jilin Chen and colleagues proposed four algorithms for suggest-
ing people on Beehive (an IBM internal social networking web-
site).1 The algorithms are different combinations of two basic 
ideas. The !rst idea is to match people by common interests (for 
example, those who blog on similar topics or share the same 
role within IBM), and the second idea is to match people based 
on their social connections (for example, connecting friends of 
friends). However, the two ideas rely solely on pro!le content, 
and the researchers concede that this restriction should be 
dropped in future implementations.

E-mails
Thomas Karagiannis and Milan Vojnovic gathered the e-mails 
exchanged by their company’s research labs’ more than 100,000 
employees.2 They then represented their data as a graph whose 
nodes were employees and whose links were e-mail exchanges. 
Then, to recommend new e-mail addresses for contact lists, they 
connected friends-of-friends relationships. 

Portable Device Data
On mobile phone data, Ankur Gupta and colleagues showed 
that it’s possible to identify and recommend popular hangouts.3 
More recently, Danny Wyatt and colleagues built a framework 
with which collar devices could capture audio readings and auto-
matically suggest to their users who they might know.4 Using au-
dio sensors, the collar devices record face-to-face conversations 
and, based on conversation length, infer who’s likely to befriend 
whom. The inference is made possible by knowing global prop-
erties (the clustering coef!cients) of the users’ social networks. 
Under this assumption, the promise is that you could accurately 
reconstruct the whole social network. 

Our Work
FriendSensing takes a different, more ubiquitous approach, 
whereby friends are recommended starting from readily available 
information (proximity data from mobile phones),5 requiring no 

a priori knowledge about users and their social ties. In the Real-
ity Mining project, Nathan Eagle and colleagues demonstrated 
that social ties are likely to exist between individuals who behave 
similarly.6,7 In FriendSensing, we built on that work and analyzed 
how different prediction strategies of social ties would perform. 
SensingHappiness uses sentiment analysis techniques proposed 
by Peter Sheridan Dodds and Christopher M. Danforth.8 To deter-
mine whether a small group of people is happy or sad, psycholo-
gists hand out questionnaires or conduct interviews. In their 
article, Dodds and Danforth argued that people are more honest 
in personal writings than during formal psychological tests. For 
this reason, they crawled 2.4 million blogs, scanned the texts for 
more than 1,000 emotionally charged words that a 1999 psychol-
ogy study had ranked on a scale from 1 (miserable) to 9 (ecstatic), 
and calculated an average happiness score for each blog.
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it. Here, we make the assumption 
that a mobile phone is a personal 
device not shared among various 
people. Moreover, we assume it’s 
possible to link devices (such as a 
phone’s Bluetooth ID number) to 
users’ identities on social network-
ing websites (as pioneered by the 
Cityware project5).

• Recommending friends. Both the so-
cial networking site and the mobile 
device can process the collocation re-
cords to elicit relevant encounters and 
arrange them into a weighted social 
network; similarly, either the site or 
the device can then traverse this net-
work to compute personalized lists of 
people each user might know. Friend-
Sensing doesn’t prescribe where the 
processing of proximity records or 
the navigation of the inferred social 
network should occur—it can be 
done on a social networking site or 
mobile device.

We now focus on the algorithms for 
proximity processing and network nav-
igation in general terms; we defer a dis-
cussion about the privacy implications 
of different architectural deployments 
until later in this article. 

Processing Encounters 
Once FriendSensing collects the collo-
cation logs, it must then !lter out ir-
relevant encounters—that is, for each 
user A, it must identify which of A’s 

encounters are likely to be A’s friends. 
FriendSensing does so by computing 
the probabilities of A befriending other 
individuals (A’s friendship probabili-
ties) from proximity data. 

Researchers have already suggested 
ways of computing these probabili-
ties from geographic proximity, based 
on the intuition that friendship prob-
ability increases with geographic  
proximity—the closer two individuals 
are, the likelier they are to be friends. 
In other words, we can model the 
probability of A and B being friends 
as p(A  B)  dist(A,B)–r. That is, 
the probability of being friends with 
a person at a distance d decays as d−r 
for some power of r (typically, r = 2). 
As David Liben-Nowell and his col-
leagues later demonstrated, the ab-
solute value of geographic distance 
alone is insuf!cient to model friend-
ship.6 To see how, imagine A and B 
live 500 meters apart: at the very same 
distance, A and B would likely be 
next-door neighbors in the country-
side (Figure 1a), but complete strang-
ers in central London (Figure 1b). This 
suggests that we must also consider 
population density. Liben-Nowell 
and colleagues did so in a simple way: 
they replaced the absolute distance 
dist(A, B) with a ranked distance, 
p(A  B)  1/(rankDistA(B)).6

The denominator is A’s rank of B, 
which is the number of people who are 
closer to A than B is; it’s expressed as 
(we add “+1” to avoid division by zero): 

rankDistA(B)= 
|{C : dist(A, C) < dist(A, B)}| +1.

In other words, the probability of A be-
friending B depends on the number of 
people within distance dist(A, B). The 
denser the population between A and 
B, the lower B ranks. Consequently, at 
the same distance, B is more likely to 
befriend A in the countryside than in 
central London. Liben-Nowell and his 
colleagues successfully evaluated this 
model with a half-million pro!les col-
lected from the LiveJournal blogging 

website, suggesting that geography is 
a good friendship predictor. However, 
geographic information isn’t widely 
available on mobile phones, and should 
localization technology such as GPS 
become a commodity, it would still fail 
to capture indoor encounters. We thus 
need to reformulate the problem based 
on “mobile phone proximity.”

Using mobile phones, we can keep 
track of how many times A has met B 
(frequency freq(A, B)) and how long 
each encounter lasted (duration dur(A, 
B)). We can now express the friendship 
probability as a function of frequency 
or duration. One plausible way of doing 
so is to consider that the probability of 
A befriending B increases with freq(A, 
B) and with dur(A, B), respectively. 
However, as with geographic informa-
tion, we can’t consider frequency or 
duration alone to compute friendship 
probabilities because they’re both dis-
tributed nonuniformly. Indeed, individ-
uals have skewed mobility patterns—
this is true not only for college students7 
but also for conference attendees and 
hundreds of thousands of other mobile 
users.8 Rather than using absolute fre-
quency and duration values, we can in-
stead take their rank. From frequency, 
the friendship probability becomes

p A B
rankFreq BA

( )
( )

→ ∝
1 , (1)

where rankFreqA(B) = |{C : freq(A, C) > 
freq(A, B)}| +1. Consequently, the prob-
ability of A befriending B depends on 
the number of people who have met A 
more frequently than B has. 

Similarly, by replacing frequency 
with duration, the friendship probabil-
ity becomes

p A B
rankDur BA

( )
( )

→ ∝
1 , (2)

where rankDurA(B) = |{C : dur(A, C) 
> dur(A, B)}| +1. Again, the probabil-
ity of A befriending B depends not on 
freq(A, B) or dur(A, B) itself but on the 
number of people who have met A more 

(a) (b)

A

B

500m

A

B

500m

Figure 1. Friendship probability. If A 
and B live 500 meters apart, they could 
be (a) next-door neighbors in the 
countryside or (b) total strangers  
in central London. 
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frequently or for a longer duration than 
B has. 

We can then compute friendship 
probabilities and ranking from prox-
imity logs and build a weighted social 
networks of encounters: each mobile 
device would be represented as a node, 
and a link would be added between 
any pair of individuals who have met 
at least twice (this is to remove en-
counters caused by chance). Each link  
A  B is then weighted using either 
friendship probability p(A  B) or 
friendship ranking (that is, A’s ranking 
of B, which we can compute from the 
friendship probability itself). Let’s now 
look more closely at when to opt for 
probabilities versus ranks.

Computing Recommendation Lists 
Based on A’s network of encounters, 
FriendSensing generates a personalized 
list of people A might know—that is, 
it predicts which of A’s encounters are 
likely to be A’s friends.

In social network literature, this 
problem is called link prediction, and 
researchers have proposed different 
methods to tackle it.9 Most of these 
methods assign a score to a pair of 
nodes (A, B) following one of two pos-
sible strategies.

Markov chain algorithms. For the Mar-
kov chain class of algorithms, we com-
pute the score between a pair of nodes 
A and B as the fraction of time spent 
at B by a random walk in the network 
originating at A. In this type of net-
work, weights re#ect the connection 
strength between node pairs. There-
fore, we adopt friendship probabilities 
p(A  B) as link weights instead (see 
Figure 2a). The algorithms in this class 
then convert the network in a first-
order Markov chain, the idea being 
that after starting at node A (the prior 
node), the walk can unfold in different 

ways, depending on which of the fol-
lowing algorithms is deployed: 

• PageRank with prior. At each node, 
the walk either iteratively moves 
through one of the node’s outgoing 
links (whose weights are transition 
probabilities) or jumps back to the 
prior node A. 

• K-MarkovChain. This algorithm un-
folds as PageRank with prior does, 
expect for the walk which is now of 
!xed length K.

• Hyperlink-Induced Topic Search 
(HITS) with prior. At each node, the 
walk either moves through one of the 
node’s incoming or outgoing links or 
jumps back to the prior A.

Once FriendSensing computes the 
scores for a walk originating in A, it 
then uses them to build A’s personal-
ized recommendation list.

Shortest path. The score between a 
pair of nodes A and B is the weighted 
length of the shortest path between 
them. The intuition behind this ap-
proach is that social networks are 
“small worlds” (individuals connected 
by short chains), and as such, if there 
are short paths between A and B, then 
A and B are likely to befriend each 
other. The shortest-path algorithm 
accepts weights on the network that 
represent capacity constraints—here, 
weights re#ecting how unlikely it is 
for two nodes to befriend each other. 
Because rankings re#ect just that (the 
higher rankDurA(B) or rankFreqA(B), 
the less likely A befriends B), we adopt 

rankings as link weights in the social 
network of encounters (see Figure 2b). 
The path length is then weighted in the 
sense that it’s the sum of the weights 
along the shortest path. 

Evaluation
FriendSensing’s goal is to recommend 
new social contacts. To ascertain 
FriendSensing’s effectiveness at meet-
ing this goal, we set up a simulation 
driven by real data collected as part of 
the Reality Mining project at the Mas-
sachusetts Institute of Technology. 
The MIT traces contain collocation 
information from 96 subjects (staff 
and students) at the MIT campus dur-
ing the 2004–2005 academic year. We 
gave them Bluetooth-enabled Nokia 
6600 phones and collected colloca-
tion information (roughly a 10-meter 
range) via frequent (!ve-minute) Blue-
tooth device discoveries. Note that the 
users in this data set are young adults 
rather than “youths”: in particular, 
30 users were incoming freshmen,  
20 were incoming masters students, 
and the remaining were older students 
and staff. However, we expect the re-
sults obtained to hold equally for mo-
bility scenarios of adolescents; in fact, 
as existing analysis demonstrates, such 
traces share many unifying features 
with other mobility traces.8

Besides providing mobility traces, 
the MIT data set also implicitly in-
cludes information about the users’ so-
cial networks. In fact, it logs both the 
text messages sent and the phone calls 
made by each phone during the study. 
Using this information, we extracted a 
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Figure 2. Encounter networks. The link 
weights are (a) friendship probabilities 
or (b) ranks.
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social network whereby a link between 
user A and user B is created if A sent a 
text message or made a phone call to B. 

In our simulations, we used the MIT 
mobility traces to log encounters; using 
these logs, we ran FriendSensing and 
computed friends’ recommendations. 
We then compared these recommenda-
tions with the MIT participants’ actual 
social networks and computed the frac-
tion of network ties that FriendSensing 
correctly predicted. We refer to this frac-
tion as “good recommendations” g and 
study how g varies while we increase the 
percentage r of people recommended to 
each user from 0 to 100 percent. 

To study the effect of the collocation 
processing strategy separately from the 
link prediction strategy, we performed 
two sets of experiments. 

Frequency vs. duration. In the !rst set of 
experiments, we aimed to compare the 

effectiveness of frequency as a colloca-
tion processing strategy, as opposed to 
duration. We did so by disabling any 
link propagation strategy and using 
the ranking produced in the frequency/
duration collocation processing strate-
gies locally. This is equivalent to run-
ning FriendSensing on someone’s mo-
bile device without reporting his or her 
proximity log to a social networking 
website (where we could execute the 
full FriendSensing approach, includ-
ing link propagation). Figure 3a plots 
g (good recommendations) versus r 
(recommended people) for the two ba-
sic strategies with respect to a random 
selection of people to recommend. For 
the random strategy, g increases lin-
early with r; the random strategy #uc-
tuates around a straight line (dashed 
in the !gure) because the more people 
recommended, the likelier it is that 
FriendSensing will get some of them 

right. At the extreme of r = 100 percent 
(all users recommended to each user), g 
reaches 100 percent (for all strategies). 
The two remaining strategies perform 
signi!cantly better than random, but 
duration discovers friends faster than 
frequency. To see which strategy per-
formed better over another, we com-
pared frequency and duration against 
the random one. Essentially, we de-
!ned the gain factor over random as 

gain
g

gstrategy
strategy

random

,

where gstrategy is the fraction of good 
recommendations for a given strategy 
(e.g., duration, frequency) and grandom 
is the fraction of good recommenda-
tions for the random strategy. A fac-
tor of one means the strategy performs 
no better than random (no gain), and 
a factor of two means that the strategy 
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Figure 3. Evaluation results. (a) Predicted ties g versus recommended people r for two algorithms based on frequency and 
duration of encounters, (b) gain factor versus recommended people r for the two algorithms, (c) predicted ties g versus 
recommended people r for six algorithms, and (d) gain factor versus recommended people r for the six algorithms. 
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performs two times better than ran-
dom. Figure 3b shows that duration 
gains more than frequency, especially 
for the !rst 20 percent of people rec-
ommended. As expected, the effective-
ness of frequency and duration dies 
off to a point where their gains #atten 
toward random. This is because after 
recommending the most friends possi-
ble, any strategy we use will only have 
a few friends left to recommend (and 
those will be hard to predict). 

Duration and “link prediction.” Our sec-
ond set of experiments compared the 
four different link prediction strategies 
we presented earlier—shortest path, 
PageRank, HITS, and K-Markov-
Chain. We did experiments on a so-
cial network of encounters built from 
duration and frequency information. 
Because the results we obtained with 
duration were consistently better than 
those obtained with frequency, we re-
port results for the former case only. 
Figure 3c plots g versus r for all four 
strategies. It also plots the results ob-
tained with our baseline random strat-
egy, as well as when using duration 
without propagation, to highlight what 
privacy-conscious users would miss by 
not sharing their collocation infor-
mation for propagation processing.  
PageRank, HITS, and K-Markov-
Chain performed equally well and only 
showed small differences due to con!-
dence in the results. In fact, the results 
were similar and came from the com-
mon use of Markov chains by all three 
algorithms. We found that we’d be bet-
ter off using only duration information 
rather than combining it with the three 
algorithms. This isn’t necessarily bad 
news because it suggests that by rely-
ing only on his or her own proximity 
information, a user gets quality recom-
mendations and retains control of his 
or her own private data. In line with the 
literature, shortest path performs best. 
Indeed, Figure 3d shows that it gains 
more than duration, and it does so con-
sistently. This is because, unlike dura-
tion, shortest path can suggest to user 

A those friends who belong to A’s social 
circle but haven’t yet met A. 

Cultivating Social Contacts: 
SensingHappiness 
Once users !nd social contacts with 
FriendSensing, they then need to cul-
tivate them. The idea we’re currently 
exploring is whether by logging not 
only encounters but also calls and text 
messages, mobile phones can help users 
cultivate their contacts. 

Awareness of Friendship Health
As research suggests,7 a misalignment 
exists between individuals’ perception 
of how much time they spend with 
their friends and how much time they 
actually spend in their proximity. In 
particular, perception seems to grossly 
overestimate reality. If users suddenly 
become notably less sociable with one 
of their friends, an application run-
ning on their phones could make them 
aware that perhaps they’re neglecting a 
friendship. An avatar or numeric code 
could represent a friendship’s health, 
in line with current work on affective 
computing.10 Studies con!rm the im-
portance of social interaction in the 
process of friendship formation and 
dissolution;11 moreover, they highlight 
how people have a tendency to aban-

don asymmetric relationships (“I call 
you, but you never call me”). Of course, 
users might purposely neglect some re-
lationships, so a fade-and-forget func-
tion could be applied to friends as a 
user ceases interacting with them (the 
function archives people with whom a 
user stops interacting). In so doing, us-
ers don’t need to “unfriend” anyone; 
rather, ignoring undesirable relations 

for a speci!c time period would suf-
!ce, which also alleviates traumatic so-
cial rejections. Being unfriended often 
results, deliberately or accidentally, in 
upset feelings.12

User Mood and Phone Activity
In addition to helping us evaluate the 
FriendSensing framework, the Reality 
Mining project at MIT offered insight 
into mood prediction. In their analysis 
of the Reality Mining data, Nathan Ea-
gle, Sandy Pentland, and David Lazer7 
compared the behavioral data from 
mobile phones (mobility, calls, and text 
messages) with self-report survey data 
from the participants themselves. The 
researchers found that they could pre-
dict job satisfaction, for example, solely 
from behavioral data. More specifi-
cally, they found that “having friends, 
especially ones to whom you were near 
at work, predicted satisfaction with the 
work group, and calling friends while 
at work was associated with lack of 
satisfaction with the work group.”7 
The researchers concluded that visible 
behavioral data (activity with mobile 
phones) offers an insight into invisible 
cognitive constructs such as mood and 
satisfaction.

Using this research as a springboard, 
we’ve started a new project called Sens-

ingHappiness, in which we analyze 
data crawled from the microblogging 
service Twitter to test whether a visible 
activity level offers any insight into the 
inferred mood of its users. Twitter lets 
users post messages (“tweets”) of up to 
140 characters and supports a variety 
of communicative practices, including 
public republishing of something other 
users have written (“retweets”) in the 

The researchers concluded that visible 

behavioral data (activity with mobile phones) 

offers an insight into invisible cognitive 

constructs such as mood and satisfaction.
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attempt to spread whatever word they 
feel like spreading. 

From this data, we’ll test whether de-
viation from “usual activity” can pre-
dict a Twitter user’s mood. We’ll !rst 
select the (re)tweets that express senti-
ments (“I feel ...,” “I’m feeling ...”) and 
classify each of these (re)tweets accord-
ing to the mood they express (such as 
happiness or sadness) using existing 
sentiment analysis algorithms.13 We’ll 
then look at each user’s (re)tweets be-

fore and after expressing the sentiment 
and study whether someone’s activ-
ity level (in terms of number of tweets 
and retweets) deviates from his or her 
“normal” activity. By predicting mood, 
SensingHappiness can make users more 
aware of their emotions and, conse-
quently, take action or pay particular 
attention to a resulting behavior. 

Implementing FriendSensing 
and SensingHappiness  
on a BlackBerry
To bring our research out of the lab and 
into the real world, we implemented 
FriendSensing and SensingHappiness 
on the BlackBerry platform (speci!-
cally, the BlackBerry Pearl 8120). In 
selecting a target mobile platform, we 
had the following constraints: it had to 
allow applications to seamlessly run in 
the background; it had to have an API 
that’s openly accessible through open 
source languages; and !nally, the API 
had to support Bluetooth access. Al-
though Google now offers a full Blue-
tooth API in Android 2.0, at the time of 
development, there was no support for 
it; the iPhone doesn’t allow background 
applications to run, and any Windows 
Mobile application would require de-

velopment to be done in Microsoft’s 
proprietary .NET languages. Conse-
quently, we went with BlackBerry, but 
a second implementation for Android 
2.0-powered devices is under way. 

Here’s how it works: after installing 
FriendSensing on a BlackBerry, a user 
is prompted to create a pro!le by typ-
ing his or her name and e-mail address. 
The phone sends these two pieces of in-
formation, along with its Bluetooth ID 
and phone number, to a central server 

over GPRS (General Packet Radio Ser-
vice). The server handles registration 
and user pro!le distribution (in its cur-
rent version, the server simply consists 
of a PHP front end and MySQL back 
end, but these functionalities will be in-
tegrated into a Facebook application in 
the next release). After the user registra-
tion step, three software blocks run on 
the phone (see Figure 4): 

• Every 10 minutes, the Bluetooth 
Manager initiates a scan of its prox-
imity, resulting in a list of Bluetooth 
IDs and device-friendly names of the 
phones in proximity. 

• For each phone, the Peer Manager 
collects the number of collocations 
(frequency) and duration (expressed 
in time units) and also #ags the de-
vice as either new (if the phone hasn’t 
been in range before) or seen before 
(if the phone has been in range in the 
past). Since it’s necessary to !lter out 
at an early stage those phones that 
have only been in range for short pe-
riods of time, we consider a phone 
belonging to a potential person of in-
terest and begin its long-term track-
ing only if the phone has been in 
range for more than 20 minutes.

• Every seven days, the Recommenda-
tion Engine produces a list of rec-
ommended social contacts, based on 
collocation frequency or duration; it 
then downloads the pro!les of these 
people from the server and shows the 
list on the phone’s screen. The user 
either con!rms or rejects each of 
the recommendations, and the Peer 
Manager accordingly switches the 
#ags on the corresponding phones 
from seen before to either con!rmed 
or rejected, to avoid repeated recom-
mendations. Con!rmed social con-
tacts will have SensingHappiness 
enabled and be added on the server’s 
user pro!le. 

Note that both the scan interval (10 
minutes) and the aggregation interval 
(seven days) are tunable parameters. 
By setting the scan interval to 10 min-
utes, casual encounters that last only a 
few minutes are discarded as not infor-
mative of actual social relationships. 
By setting the aggregation interval to 
seven days, we hope to capture the us-
er’s routine, which typically revolves 
around weekly schedules. 

Once a phone is confirmed as a 
friend, SensingHappiness keeps track 
of the duration of phone calls and the 
number of text messages to and from 
that phone. By doing so, it gauges the 
friendship strength on more direct 
forms of communication than simple 
collocation. After an observation pe-
riod during which this data is logged 
(currently set to two weeks, to enable 
repetition of weekly user behaviors), 
we can learn activity patterns and their 
deviations. In the current implementa-
tion, such changes manifest themselves 
when users visualize their social net-
works: healthy connections are repre-
sented as thick edges, and neglected 
ones as increasingly thinner lines. 

The current implementation of the 
FriendSensing and SensingHappiness 
technology follows the thick-client 
model: all the logging and process-
ing happen on the mobile phone. This 
choice is suitable for privacy-conscious 

The current implementation of the 

FriendSensing and SensingHappiness technology 

follows the thick-client model: all the logging 

and processing happen on the mobile phone. 
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users who prefer to retain full control 
over their social activity data. How-
ever, an alternative deployment could 
follow the thin client-thick server 
model instead: the application on the 
mobile phone simply collects data and 
then transfers it to the server for pro-
cessing and inferencing. This deploy-
ment’s main advantage is the possi-
bility of transparently updating (and 
improving) the server’s reasoning en-
gine without having to reinstall a new 
application version on the phone. The 
next release of the FriendSensing tech-
nology will follow this model, with the 
reasoning taking place server side in a 
Facebook application and the logging 
functionality ported to a wider variety 
of mobile phones. 

The storage overhead a mobile 
phone that uses FriendSensing/Sens-
ingHappiness would experience de-
pends on the number of managed pro-
!les: for each one, a phone only needs 
to store the Bluetooth ID and pro!le 
name along with four counters (en-
counter frequency and duration, num-
ber of text messages sent, and dura-
tion of phone calls made) and one #ag 
(set to seen before, new, con!rmed, 
or rejected). Even in metropolitan cit-
ies, where a phone could keep track 
of thousands of other devices before 
they’re rejected, the amount of storage 
used is negligible compared to modern 
mobiles phones’ capacity. 

Network communication is consid-
ered by far the most severe battery-
draining factor on mobile devices, 
whereas computation has been shown 
to cause negligible battery consump-
tion.14 In our technology’s current ver-
sion, with all the processing happening 
client side, communication is kept to a 
minimum: once a week, the Bluetooth 
IDs of recommended friends are sent to 
the server, and their pro!les are pushed 
back. To use the technology, users will 
have to leave Bluetooth enabled; as 
various studies demonstrate, many 
people already do this,15,16 so we’re 
primarily interested in determining the 
impact that frequent Bluetooth scan-

ning would have on battery life. So far, 
we’ve run a comparative study with 
two Bluetooth-enabled BlackBerry 
Pearl 8210 phones, carried around by 
the same user for a week, with only one 
phone running the FriendSensing tech-
nology (performing Bluetooth scans 
every 10 minutes and recording scan 
results) in both crowded and empty 
areas; we disabled all other function-
alities (such as calling and texting). 
The handset running FriendSensing 
had its battery depleted after !ve days, 
whereas the phone without FriendSens-
ing (but with Bluetooth still turned 
on) had roughly 40 percent of its bat-
tery capacity remaining at the same 
point. Although this clearly shows 
that frequent Bluetooth scanning can 
have a fairly signi!cant effect on bat-
tery life, the phone with FriendSens-
ing still managed to last for !ve days 
(not bad for modern mobile devices, 

especially one running a resource- 
intensive application). It’s important to 
remember that users can tune the scan 
interval to achieve a desired trade-off 
between accuracy of friend predictions 
and battery life. When moving to the 
technology’s thin-client version, users 
must transfer all the logged data to 
the server for processing to conserve 
battery power. To avoid drainage, us-
ers can transfer aggregated data to the 
server instead of raw data; users can 
also control when uploads occur (for 
example, only when at home, when the 
device is being charged).

W e’re still experimenting 
with bringing our re-
search into real-world 
devices. To this end, our 

project’s next phase exploits PhoneGap, 
an open source development tool for 
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Figure 4. Schematic representation of the FriendSensing implementation. It consists 
of three software blocks: Bluetooth Manager, Peer Manager, and Recommendation 
Engine.
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quickly building mobile applications 
with JavaScript. The server-side com-
ponent is supplemented by a Facebook 
application. Once this cross-platform 
implementation is completed, we’ll run 
a user study with 12 students enrolled 
in the same school. The goal will be to 
understand how adolescents perceive 
the technology—useful, unobtrusive, 
tedious, or intrusive—and whether it 
ultimately helps them nurture their so-
cial contacts.
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