
12 PERVASIVE computing Published by the IEEE CS ! 1536-1268/10/$26.00 © 2010 IEEE

C O N N E C T E D Y O U T H

A dolescent depression is a typical
response to the normal matura-
tion process, but just because
it’s common doesn’t mean it
won’t adversely affect a young

person’s school performance or impair family
relationships. One of the most effective ways of
countering depression is strong social support
from friends,1 and with today’s technology,
it’s easier than ever before to maintain contact
with this support network. Adolescents no lon-
ger have to sit in front of their PCs to talk to
friends—rather, they constantly communicate
with each other via mobile social networking
applications.

Some sociologists initially
equated a permanent online
presence with social isolation,
believing that young people
who spent all their time trans-
!xed by mobile phone screens
weren’t making connections
with the outside world. In the
early 2000s, however, other
sociologists started question-
ing this viewpoint, conduct-

ing small-scale studies and showing that people
who go online regularly often have higher lev-
els of face-to-face interactions as well.2 A recent
large-scale sociological study found that mobile
phone owners and social networking website
users are more likely to belong to a local vol-
untary group, such as a neighborhood associa-
tion, sports league, youth group, church, or so-
cial club.3

To help adolescents effectively grow and
nurture their social relations, we engineered a
new technology for mobile phones that silently

keeps track of users’ collocations, as well as the
frequency of voice calls and text messages. Two
new algorithmic frameworks then process this
data, with the following goals:

• To effectively !nd social contacts based on
encounters. We present a framework that
reveals friends’ relationships based on col-
location data. The framework runs either
on a social-networking site or on the mobile
phone itself. The latter choice is appealing
to privacy-conscious users. Simulation stud-
ies conducted on real data demonstrate the
ability of a set of algorithms to reveal friends’
relationships.

• To nurture online and of"ine contacts. We
also present a framework that detects pat-
terns in both physical encounters (colloca-
tions) and social activity (phone calls and
text messages), as well as deviations from
such patterns. If a user suddenly becomes
less sociable, the engine sends an alert
through a numeric code or avatar. We’re
also studying the degree to which this infer-
ence engine can predict user mood simply
based on activity.

We’ve implemented and deployed both
frameworks on BlackBerry mobile phones with
negligible computational and communication
overhead, thus con!rming how this technology
can run silently on modern mobile phones.

Finding Social Contacts:
FriendSensing
FriendSensing is a framework that lets new
members of social networking websites dis-
cover their friends automatically.4 It also helps

Novel technologies for nurturing a person’s contacts use mobile
phones to recommend new friends or track a friendship’s health.
Such monitoring can also help people monitor their own emotions.

Daniele Quercia
Massachusetts Institute
of Technology

Jonathan Ellis and Licia Capra
University College London

Using Mobile Phones to
Nurture Social Networks

JULY–SEPTEMBER 2010 PERVASIVE computing 13

existing members elicit new social re-
lationships. Essentially, FriendSens-
ing automatically creates personalized
recommendations of the other people
the user might know in two steps:

• Logging encounters. Using short-
range radio technologies readily
available on almost all modern
mobile phones (such as Bluetooth),
each device transparently records

encounters with collocated peo-
ple. More precisely, each phone A
keeps track of how many times it
has met phone B and how much
time it’s spent being collocated with

V arious approaches exist that aim to automatically discover
social relations. They mainly differ in the information they

process: social networking pro!les, e-mails, or data from por-
table devices.

Social Networking Pro!les
Jilin Chen and colleagues proposed four algorithms for suggest-
ing people on Beehive (an IBM internal social networking web-
site).1 The algorithms are different combinations of two basic
ideas. The !rst idea is to match people by common interests (for
example, those who blog on similar topics or share the same
role within IBM), and the second idea is to match people based
on their social connections (for example, connecting friends of
friends). However, the two ideas rely solely on pro!le content,
and the researchers concede that this restriction should be
dropped in future implementations.

E-mails
Thomas Karagiannis and Milan Vojnovic gathered the e-mails
exchanged by their company’s research labs’ more than 100,000
employees.2 They then represented their data as a graph whose
nodes were employees and whose links were e-mail exchanges.
Then, to recommend new e-mail addresses for contact lists, they
connected friends-of-friends relationships.

Portable Device Data
On mobile phone data, Ankur Gupta and colleagues showed
that it’s possible to identify and recommend popular hangouts.3
More recently, Danny Wyatt and colleagues built a framework
with which collar devices could capture audio readings and auto-
matically suggest to their users who they might know.4 Using au-
dio sensors, the collar devices record face-to-face conversations
and, based on conversation length, infer who’s likely to befriend
whom. The inference is made possible by knowing global prop-
erties (the clustering coef!cients) of the users’ social networks.
Under this assumption, the promise is that you could accurately
reconstruct the whole social network.

Our Work
FriendSensing takes a different, more ubiquitous approach,
whereby friends are recommended starting from readily available
information (proximity data from mobile phones),5 requiring no

a priori knowledge about users and their social ties. In the Real-
ity Mining project, Nathan Eagle and colleagues demonstrated
that social ties are likely to exist between individuals who behave
similarly.6,7 In FriendSensing, we built on that work and analyzed
how different prediction strategies of social ties would perform.
SensingHappiness uses sentiment analysis techniques proposed
by Peter Sheridan Dodds and Christopher M. Danforth.8 To deter-
mine whether a small group of people is happy or sad, psycholo-
gists hand out questionnaires or conduct interviews. In their
article, Dodds and Danforth argued that people are more honest
in personal writings than during formal psychological tests. For
this reason, they crawled 2.4 million blogs, scanned the texts for
more than 1,000 emotionally charged words that a 1999 psychol-
ogy study had ranked on a scale from 1 (miserable) to 9 (ecstatic),
and calculated an average happiness score for each blog.

REFERENCES

 1. J. Chen et al., “Make New Friends, but Keep the Old: Recommending
People on Social Networking Sites,” Proc. Int’l Conf. Human Factors in
Computing Systems (CHI), ACM Press, 2009, pp. 201–210.

 2. T. Karagiannis and M. Vojnovic, “Behavioral Pro!les for Advanced
Email Features,” Proc. 18th Int’l World Wide Web Conf., ACM Press,
2009, pp. 711–720.

 3. A. Gupta et al., “Automatic Identi!cation of Informal Social Groups
and Places for Geo-Social Recommendations,” Int’l J. Mobile Network
Design and Innovation, vol. 2, no. 3/4, 2007, pp. 159–171.

 4. D. Wyatt, T. Choudhury, and J. Bilmes, “Learning Hidden Curved
Exponential Random Graph Models to Infer-Face-to-Face Interaction
Networks from Situated Speech Data,” Proc. 23rd Int’l Conf. Arti!cial
Intelligence (AAAI), AAAI Press, 2008, pp. 732–738.

 5. D. Quercia and L. Capra, “FriendSensing: Recommending Friends
Using Mobile Phones,” Proc. Int’l Conf Recommender Systems (RecSys),
ACM Press, 2009, pp. 273–276.

 6. N. Eagle, A.S. Pentland, and D. Lazer, “Inferring Friendship Network
Structure by Using Mobile Phone Data,” Proc. Nat’l Academy of Sci-
ences, vol. 106, no. 36, 2009, pp. 15274–15278.

 7. N. Eagle and A. Pentland, “Eigenbehaviors: Identifying Structure
in Routine,” Behavioral Ecology and Sociobiology, vol. 63, 2009, pp.
1057–1066.

 8. P. Dodds and C. Danforth, “Measuring the Happiness of Large-Scale
Written Expression: Songs, Blogs, and Presidents,” J. Happiness Stud-
ies, July 2009, www.springerlink.com/content/757723154j4w726k.

Related Work in Social Relationship Discovery

14 PERVASIVE computing www.computer.org/pervasive

CONNECTED YOUTH

it. Here, we make the assumption
that a mobile phone is a personal
device not shared among various
people. Moreover, we assume it’s
possible to link devices (such as a
phone’s Bluetooth ID number) to
users’ identities on social network-
ing websites (as pioneered by the
Cityware project5).

• Recommending friends. Both the so-
cial networking site and the mobile
device can process the collocation re-
cords to elicit relevant encounters and
arrange them into a weighted social
network; similarly, either the site or
the device can then traverse this net-
work to compute personalized lists of
people each user might know. Friend-
Sensing doesn’t prescribe where the
processing of proximity records or
the navigation of the inferred social
network should occur—it can be
done on a social networking site or
mobile device.

We now focus on the algorithms for
proximity processing and network nav-
igation in general terms; we defer a dis-
cussion about the privacy implications
of different architectural deployments
until later in this article.

Processing Encounters
Once FriendSensing collects the collo-
cation logs, it must then !lter out ir-
relevant encounters—that is, for each
user A, it must identify which of A’s

encounters are likely to be A’s friends.
FriendSensing does so by computing
the probabilities of A befriending other
individuals (A’s friendship probabili-
ties) from proximity data.

Researchers have already suggested
ways of computing these probabili-
ties from geographic proximity, based
on the intuition that friendship prob-
ability increases with geographic
proximity—the closer two individuals
are, the likelier they are to be friends.
In other words, we can model the
probability of A and B being friends
as p(A B) dist(A,B)–r. That is,
the probability of being friends with
a person at a distance d decays as d−r
for some power of r (typically, r = 2).
As David Liben-Nowell and his col-
leagues later demonstrated, the ab-
solute value of geographic distance
alone is insuf!cient to model friend-
ship.6 To see how, imagine A and B
live 500 meters apart: at the very same
distance, A and B would likely be
next-door neighbors in the country-
side (Figure 1a), but complete strang-
ers in central London (Figure 1b). This
suggests that we must also consider
population density. Liben-Nowell
and colleagues did so in a simple way:
they replaced the absolute distance
dist(A, B) with a ranked distance,
p(A B) 1/(rankDistA(B)).6

The denominator is A’s rank of B,
which is the number of people who are
closer to A than B is; it’s expressed as
(we add “+1” to avoid division by zero):

rankDistA(B)=
|{C : dist(A, C) < dist(A, B)}| +1.

In other words, the probability of A be-
friending B depends on the number of
people within distance dist(A, B). The
denser the population between A and
B, the lower B ranks. Consequently, at
the same distance, B is more likely to
befriend A in the countryside than in
central London. Liben-Nowell and his
colleagues successfully evaluated this
model with a half-million pro!les col-
lected from the LiveJournal blogging

website, suggesting that geography is
a good friendship predictor. However,
geographic information isn’t widely
available on mobile phones, and should
localization technology such as GPS
become a commodity, it would still fail
to capture indoor encounters. We thus
need to reformulate the problem based
on “mobile phone proximity.”

Using mobile phones, we can keep
track of how many times A has met B
(frequency freq(A, B)) and how long
each encounter lasted (duration dur(A,
B)). We can now express the friendship
probability as a function of frequency
or duration. One plausible way of doing
so is to consider that the probability of
A befriending B increases with freq(A,
B) and with dur(A, B), respectively.
However, as with geographic informa-
tion, we can’t consider frequency or
duration alone to compute friendship
probabilities because they’re both dis-
tributed nonuniformly. Indeed, individ-
uals have skewed mobility patterns—
this is true not only for college students7
but also for conference attendees and
hundreds of thousands of other mobile
users.8 Rather than using absolute fre-
quency and duration values, we can in-
stead take their rank. From frequency,
the friendship probability becomes

p A B
rankFreq BA

()
()

→ ∝
1 , (1)

where rankFreqA(B) = |{C : freq(A, C) >
freq(A, B)}| +1. Consequently, the prob-
ability of A befriending B depends on
the number of people who have met A
more frequently than B has.

Similarly, by replacing frequency
with duration, the friendship probabil-
ity becomes

p A B
rankDur BA

()
()

→ ∝
1 , (2)

where rankDurA(B) = |{C : dur(A, C)
> dur(A, B)}| +1. Again, the probabil-
ity of A befriending B depends not on
freq(A, B) or dur(A, B) itself but on the
number of people who have met A more

(a) (b)

A

B

500m

A

B

500m

Figure 1. Friendship probability. If A
and B live 500 meters apart, they could
be (a) next-door neighbors in the
countryside or (b) total strangers
in central London.

JULY–SEPTEMBER 2010 PERVASIVE computing 15

frequently or for a longer duration than
B has.

We can then compute friendship
probabilities and ranking from prox-
imity logs and build a weighted social
networks of encounters: each mobile
device would be represented as a node,
and a link would be added between
any pair of individuals who have met
at least twice (this is to remove en-
counters caused by chance). Each link
A B is then weighted using either
friendship probability p(A B) or
friendship ranking (that is, A’s ranking
of B, which we can compute from the
friendship probability itself). Let’s now
look more closely at when to opt for
probabilities versus ranks.

Computing Recommendation Lists
Based on A’s network of encounters,
FriendSensing generates a personalized
list of people A might know—that is,
it predicts which of A’s encounters are
likely to be A’s friends.

In social network literature, this
problem is called link prediction, and
researchers have proposed different
methods to tackle it.9 Most of these
methods assign a score to a pair of
nodes (A, B) following one of two pos-
sible strategies.

Markov chain algorithms. For the Mar-
kov chain class of algorithms, we com-
pute the score between a pair of nodes
A and B as the fraction of time spent
at B by a random walk in the network
originating at A. In this type of net-
work, weights re#ect the connection
strength between node pairs. There-
fore, we adopt friendship probabilities
p(A B) as link weights instead (see
Figure 2a). The algorithms in this class
then convert the network in a first-
order Markov chain, the idea being
that after starting at node A (the prior
node), the walk can unfold in different

ways, depending on which of the fol-
lowing algorithms is deployed:

• PageRank with prior. At each node,
the walk either iteratively moves
through one of the node’s outgoing
links (whose weights are transition
probabilities) or jumps back to the
prior node A.

• K-MarkovChain. This algorithm un-
folds as PageRank with prior does,
expect for the walk which is now of
!xed length K.

• Hyperlink-Induced Topic Search
(HITS) with prior. At each node, the
walk either moves through one of the
node’s incoming or outgoing links or
jumps back to the prior A.

Once FriendSensing computes the
scores for a walk originating in A, it
then uses them to build A’s personal-
ized recommendation list.

Shortest path. The score between a
pair of nodes A and B is the weighted
length of the shortest path between
them. The intuition behind this ap-
proach is that social networks are
“small worlds” (individuals connected
by short chains), and as such, if there
are short paths between A and B, then
A and B are likely to befriend each
other. The shortest-path algorithm
accepts weights on the network that
represent capacity constraints—here,
weights re#ecting how unlikely it is
for two nodes to befriend each other.
Because rankings re#ect just that (the
higher rankDurA(B) or rankFreqA(B),
the less likely A befriends B), we adopt

rankings as link weights in the social
network of encounters (see Figure 2b).
The path length is then weighted in the
sense that it’s the sum of the weights
along the shortest path.

Evaluation
FriendSensing’s goal is to recommend
new social contacts. To ascertain
FriendSensing’s effectiveness at meet-
ing this goal, we set up a simulation
driven by real data collected as part of
the Reality Mining project at the Mas-
sachusetts Institute of Technology.
The MIT traces contain collocation
information from 96 subjects (staff
and students) at the MIT campus dur-
ing the 2004–2005 academic year. We
gave them Bluetooth-enabled Nokia
6600 phones and collected colloca-
tion information (roughly a 10-meter
range) via frequent (!ve-minute) Blue-
tooth device discoveries. Note that the
users in this data set are young adults
rather than “youths”: in particular,
30 users were incoming freshmen,
20 were incoming masters students,
and the remaining were older students
and staff. However, we expect the re-
sults obtained to hold equally for mo-
bility scenarios of adolescents; in fact,
as existing analysis demonstrates, such
traces share many unifying features
with other mobility traces.8

Besides providing mobility traces,
the MIT data set also implicitly in-
cludes information about the users’ so-
cial networks. In fact, it logs both the
text messages sent and the phone calls
made by each phone during the study.
Using this information, we extracted a

¼

(a)

A B

½

½

C D

1

(b)

A B

1

1

C D

Figure 2. Encounter networks. The link
weights are (a) friendship probabilities
or (b) ranks.

16 PERVASIVE computing www.computer.org/pervasive

CONNECTED YOUTH

social network whereby a link between
user A and user B is created if A sent a
text message or made a phone call to B.

In our simulations, we used the MIT
mobility traces to log encounters; using
these logs, we ran FriendSensing and
computed friends’ recommendations.
We then compared these recommenda-
tions with the MIT participants’ actual
social networks and computed the frac-
tion of network ties that FriendSensing
correctly predicted. We refer to this frac-
tion as “good recommendations” g and
study how g varies while we increase the
percentage r of people recommended to
each user from 0 to 100 percent.

To study the effect of the collocation
processing strategy separately from the
link prediction strategy, we performed
two sets of experiments.

Frequency vs. duration. In the !rst set of
experiments, we aimed to compare the

effectiveness of frequency as a colloca-
tion processing strategy, as opposed to
duration. We did so by disabling any
link propagation strategy and using
the ranking produced in the frequency/
duration collocation processing strate-
gies locally. This is equivalent to run-
ning FriendSensing on someone’s mo-
bile device without reporting his or her
proximity log to a social networking
website (where we could execute the
full FriendSensing approach, includ-
ing link propagation). Figure 3a plots
g (good recommendations) versus r
(recommended people) for the two ba-
sic strategies with respect to a random
selection of people to recommend. For
the random strategy, g increases lin-
early with r; the random strategy #uc-
tuates around a straight line (dashed
in the !gure) because the more people
recommended, the likelier it is that
FriendSensing will get some of them

right. At the extreme of r = 100 percent
(all users recommended to each user), g
reaches 100 percent (for all strategies).
The two remaining strategies perform
signi!cantly better than random, but
duration discovers friends faster than
frequency. To see which strategy per-
formed better over another, we com-
pared frequency and duration against
the random one. Essentially, we de-
!ned the gain factor over random as

gain
g

gstrategy
strategy

random

,

where gstrategy is the fraction of good
recommendations for a given strategy
(e.g., duration, frequency) and grandom
is the fraction of good recommenda-
tions for the random strategy. A fac-
tor of one means the strategy performs
no better than random (no gain), and
a factor of two means that the strategy

Duration

Frequency

Duration

Shortest

Random

Random

0

100
90
80
70
60
50
40
30
20
10
0

10 20 30 40 50 60 100

g
(%

)

908070

0

35

30

25

20

15

10

5

0
10 20 30 40 50 60 100

Ga
in

 fa
ct

or

908070

Duration

PageRank

Duration

Frequency

K-MarkovChain

Random

0

100
90
80
70
60
50
40
30
20
10
0

10 20 30
r (%)

40 50 60 100

g
(%

)

908070

0

30

25

20

15

10

5

0
10 20 30

r (%)
40 50 60 100

Ga
in

 fa
ct

or

908070

Random

HITS

(d)

(a) (b)

(c)

r (%)

r (%)

Shortest

Figure 3. Evaluation results. (a) Predicted ties g versus recommended people r for two algorithms based on frequency and
duration of encounters, (b) gain factor versus recommended people r for the two algorithms, (c) predicted ties g versus
recommended people r for six algorithms, and (d) gain factor versus recommended people r for the six algorithms.

JULY–SEPTEMBER 2010 PERVASIVE computing 17

performs two times better than ran-
dom. Figure 3b shows that duration
gains more than frequency, especially
for the !rst 20 percent of people rec-
ommended. As expected, the effective-
ness of frequency and duration dies
off to a point where their gains #atten
toward random. This is because after
recommending the most friends possi-
ble, any strategy we use will only have
a few friends left to recommend (and
those will be hard to predict).

Duration and “link prediction.” Our sec-
ond set of experiments compared the
four different link prediction strategies
we presented earlier—shortest path,
PageRank, HITS, and K-Markov-
Chain. We did experiments on a so-
cial network of encounters built from
duration and frequency information.
Because the results we obtained with
duration were consistently better than
those obtained with frequency, we re-
port results for the former case only.
Figure 3c plots g versus r for all four
strategies. It also plots the results ob-
tained with our baseline random strat-
egy, as well as when using duration
without propagation, to highlight what
privacy-conscious users would miss by
not sharing their collocation infor-
mation for propagation processing.
PageRank, HITS, and K-Markov-
Chain performed equally well and only
showed small differences due to con!-
dence in the results. In fact, the results
were similar and came from the com-
mon use of Markov chains by all three
algorithms. We found that we’d be bet-
ter off using only duration information
rather than combining it with the three
algorithms. This isn’t necessarily bad
news because it suggests that by rely-
ing only on his or her own proximity
information, a user gets quality recom-
mendations and retains control of his
or her own private data. In line with the
literature, shortest path performs best.
Indeed, Figure 3d shows that it gains
more than duration, and it does so con-
sistently. This is because, unlike dura-
tion, shortest path can suggest to user

A those friends who belong to A’s social
circle but haven’t yet met A.

Cultivating Social Contacts:
SensingHappiness
Once users !nd social contacts with
FriendSensing, they then need to cul-
tivate them. The idea we’re currently
exploring is whether by logging not
only encounters but also calls and text
messages, mobile phones can help users
cultivate their contacts.

Awareness of Friendship Health
As research suggests,7 a misalignment
exists between individuals’ perception
of how much time they spend with
their friends and how much time they
actually spend in their proximity. In
particular, perception seems to grossly
overestimate reality. If users suddenly
become notably less sociable with one
of their friends, an application run-
ning on their phones could make them
aware that perhaps they’re neglecting a
friendship. An avatar or numeric code
could represent a friendship’s health,
in line with current work on affective
computing.10 Studies con!rm the im-
portance of social interaction in the
process of friendship formation and
dissolution;11 moreover, they highlight
how people have a tendency to aban-

don asymmetric relationships (“I call
you, but you never call me”). Of course,
users might purposely neglect some re-
lationships, so a fade-and-forget func-
tion could be applied to friends as a
user ceases interacting with them (the
function archives people with whom a
user stops interacting). In so doing, us-
ers don’t need to “unfriend” anyone;
rather, ignoring undesirable relations

for a speci!c time period would suf-
!ce, which also alleviates traumatic so-
cial rejections. Being unfriended often
results, deliberately or accidentally, in
upset feelings.12

User Mood and Phone Activity
In addition to helping us evaluate the
FriendSensing framework, the Reality
Mining project at MIT offered insight
into mood prediction. In their analysis
of the Reality Mining data, Nathan Ea-
gle, Sandy Pentland, and David Lazer7
compared the behavioral data from
mobile phones (mobility, calls, and text
messages) with self-report survey data
from the participants themselves. The
researchers found that they could pre-
dict job satisfaction, for example, solely
from behavioral data. More specifi-
cally, they found that “having friends,
especially ones to whom you were near
at work, predicted satisfaction with the
work group, and calling friends while
at work was associated with lack of
satisfaction with the work group.”7
The researchers concluded that visible
behavioral data (activity with mobile
phones) offers an insight into invisible
cognitive constructs such as mood and
satisfaction.

Using this research as a springboard,
we’ve started a new project called Sens-

ingHappiness, in which we analyze
data crawled from the microblogging
service Twitter to test whether a visible
activity level offers any insight into the
inferred mood of its users. Twitter lets
users post messages (“tweets”) of up to
140 characters and supports a variety
of communicative practices, including
public republishing of something other
users have written (“retweets”) in the

The researchers concluded that visible

behavioral data (activity with mobile phones)

offers an insight into invisible cognitive

constructs such as mood and satisfaction.

18 PERVASIVE computing www.computer.org/pervasive

CONNECTED YOUTH

attempt to spread whatever word they
feel like spreading.

From this data, we’ll test whether de-
viation from “usual activity” can pre-
dict a Twitter user’s mood. We’ll !rst
select the (re)tweets that express senti-
ments (“I feel ...,” “I’m feeling ...”) and
classify each of these (re)tweets accord-
ing to the mood they express (such as
happiness or sadness) using existing
sentiment analysis algorithms.13 We’ll
then look at each user’s (re)tweets be-

fore and after expressing the sentiment
and study whether someone’s activ-
ity level (in terms of number of tweets
and retweets) deviates from his or her
“normal” activity. By predicting mood,
SensingHappiness can make users more
aware of their emotions and, conse-
quently, take action or pay particular
attention to a resulting behavior.

Implementing FriendSensing
and SensingHappiness
on a BlackBerry
To bring our research out of the lab and
into the real world, we implemented
FriendSensing and SensingHappiness
on the BlackBerry platform (speci!-
cally, the BlackBerry Pearl 8120). In
selecting a target mobile platform, we
had the following constraints: it had to
allow applications to seamlessly run in
the background; it had to have an API
that’s openly accessible through open
source languages; and !nally, the API
had to support Bluetooth access. Al-
though Google now offers a full Blue-
tooth API in Android 2.0, at the time of
development, there was no support for
it; the iPhone doesn’t allow background
applications to run, and any Windows
Mobile application would require de-

velopment to be done in Microsoft’s
proprietary .NET languages. Conse-
quently, we went with BlackBerry, but
a second implementation for Android
2.0-powered devices is under way.

Here’s how it works: after installing
FriendSensing on a BlackBerry, a user
is prompted to create a pro!le by typ-
ing his or her name and e-mail address.
The phone sends these two pieces of in-
formation, along with its Bluetooth ID
and phone number, to a central server

over GPRS (General Packet Radio Ser-
vice). The server handles registration
and user pro!le distribution (in its cur-
rent version, the server simply consists
of a PHP front end and MySQL back
end, but these functionalities will be in-
tegrated into a Facebook application in
the next release). After the user registra-
tion step, three software blocks run on
the phone (see Figure 4):

• Every 10 minutes, the Bluetooth
Manager initiates a scan of its prox-
imity, resulting in a list of Bluetooth
IDs and device-friendly names of the
phones in proximity.

• For each phone, the Peer Manager
collects the number of collocations
(frequency) and duration (expressed
in time units) and also #ags the de-
vice as either new (if the phone hasn’t
been in range before) or seen before
(if the phone has been in range in the
past). Since it’s necessary to !lter out
at an early stage those phones that
have only been in range for short pe-
riods of time, we consider a phone
belonging to a potential person of in-
terest and begin its long-term track-
ing only if the phone has been in
range for more than 20 minutes.

• Every seven days, the Recommenda-
tion Engine produces a list of rec-
ommended social contacts, based on
collocation frequency or duration; it
then downloads the pro!les of these
people from the server and shows the
list on the phone’s screen. The user
either con!rms or rejects each of
the recommendations, and the Peer
Manager accordingly switches the
#ags on the corresponding phones
from seen before to either con!rmed
or rejected, to avoid repeated recom-
mendations. Con!rmed social con-
tacts will have SensingHappiness
enabled and be added on the server’s
user pro!le.

Note that both the scan interval (10
minutes) and the aggregation interval
(seven days) are tunable parameters.
By setting the scan interval to 10 min-
utes, casual encounters that last only a
few minutes are discarded as not infor-
mative of actual social relationships.
By setting the aggregation interval to
seven days, we hope to capture the us-
er’s routine, which typically revolves
around weekly schedules.

Once a phone is confirmed as a
friend, SensingHappiness keeps track
of the duration of phone calls and the
number of text messages to and from
that phone. By doing so, it gauges the
friendship strength on more direct
forms of communication than simple
collocation. After an observation pe-
riod during which this data is logged
(currently set to two weeks, to enable
repetition of weekly user behaviors),
we can learn activity patterns and their
deviations. In the current implementa-
tion, such changes manifest themselves
when users visualize their social net-
works: healthy connections are repre-
sented as thick edges, and neglected
ones as increasingly thinner lines.

The current implementation of the
FriendSensing and SensingHappiness
technology follows the thick-client
model: all the logging and process-
ing happen on the mobile phone. This
choice is suitable for privacy-conscious

The current implementation of the

FriendSensing and SensingHappiness technology

follows the thick-client model: all the logging

and processing happen on the mobile phone.

JULY–SEPTEMBER 2010 PERVASIVE computing 19

users who prefer to retain full control
over their social activity data. How-
ever, an alternative deployment could
follow the thin client-thick server
model instead: the application on the
mobile phone simply collects data and
then transfers it to the server for pro-
cessing and inferencing. This deploy-
ment’s main advantage is the possi-
bility of transparently updating (and
improving) the server’s reasoning en-
gine without having to reinstall a new
application version on the phone. The
next release of the FriendSensing tech-
nology will follow this model, with the
reasoning taking place server side in a
Facebook application and the logging
functionality ported to a wider variety
of mobile phones.

The storage overhead a mobile
phone that uses FriendSensing/Sens-
ingHappiness would experience de-
pends on the number of managed pro-
!les: for each one, a phone only needs
to store the Bluetooth ID and pro!le
name along with four counters (en-
counter frequency and duration, num-
ber of text messages sent, and dura-
tion of phone calls made) and one #ag
(set to seen before, new, con!rmed,
or rejected). Even in metropolitan cit-
ies, where a phone could keep track
of thousands of other devices before
they’re rejected, the amount of storage
used is negligible compared to modern
mobiles phones’ capacity.

Network communication is consid-
ered by far the most severe battery-
draining factor on mobile devices,
whereas computation has been shown
to cause negligible battery consump-
tion.14 In our technology’s current ver-
sion, with all the processing happening
client side, communication is kept to a
minimum: once a week, the Bluetooth
IDs of recommended friends are sent to
the server, and their pro!les are pushed
back. To use the technology, users will
have to leave Bluetooth enabled; as
various studies demonstrate, many
people already do this,15,16 so we’re
primarily interested in determining the
impact that frequent Bluetooth scan-

ning would have on battery life. So far,
we’ve run a comparative study with
two Bluetooth-enabled BlackBerry
Pearl 8210 phones, carried around by
the same user for a week, with only one
phone running the FriendSensing tech-
nology (performing Bluetooth scans
every 10 minutes and recording scan
results) in both crowded and empty
areas; we disabled all other function-
alities (such as calling and texting).
The handset running FriendSensing
had its battery depleted after !ve days,
whereas the phone without FriendSens-
ing (but with Bluetooth still turned
on) had roughly 40 percent of its bat-
tery capacity remaining at the same
point. Although this clearly shows
that frequent Bluetooth scanning can
have a fairly signi!cant effect on bat-
tery life, the phone with FriendSens-
ing still managed to last for !ve days
(not bad for modern mobile devices,

especially one running a resource-
intensive application). It’s important to
remember that users can tune the scan
interval to achieve a desired trade-off
between accuracy of friend predictions
and battery life. When moving to the
technology’s thin-client version, users
must transfer all the logged data to
the server for processing to conserve
battery power. To avoid drainage, us-
ers can transfer aggregated data to the
server instead of raw data; users can
also control when uploads occur (for
example, only when at home, when the
device is being charged).

W e’re still experimenting
with bringing our re-
search into real-world
devices. To this end, our

project’s next phase exploits PhoneGap,
an open source development tool for

Server
App

Peer Manager

id
ee:0b:ea:7c:24:0e
a1:0f:cc:b4:e8:12
00:a3:3c:60:9f:2b

...

Name
jsmith
d@v

Nokia 6230i
...

Flag
FRIEND

OLD
IGNORED

...

Duration
88
12
8
...

Frequency
5
3
1
...

...

...

...

...

Bluetooth Manager

Scan Wait

Recommendation Engine

Figure 4. Schematic representation of the FriendSensing implementation. It consists
of three software blocks: Bluetooth Manager, Peer Manager, and Recommendation
Engine.

20 PERVASIVE computing www.computer.org/pervasive

CONNECTED YOUTH

quickly building mobile applications
with JavaScript. The server-side com-
ponent is supplemented by a Facebook
application. Once this cross-platform
implementation is completed, we’ll run
a user study with 12 students enrolled
in the same school. The goal will be to
understand how adolescents perceive
the technology—useful, unobtrusive,
tedious, or intrusive—and whether it
ultimately helps them nurture their so-
cial contacts.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their help-
ful comments; Sebastian Mueller for his construc-
tive feedback; and Lorenzo Vaiuso, Neal Lathia,
and Viktor Presenti for their support in the Friend-
Sensing project.

REFERENCES
 1. S. Bhatia and S. Bhatia, “Adolescents’

Social Environment and Depression:

Social Networks, Extracurricular Activ-
ity, and Family Relationship Influences,”
J. Clinical Psychology in Medical Set-
tings, vol. 16, no. 4, 2009, pp. 346–354.

 2. K. Hampton and B. Wellman, “Neighbor-
ing in Netville: How the Internet Supports
Community and Social Capital in a Wired
Suburb,” City & Community, vol. 2, no.
4, 2003, pp. 277–311.

 3. K. Hampton et al., “Social Isolation and
New Technology,” Pew Internet Report,
Nov. 2009.

 4 D. Quercia and L. Capra, “Friend Sensing:
Recommending Friends Using Mobile
Phones,” Proc. Int’l Conf Recommender
Systems (RecSys), ACM Press, 2009, pp.
273–276.

 5. V. Kostakosand and E. O’Neill, “City-
ware: Urban Computing to Bridge Online
and Real-World Social Networks,” Urban
Informatics: The Practice and Promise of
the Real-Time City, IGI Global, 2008, pp.
195–204.

 6. D. Liben-Nowell et al., “Geographic
Routing in Social Networks,” J. Nat’l
Academy of Sciences, vol. 102, no. 33,
2005, pp. 11623–11628.

 7. N. Eagle, A.S. Pentland, and D. Lazer,

“Inferring Friendship Network Structure
by Using Mobile Phone Data,” Proc. Nat’l
Academy of Sciences, vol. 106, no. 36,
2009, pp. 15274–15278.

 8. P. Hui and J. Crowcroft, “Human Mobil-
ity Models and Opportunistic Commu-
nications System Design,” Philosophical
Trans. Royal Soc. London, vol. 366, no.
1872, 2008, pp. 2005–2016.

 9. D. Liben-Nowell and J. Kleinberg, “The
Link-Prediction Problem for Social Net-
works,” J. Am. Soc. Information Science
and Tech., vol. 58, no. 7, 2007, pp. 1019–
1031.

 10. P. Andre et al., “Experience in Social
Affective Applications: Methodologies
and Case Study,” Proc. alt.chi, ACM
Press, 2010, pp. 2775–2764.

 11. G.G. Van De Bunt et al., “Friendship Net-
works through Time: An Actor-Oriented
Dynamic Statistical Network Model,”
Computational & Mathematical Orga-
nization Theory, vol. 5, no. 2, 1999, pp.
167–192.

 12. D. Boyd, “Friends, Friendsters, and
MySpace Top 8: Writing Community
into Being on Social Network Sites,” First
Monday, vol. 11, no. 12, 2006; www.
firstmonday.org/htbin/cgiwrap/bin/ojs/
index.php/fm/issue/view/206.

 13. P. Dodds and C. Danforth, “Mea-
suring the Happiness of Large-Scale
Written Expression: Songs, Blogs,
and Presidents,” J. Happiness Stud-
ies, July 2009; www.springerlink.com/
content/757723154j4w726k.

 14. E. Miluzzo et al., “Sensing Meets Mobile
Social Networks: The Design, Implemen-
tation and Evaluation of the Cenceme
Application,” Proc. 6th Int’l Conf.
Embedded Network Sensor Systems,
ACM Press, 2008, pp. 337–350.

 15. L. McNamara, C. Mascolo, and L. Capra,
“Media Sharing Based on Colocation Pre-
diction in Urban Transport,” Proc. 14th
ACM Int’l Conf. Mobile Computing and
Networking (MobiCom), ACM Press,
2008, pp. 58–69.

 16. E. O’Neill et al., “Instrumenting the City:
Developing Methods for Observing and
Understanding the Digital Cityscape,”
Proc. Int’l Conf. Ubiquitous Computing
(Ubicomp), ACM Press, 2006, pp. 315–
332.

the AUTHORS
Daniele Quercia is a postdoctoral research associate at the Massachusetts
Institute of Technology. His research interests include computational social
science, social computing, and mobile social networking. Quercia has a PhD
in computer science from University College London. Contact him at
daniele.quercia@gmail.com.

Jonathan Ellis is a third year undergraduate studying MEng Computer Science
at University College London. His research interests include mobile computing,
social networks, and pervasive computing. Contact him at j.ellis@cs.ucl.ac.uk.

Licia Capra is a senior lecturer in the Department of Computer Science at
University College London. Her research interests include mobile systems, per-
vasive computing, and social networks. Capra has a PhD in computer science
from University College London. Contact her at l.capra@cs.ucl.ac.uk.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

